
Deciding Substitutability of Services with
Operating Guidelines

Christian Stahl ?, Peter Massuthe, and Jan Bretschneider

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

{stahl,massuthe,bretschn}@informatik.hu-berlin.de

Abstract. Deciding whether a service S can be substituted by another
service S′ is an important problem in practice and one of the research
challenges in service-oriented computing. In this paper, we define three
substitutability notions for services. Accordance specifies that S′ cooper-
ates with at least the environments that S cooperates with. S and S′ are
equivalent if they cooperate with the same environments. To guarantee
that S′ cooperates with a fixed subset of environments that S cooperates
with, the notion of deprecation can be used. For each substitutability no-
tion we present a decision algorithm. To this end we apply the concept
of an operating guideline of a service as an abstract representation of all
environments the service cooperates with.

Key words: Open nets, Operating guidelines, Service substitutability

1 Introduction

In the paradigm of service-oriented computing (SOC) [1], a service serves as a
building block for designing flexible business processes by composing multiple
services. Such a (composed) service is subject to changes. There may hardly ever
be a total renewal or upgrade of the overall service. Instead, individual services
will be replaced by better ones, because the service was too expensive or some
new functionality has been added, for instance. Service substitutability, that is,
deciding whether a service can be substituted by another service, is one of the
most notable SOC research challenges [2].

Obviously, a service S can be substituted by another service S′ if no envi-
ronment can distinguish them, that is, they are equivalent. In practice, however,
more flexible notions than equivalence are relevant as well. In general, substitut-
ing S by S′ either should gain or preserve properties of the overall service.

In order to guarantee that substituting S by S′ indeed gains and/or preserves
specific properties, support of formal methods is needed. To this end we need
to characterize different properties of substitutability, resulting in different sub-
stitutability notions. In the next step, we have to develop algorithms to decide
substitutability for each notion.
? Funded by the DFG project “Substitutability of Services” (RE 834/16-1).

In this paper, we restrict ourselves to the service protocol, that is, to the be-
havior of a service, and abstract from other important aspects like quality of ser-
vice and semantics. As our formal model we use open nets, a special class of Petri
nets. An open net has an interface for communication with other open nets via
asynchronous message passing. To meet different application scenarios that are
relevant in practice we introduce three substitutability notions: accordance (S′

cooperates with at least every environment S cooperates with), equivalence (S
and S′ cooperate with the same environments), and deprecation (S′ cooperates
with at least a fixed subset of environments S cooperates with). Furthermore, a
property-preserving substitutability notion is derived which is more fine-grained
than deprecation. For each such notion we present a decision algorithm based
on the concept of an operating guideline as an abstract representation of all en-
vironments a given service can cooperate with. Operating guidelines have been
suggested to support service discovery so far. In this paper, we show that op-
erating guidelines are well-suited for deciding substitutability of services, too.
To this end we use known results, extend some notions, and also provide new
results on operating guidelines.

The remainder of this paper is structured as follows. Sections 2 and 3 present
the preliminaries. There, we recall our service models, open nets and service
automata, as well as operating guidelines. Then, in Sect. 4 we introduce the
notion of accordance. Deprecation is explained in Sect. 5. From accordance and
deprecation we derive in Sect. 6 two further substitutability notions. Related
work is discussed in Sect. 7 and finally, conclusions are drawn in Sect. 8.

2 Service Models

In this section, we introduce open nets, a special class of Petri nets, as a formal
model for services and service automata as a technique to analyze the interaction
behavior of open nets. We will show that an open net can easily be translated
into a service automaton and vice versa, so we can consider our analysis questions
on both models alike.

2.1 Open Nets

We assume the usual definition of a (place/transition) Petri net N = [P, T, F]
(see [3], for instance) and use the standard notation to denote the preset and
postset of a place or a transition: •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}.

A marking of a Petri net N is a mapping m : P → N. We use a multiset
notation to denote markings and write m = [p1, p1, p2] for a marking m with
m(p1) = 2, m(p2) = 1, and m(p) = 0 for all p ∈ P \{p1, p2}. If Q ⊇ P , a marking
m : P → N extends canonically to m : Q→ N by m(p) = 0 for each p ∈ Q \ P .

Open nets were introduced in [4] using the term “open workflow nets”. Open
nets are a special class of Petri nets and can be seen as a generalized version of van
der Aalst’s workflow nets [5], which have been proven successful for the modeling
of business processes and workflows. As a substantial difference, an open net has

2

an interface that consists of a set of input places and a set of output places for
asynchronous communication with an environment. This idea is based on the
module concept for Petri nets which was proposed by Kindler [6]. Suitability
of open nets for modeling services has been proven through an implemented
translation (see [7], for instance) from the industrial service description language
WS-BPEL [8] into open nets.

As a global name space, we assume a set MC of message channels given.
For technical reasons, we require that the special symbols τ (representing a non-
communicating step) and final (used to denote final states) are not in MC.

Definition 1 (Open net).
An open net N = [P, Pin , Pout , T, F,m0, Ω] consists of a Petri net [P, T, F]
together with

– two disjoint sets Pin ⊆ (P ∩MC) of input places such that •pin = ∅ for
all pin ∈ Pin and Pout ⊆ (P ∩MC) of output places such that pout• = ∅
for all pout ∈ Pout ,

– a distinguished initial marking m0, and
– a set Ω of final markings such that no transition of N is enabled at any
m ∈ Ω.

Let Pio = Pin ∪ Pout denote the interface of N . We further require that neither
the initial nor a final marking marks any interface place p ∈ Pio. y

The behavior of an open net is defined using the standard Petri net semantics,
that is, a transition is enabled if each place of its preset holds a token. An enabled
transition t can fire in a marking m by consuming tokens from the preset places
and producing tokens for the postset places, yielding a marking m′. In order
to assign an intuitively consistent meaning to final markings, we restrict our
approach to such open nets where a marking in Ω does not enable any transition.

As an example, Fig. 1(a) shows an open net model of an online shop.
Interaction of open nets is represented by their composition. Two open nets

N1 and N2 are composable if they only share interface places and the input places
of N1 are exactly the output places of N2 and vice versa (i.e. Pin1 = Pout2 and
Pin2 = Pout1). For two markings m1 of N1 and m2 of N2, their composition
m1⊕m2 is defined by (m1⊕m2)(p) = m1(p)+m2(p). From now on, if two open
nets N1 and N2 are composed, we implicitly assume they are composable.

Definition 2 (Composition of open nets).
The composition of (composable) open nets N1 and N2 is the open net N =
N1 ⊕N2 defined as follows:

– P = P1 ∪ P2,
– Pin = Pout = ∅,
– T = T1 ∪ T2,
– F = F1 ∪ F2,
– m0 = m01 ⊕m02 , and
– Ω = {m1 ⊕m2 | m1 ∈ Ω1,m2 ∈ Ω2}. y

3

p1

p2 p3

p4 p5

p6 p7

login

terms

order

deliver

invoice

t1

t2 t3

t4 t5

(a) Open net Nshop

p8

p9 p10

login

terms

order

deliver

invoice

(b) Open net Nclient

p1

p6 p7

login

terms

order

deliver

invoice

p8

p9 p10

(c) Composition Nshop ⊕Nclient

Fig. 1. (a) An open net Nshop modeling an online shop. In the initial marking [p1], it
waits for a login from a client. After the client logged in, the shop concurrently waits
for an order which it then will deliver and it waits for a confirmation of the terms of
payment and sends an invoice afterwards. Finally, the shop reaches the single final
marking [p6, p7]. (b)-(c) An open net Nclient modeling a client of the shop with its final
marking [p9, p10] and the composition of shop and client.

A marking m of an open net N is a deadlock in N iff m is no final marking
of N and m does not enable any transition of N . Deadlock-freedom is a funda-
mental correctness criterion for cooperating services. In contrast, an open net
representing a service in isolation usually has deadlocks. As an example, each of
the open nets in Fig. 1(a) and Fig. 1(b) on its own has at least one deadlock,
whereas the open net in Fig. 1(c) is deadlock-free.

Definition 3 (Strategy).
An open net M is a (open net) strategy for an open net N if their composition
is deadlock-free. Strat(N) denotes the set of all strategies for N . y

If Strat(N) 6= ∅, then N is called controllable, otherwise N is uncontrollable.
Uncontrollable services are fundamentally ill-designed.

Note that according to Def. 3, the strategy notion is symmetric, that is, M is
a strategy for N iff N is a strategy for M . In Sect. 3 we will show how to decide
controllability of a given service N by synthesizing a strategy M , thus fixing
one side of this symmetry. If N is uncontrollable, then the synthesis produces
an “empty” strategy.

Obviously, the client Nclient in Fig. 1(b) is a strategy for the shop Nshop in
Fig. 1(a) (and vice versa). Hence, Nshop is controllable (and so is Nclient).

The set Strat(N) is of particular importance as it gives a semantics of an open
net N in terms of N ’s deadlock-freely interacting environments. In Sections 4 – 6,
we introduce several substitutability notions which all are based on comparing
the corresponding sets of strategies.

4

2.2 Service Automata

Service automata [9] form the basis of operating guidelines and are used for
representing the behavior of open nets. We will firstly introduce service automata
and then present a back and forth translation between open nets and service
automata, that uses the set MC as interconnection. Service automata are closely
related to the reachability graph of the inner of open nets. Thereby, the inner
of an open net N is the open net inner(N) where all interface places of N as
well as all their adjacent arcs are removed.

Definition 4 (Service automaton).
A service automaton is an automaton A = [Q, Iin , Iout , δ, q0, Ω] that consists of

– a set Q of states,
– two disjoint sets Iin ⊆ MC of input channels and Iout ⊆ MC of output

channels, with Iio = Iin ∪ Iout is the interface of A,
– a nondeterministic transition relation δ ⊆ Q× (Iio ∪ {τ})×Q,
– a distinguished initial state q0 ∈ Q, and
– a set Ω ⊆ Q of final states, such that q ∈ Ω and (q, x, q′) ∈ δ implies
x ∈ Iin . y

For a transition (q, x, q′) ∈ δ, x is called the label of (q, x, q′). An x-labeled
transition is a sending transition if x ∈ Iout , a receiving transition if x ∈ Iin ,
and an internal transition if x = τ . To emphasize the direction of an interface
channel x ∈ Iio in the graphical representation of a service automaton, we add
an exclamation mark, !x, if x ∈ Iout , or a question mark, ?x, if x ∈ Iin .

Figure 2 shows three service automata which correspond to the three open
nets of Fig. 1.

s1

s2

s3 s4

s5 s6 s7

s8 s9

s10

?login

?order ?terms

!deliver
?terms

?order !invoice

?terms

!deliver !invoice

?order

!invoice !deliver

(a) Ashop

r1

r2

r3

r4

r5 r6

r7

!login

!terms

!order

?deliver ?invoice

?invoice ?deliver

(b) Aclient

[s1,r1,[]]

[s1,r2,[login]]

[s1,r3,[login, terms]]

[s1,r4,[login, terms, order]]

[s2,r2,[]]

[s2,r3,[terms]]

.

.

.

.

.

.

. . .

. . .

τ

τ

τ

τ

τ

τ

(c) Composition Ashop ⊕Aclient

Fig. 2. Three service automata of the online shop, its client, and their composition.

In the following, we lift notions defined for open nets to service automata.

5

Two service automata are composable if they have disjoint sets of states
and the input channels of one automaton are the output channels of the other
automaton and vice versa. In the following, we assume all composed service
automata are composable.

The composition A⊕B of composable service automata A and B introduces
an internal message bag (i.e. a multiset) of currently pending messages that were
sent by one automaton, but not yet received by the other one. That way, a prior
x-labeled sending transition of A is represented in A ⊕ B by an internal (i.e.
τ -labeled) transition that adds one x element to the message bag M , and a prior
transition receiving an x is represented by a now internal transition removing an
x from the message bag. Prior internal transitions remain as internal transitions
in A⊕B. This is formalized in the following definition.
Definition 5 (Composition of service automata).
For (composable) service automata A and B, their composition is defined as the
service automaton A⊕B = [Q, Iin , Iout , δ, q0, Ω] defined as follows:
– Q = QA ×QB × bags(MC),
– Iin = Iout = ∅,
– δ ⊆ Q× {τ} ×Q,
– q0 = [q0A

, q0B
, ∅],

– Ω = ΩA ×ΩB × {∅},
such that the transition relation δ contains the elements
– ([qA, qB ,M], τ, [q′A, qB ,M]) iff (qA, τ, q′A) ∈ δA,
– ([qA, qB ,M], τ, [qA, q′B ,M]) iff (qB , τ, q′B) ∈ δB,
– ([qA, qB ,M], τ, [q′A, qB ,M − [x]]) iff (qA, x, q′A) ∈ δA, x ∈ IinA, M(x) > 0,
– ([qA, qB ,M], τ, [q′A, qB ,M + [x]]) iff (qA, x, q′A) ∈ δA, x ∈ IoutA,
– ([qA, qB ,M], τ, [qA, q′B ,M − [x]]) iff (qB , x, q′B) ∈ δB, x ∈ IinB, M(x) > 0,
– ([qA, qB ,M], τ, [qA, q′B ,M + [x]]) iff (qB , x, q′B) ∈ δB, x ∈ IoutB. y

In the rest of this paper, we will only consider the connected part of the
service automaton A⊕B which contains the initial state (i.e. only states which
are δ-reachable from q0).

A state q is a deadlock in A if q /∈ Ω and at most receiving transitions leave
q. Hence, a service automaton cannot leave a deadlock by its own.
Definition 6 (Strategy).
A service automaton A is a strategy (service automaton) for a service automaton
B if their composition is free of deadlocks. y

In analogy to open nets, let Strat(A) denote the set of all strategies for a
service automaton A. A is controllable iff Strat(A) 6= ∅.

2.3 Translating Open Nets into Service Automata and Back

In [10] we have shown that it is possible to transform each open net N into an
open net N ′ where each transition is connected to at most one interface place

6

while preserving its set of strategies, i.e. Strat(N) = Strat(N ′). Therefore we
can, without loss of generality, assume such open nets for the transformation
into service automata. Let the inner of such an open net N be the open net
inner(N) where all interface places of N as well as all their adjacent arcs are
removed.

Then, the service automaton A(N) of an open net N is basically the reach-
ability graph of inner(N): the states of A(N) are the reachable markings of
inner(N) and a transition t of inner(N) that was connected to an interface
place p in N becomes a p-labeled transition of A(N). The set MC is used as a
common name space between the net and its corresponding service automaton,
as both the interface places of N and the interface of A(N) are subsets of MC.
If t was not connected to any interface place in N , then it becomes a τ -labeled
(i.e. internal) transition of A(N). It is easy to see that the service automata of
Fig. 2 can be derived from the open nets of Fig. 1 using this transformation.

In the next section, we provide a method to synthesize a strategy service
automaton B for a given (controllable) service automaton A. The value of this
transformation is that, if A = A(N), then each open net M with A(M) = B is
a strategy for N .

Additionally, it is easily possible to transform a service automaton A into an
open net N (A). For instance, constructing a state machine by replacing each x-
labeled transition of A by a Petri net transition producing to/consuming from the
interface place x. This way, we can even construct a strategy open netM = N (B)
from a strategy service automaton B.

3 Operating Guidelines

Operating guidelines were first introduced in [9] and generalized in [10]. Basi-
cally, an operating guideline OGA of a service automaton A is a special service
automaton B where each state q of B is annotated with a Boolean formula
φ(q). Such a Boolean annotated service automaton (BSA) Bφ can be used to
characterize a set of service automata. Therefore, we define a matching relation
between a service automaton B′ and a Boolean annotated service automaton
Bφ. Bφ characterizes B′ iff B′ matches with Bφ. An operating guideline OGA

of a service automaton A is a special BSA where B′ matches with OGA iff B′

is a strategy for A.
A literal of our Boolean formulae is a channel in MC or one of the special lit-

erals τ or final (representing an internal transition or a final state, respectively).
Let, for the rest of this paper, MC+ denote the set MC∪{final , τ}. As Boolean
connectors, we only use ∨ (Boolean or) and ∧ (Boolean and). Let BF be the set
of all such Boolean formulae overMC+. As usual, we fix the truth values true and
false. A (Boolean) assignment is a mapping β : MC+ → {true, false} assigning
to each literal a truth value. Furthermore, an assignment β satisfies a Boolean
formula φ ∈ BF (β |= φ) if φ evaluates to true using standard propositional logic
semantics.

7

Definition 7 (Boolean annotated service automaton, BSA).
A Boolean annotated service automaton (BSA) Bφ = [Q, Iin , Iout , δ, q0, Ω, φ]
consists of

– a deterministic service automaton B = [Q, Iin , Iout , δ, q0, Ω] and
– a Boolean annotation function φ : Q→ BF .
Thereby, a service automaton is deterministic if it has no internal transitions

and each state has at most one x-labeled outgoing transition. y

The restriction of BSAs to deterministic structures eases the decision proce-
dures of the upcoming sections while providing all sufficient information needed
for operating guidelines later on.

For matching a service automaton A with a BSA Bφ, the present outgoing
transitions of a state q of A constitute an assignment for φ(q):

Definition 8 (Assignment).
An assignment of a service automaton A assigns to each state q of A a Boolean
assignment βA(q) : MC+ → {true, false} defined as follows:

βA(q)(x) =


true, if x 6= final and there is a state q′ with (q, x, q′) ∈ δA,
true, if x = final and q ∈ ΩA,
false, otherwise. y

A BSA is used to characterize a set of service automata. Let therefore be the
matching of a service automaton with a BSA defined as follows:

Definition 9 (Matching).
Let A be a service automaton, Bφ be a BSA, and define % ⊆ QA×QB inductively
as follows: Let (q0A, q0B) ∈ %. If (qA, qB) ∈ %, x ∈ MC, (qA, x, q′A) ∈ δA, and
(qB , x, q′B) ∈ δB, then (q′A, q

′
B) ∈ %. If (qA, qB) ∈ % and (qA, τ, q′A) ∈ δA, then

(q′A, qB) ∈ %.
Then, A matches with Bφ if
– % is a weak simulation relation and
– for each (qA, qB) ∈ %: βA(qA) |= φ(qB).

Let Match(Bφ) denote the set of all service automata that match with Bφ. y

The weak simulation relation % together with possible τ literals in φ allow
the deterministic Bφ for characterizing deterministic as well as nondeterminis-
tic service automata. Figure 3(a) shows an example BSA. Figures 3(b) – 3(d)
demonstrate the matching.

An operating guideline of a service automaton now is a special BSA:

Definition 10 (Operating guideline, OG).
A Boolean annotated service automaton OGA = Bφ is an operating guideline
(OG) of a service automaton A iff Match(OGA) = Strat(A). y

For uncontrollable service automata A (i.e. Strat(A) = ∅) we fix an OG that
consists of a single state that is annotated with false, assuring that no service
automaton matches with this OG .

8

q1: ?a ∧ ?b

q2: !c ∨ !d q3: final

?a

!c

!d

?b

(a) Aφ

r1

r2

r3

r4

?a ?b

!c

?a

?b

(b) B

s1

s2

s3

?a
!c

!d

(c) C

t1

t2 t3

?a

!c

?b

!c

(d) D

Fig. 3. (a) A BSA Aφ. The annotation φ(q) is depicted inside the state q. (b)–(d)
Three service automata B, C, and D. B matches with Aφ: for instance, the assignment
βB(r1) assigns true to the literals ?a and ?b (because both transitions leave the state
r1), satisfying the annotation ?a ∧ ?b. However, C and D do not match with Aφ: state
s1 does not satisfy the annotation of state q1; and the !c-labeled transition leaving state
t1 causes A not simulating D.

Figure 4 depicts an operating guideline of our online shop example of Fig. 2(a).
It is easy to see that the client of Fig. 2(b) matches with this OG .

q1: !login ∨ !order ∨ !terms

q2: !login ∨ !order q3: !order ∨ !terms q4: !login ∨ !terms

q5: !order ∨ ?invoice q6: !login q7: !terms ∨ ?deliver

q8: !order q9: ?deliver ∨ ?invoice q10: !terms

q11: ?deliver q12: ?invoice

q13: final

!terms !order
!login

!login

!order
!terms !order

!terms
!login

?invoice
!order

!login
!terms

?deliver

!order
?invoice ?deliver

!terms

?deliver ?invoice

Fig. 4. An operating guideline of
the online shop of Fig. 2(a). To
characterize also nondeterministic
strategies, each Boolean annota-
tion φ(q) is implicitly extended to
φ(q)∨τ and thus evaluated to true
if the matched service automaton
has an outgoing τ -transition in the
corresponding state (cp. Def. ??).

In [10] we have presented an algorithm to compute an operating guideline
of a service where the inner of the service (cp. Sect. 2.3) has finitely many
reachable states. For services without this restriction, we were able to show
that controllability is undecidable [11]. The algorithm is constructive, i.e. it
computes a special strategy. Therefore it starts with an overapproximation of
compatible behavior of any strategy removing deadlock-causing states iteratively.
If the service is uncontrollable, the algorithm eventually removes all states. The
algorithm is implemented in our tool Fiona1 [7].

4 Accordance

In this section, we define our first substitutability notion, accordance. A service
A′ accords with a service A if A′ cooperates with at least the environments that

1 Fiona is available at http://www.informatik.hu-berlin.de/top/tools4bpel.

9

A cooperates with. That is, if the composition of A and an environment B is
deadlock-free, then deadlock-freedom is preserved if A is substituted by A′.

4.1 A Notion of Accordance

Given a service automaton A, it might be necessary to change or add some
functionality of A by substituting it by a new version A′. With accordance, we
demand that this substitution must not affect any customer of A: every current
customer of A has to be supported by A′ as well. Because we assume that A does
not know each customer that uses A, A′ must support each potential customer of
A, i.e. all elements in Strat(A). An application for accordance is the upgrade of
a web shop which should not affect any customer. This motivates the following
notion of accordance between service automata A and A′. To this end A and A′

must be interface equivalent (i.e. IinA = IinA′ and IoutA = IoutA′).

Definition 11 (Accordance).
Let A and A′ be interface equivalent service automata. A′ substitutes A under
accordance (short: A′ accords with A) iff Strat(A) ⊆ Strat(A′). y

Accordance guarantees that every strategy for A is a strategy for A′ as well.
In other words, if A′ accords with A, then every customer of A is also a customer
of A′. In addition, accordance allows for new customers of A′. Thus, accordance
seems to be the right notion to achieve the goal mentioned above.

The notion of accordance has been first introduced in [12, 13]. However, the
decision procedure for accordance was limited to acyclic finite state services
there. In this paper, we extend this procedure to cyclic finite state services.

4.2 Deciding Accordance

In order to decide accordance of A and A′, we need to compare Strat(A) and
Strat(A′). The problem is that the set Strat may correspond to a large (in
fact infinite) set of service automata. With the operating guidelines of A and
A′ we have, however, a finite representation of Strat(A) and Strat(A′). In the
following, we show how accordance can be decided by using operating guidelines.
To this end we define a refinement relation v for operating guidelines. Informally,
OGA v OGA′ , that is, OGA′ refines OGA iff there is a simulation relation
between the states of OGA and OGA′ such that the annotations in OGA imply
the annotations in OGA′ .

Definition 12 (v-relation of OGs).
Let A and A′ be interface equivalent service automata and let OGA = [Q, Iin ,
Iout , δ, q0, Ω, φ] and OGA′ = [Q′, I ′in , I

′
out , δ

′, q′0, Ω
′, φ′] be the corresponding op-

erating guidelines. Then, OGA v OGA′ iff there is a relation ξ ⊆ Q × Q′ such
that

1. (q0, q′0) ∈ ξ;
2. if (q, q′) ∈ ξ and (q, x, q1) ∈ δ, then there is a q′1 such that (q′, x, q′1) ∈ δ′ and

(q1, q′1) ∈ ξ; and

10

3. for all (q, q′) ∈ ξ, the formula φ(q) ⇒ φ′(q′), is a tautology. y

The relation v is a preorder, that is, it is reflexive and transitive. By help
of the next theorem we show that OGA′ refines OGA iff A′ accords with A and
thus it can be used to decide accordance of A and A′. An example is depicted
in Fig. 5.

q1: ?a ∧ ?b

q2: !c ∧ !d q3: !e ∧ !f

q4: final q5: final q6: final

?a ?b

!c !d !e !f

(a) OGsmall

s1: ?a ∧ ?b

s2: !c ∨ !d s3: !e ∨ !f

s4: final s5: final s6: final

?a ?b

!c !d !e !f

(b) OGbig

Fig. 5. Two operating guidelines with OGsmall v OGbig. For instance, (q2, s2) ∈ ξ with
φ(q2) ⇒ φ(s2), and (q4, s4) ∈ ξ and (q4, s5) ∈ ξ with φ(q4) ⇒ φ(s4) and φ(q4) ⇒ φ(s5).

Theorem 1 (Checking accordance).
Let A and A′ be two service automata and let OGA and OGA′ be the correspond-
ing operating guidelines. Then, OGA v OGA′ iff Strat(A) ⊆ Strat(A′). y

For the proof of this theorem, we rely on a fact about operating guidelines
as constructed in [10]. As we cannot repeat the whole approach of [10], we only
include the following proposition and then sketch the proof of Thm. 1.

Proposition 1 ([10]).
For every operating guideline OGA = [Q, Iin , Iout , δ, q0, Ω, φ] (of some control-
lable service automaton A) and all q ∈ Q, the formula φ(q)

1. uses only literals x where there is some q′ ∈ Q with (q, x, q′) ∈ δ, and
2. is satisfied for the assignment assigning true to all literals in φ(q). y

Proof (of Thm. 1 (Sketch)).
Let OGA = [Q, Iin , Iout , δ, q0, Ω, φ] and OGA′ = [Q′, I ′in , I

′
out , δ

′, q′0, Ω
′, φ′] be the

operating guidelines of service automata A and A′, respectively.
Implication. Let OGA v OGA′ and let B be an arbitrary strategy service

automaton for A. We show that B is a strategy for A′, too.
By Def. 9, there is a simulation relation % ⊆ QB ×Q between (the states of)

B and OGA and, by Def. 12, there is a relation ξ ⊆ Q×Q′ between OGA and
OGB. Let %′ ⊆ QB × Q′ be a relation between B and OGA′ defined as follows:
(qB , q′) ∈ %′ iff there is a state q of OGA such that (qB , q) ∈ % and (q, q′) ∈ ξ.

Obviously, %′ is a simulation relation between B and OGA′ . Let (qB , q′) ∈
ξ. Because B matches with OGA, it holds for all states qB with (qB , q) ∈ %
that φ(q) evaluates to true for the assignment described in Def. 9. Because of
OGA v OGA′ , every such assignment satisfies also φ(q′) for (q, q′) ∈ ξ. Hence,
qB satisfies φ(q′) and, consequently, B is a strategy for A′, too.

11

Replication. Let Strat(A) ⊆ Strat(A′). Consider the underlying service au-
tomaton B = [Q, Iin , Iout , δ, q0, Ω] of OGA. By construction, the transition sys-
tems of B and OGA are equivalent and hence there is a weak simulation relation
between the states of B and OGA. Furthermore, as there is a transition in B for
each (q, x, q′) ∈ δ in OGA, we can derive from Prop. 1 that all annotations eval-
uate to true when B is evaluated according to Def. 9. Consequently, B matches
with OGA and hence B is a strategy for A and thus, by assumption, a strategy
for A′.

Being a strategy for A′, there is a relation %′ between the states of B and
OGA′ . Let q ∈ Q. Define ξ ⊆ Q × Q′ such that ξ(q) is the set of states in Q′

that is equivalent to the union of %′(qB), for all qB ∈ %(q).
By the structural similarity of Def. 9 and Def. 12, it is easy to see that ξ

satisfies the first two items required in Def. 12. For verifying the third item, let
q ∈ Q and let β be an arbitrary assignment to literals occurring in φ(q) where
φ(q) is true. Remove from B all those transitions (q1, x, q2) where β(x) is false.
By Def. 9, the resulting service automata is still a strategy for A and thus a
strategy for A′, too. Using Def. 9 again, we can see that φ′(q′) is true as well
for all q′ ∈ ξ(q). Thus, φ(q) ⇒ φ′(q′), (q, q′) ∈ ξ, is a tautology.

The value of this theorem is that accordance can be checked independently
of the environments that A cooperates with and only A and A′ have to be known
to decide accordance. In order to design a service automaton A′ which accords
with A, a designer can either try and check the resulting service or he derives
A′ from A by applying accordance-preserving transformation rules [12].

For an implementation of the criteria in Thm. 1, finding the relation ξ is
the crucial task. As both OGA and OGA′ are deterministic, this task actually
amounts to a depth-first search through OGA′ which is mimicked in OGA. The
time and space required for finding ξ is thus linear in the number of states and
edges of OGA′ . This size, in turn, is equal to the number of states and edges of a
particular strategy for A [14]. The accordance check based on Thm. 1 has been
implemented in our tool Fiona.

5 Deprecation

In this section, we introduce another substitutability notion, deprecation. Dep-
recation is – as accordance – used to compare the sets of environments of two
service automata A and A′. The goal of deprecation is to preserve at least a fixed
subset of the environments of A by A′ (instead of all environments of A as in
the accordance setting).

5.1 A Notion of Deprecation

Given a service automaton A, we may want to preserve at least a fixed subset
S ⊆ Strat(A) of its strategies when substituting A by a service automaton A′.
This means, every service automaton S ∈ S is a strategy for both A and A′.

12

In contrast to the notion of accordance, here we assume that A has knowledge
of its environments. To motivate the need of such a substitutability notion,
consider again an upgrade of a web shop. Applications for deprecation include:
the upgraded shop only supports behavior which is used by major customers
and all other customers have to adjust their services; the shop restricts itself to
its core competencies and rejects all unprofitable strategies; the shop restricts
its behavior to certain scenarios such as payment via VISA, for instance. These
considerations lead us to the following definition of deprecation.

Definition 13 (Deprecation).
Let A and A′ be interface equivalent service automata and let S = {S1, . . . , Sn} ⊆
Strat(A). Then, A′ substitutes A under deprecation preserving S (short: A′

preserves S) iff S ⊆ Strat(A′). y

According to this definition, at least every service automaton in S is a strat-
egy for A′, meaning, the substitution preserves at least strategies S. Hence,
deprecation seems to be the right notion to achieve the above mentioned goal.

5.2 Deciding Deprecation

The aim of this section is to introduce a decision procedure whether substituting
a service automaton A by a service automaton A′ preserves a set S ⊆ Strat(A)
of strategies. Therefore we have to check that every service automaton S ∈ S is a
strategy for A′. This decision procedure becomes particularly complex if the set
S contains many service automata and we want to check several A′. Therefore,
we consider the following alternative: since the notion of a strategy is symmetric,
it is equivalent to check whether A′ is a strategy for all S ∈ S. In other words,
A′ ∈

⋂
S∈S Strat(S) must hold.

We will show that the intersection
⋂
S∈S Strat(S) of sets of strategies can

be represented by the product of the operating guidelines of all service automata
S ∈ S. We start by defining the product OGA⊗OGB of two operating guidelines
OGA and OGB of service automata A and B as an operating guideline which
characterizes exactly the intersection Strat(A)∩Strat(B). To this end, OGA and
OGB must be interface equivalent, that is, their underlying automata must be
interface equivalent.

Definition 14 (Product of OGs).
For two interface equivalent operating guidelines OGA = Cφ1

1 and OGB = Cφ2
2

with C1 = [Q1, Iin1, Iout1, δ1, q01, Ω1, φ1] and C2 = [Q2, Iin2, Iout2, δ2, q02, Ω2, φ2]
their product OGA ⊗OGB = [Q, Iin , Iout , δ, q0, Ω, φ] is defined by

– Q = % with % is the matching relation between states of C1 and C2,
– Iin = Iin1 = Iin2,
– Iout = Iout1 = Iout2,
– ((q1, q2), x, (q′1, q

′
2)) ∈ δ iff (q1, x, q′1) ∈ δ1 and (q2, x, q′2) ∈ δ2,

– q0 = (q01, q02),
– Ω = {(q1, q2) ∈ Q | q1 ∈ Ω1, q2 ∈ Ω2}, and

13

– φ((q1, q2)) = φ1(q1) ∧ φ2(q2), for all (q1, q2) ∈ Q. y

In a way, the product of operating guidelines is defined analogously to the
product of finite automata. Figure 6 shows two operating guidelines and their
product (with % = {(q1, s1), (q2, s2), (q1, s3)}).

q1: ?a ∧ final

q2: !c ∨ !d q3: final

?a

!c

!d

(a) OG1

s1: ?a

s2: !c ∨ final s3: final

?a

!c

?a

(b) OG2

q1s1: ?a ∧ final

q2s2: !c q1s3: ?a ∧ final

?a

!c

?a

(c) OG1 ⊗OG2

Fig. 6. Two operating guidelines and their product.

Next, we prove that the product of two operating guidelines characterizes in-
deed the intersection of the strategies represented by these operating guidelines.
For the proof we make use of the following lemma.

Lemma 1.
Let C be a service automaton, OGA and OGB be operating guidelines, and
let OG⊗ = OGA ⊗ OGB be their product. Let %CA, %CB and %C⊗ denote the
matching relations between C and the respective annotated automaton.

Then, for all qC ∈ QC , qA ∈ QA, qB ∈ QB holds: (qC , (qA, qB)) ∈ %C⊗ iff
(qC , qA) ∈ %CA and (qC , qB) ∈ %CB. y

Proof.
Let qC ∈ QC , qA ∈ QA, qB ∈ QB. It holds:

(qC , (qA, qB)) ∈ %⊗
iff there is a sequence σ of message channels such that:

qC is reached from q0C by following δC along σ and (qA, qB) is
reached from (q0A, q0B) by following δ⊗ along σ (by Def. 9),

iff qA is reached from q0A by following δA along σ and
qB is reached from q0B by following δB along σ (by Def. 14),

iff (qC , qA) ∈ %A and (qC , qB) ∈ %B (by Def. 9).
Thus, the lemma holds.

Theorem 2 (Product OG characterizes intersection).
Let OG⊗ = OGA⊗OGB be the product of operating guidelines OGA and OGB.
Then, Match(OG⊗) = Match(OGA) ∩Match(OGB). y

Proof.
Let OGA = [QA, IinA, IoutA, δA, q0A, ΩA, φA], OGB = [QB , IinB , IoutB , δB , q0B ,
ΩB , φB] and OG⊗ = OGA ⊗OGB = [Q, Iin , Iout , δ, q0, Ω, φ].

Implication. Let C ∈ Match(OG⊗). We will show that C ∈ Match(OGA)
and C ∈ Match(OGB), too. Let (qC , qA) ∈ %CA and (qC , qB) ∈ %CB. According
to Lemma 1 we have (qC , (qA, qB)) ∈ %C⊗. Let x ∈MC∪{τ} and let there be an
x-transition leaving qC . From C ∈ Match(OG⊗) and from Def. 9 (i.e. the weak

14

simulation relation) we can conclude, there is an x-transition leaving (qA, qB),
too. By the construction of δ in Def. 14, there is an x-transition leaving qA and
leaving qB.

Furthermore, we conclude from C ∈ Match(OG⊗) and Def. 9 that the assign-
ment βC(qC) satisfies φ((qA, qB)). Hence, by the construction of φ in Def. 14,
βC(qC) also satisfies φA(qA) and φB(qB). Consequently, C matches with OGA

and OGB and therefore C ∈ Match(OGA) ∩Match(OGB).
Replication. Let C ∈ Match(OGA) ∩Match(OGB). We will show that C ∈

Match(OG⊗), too. Let (qC , q) ∈ %C⊗ with q = (qA, qB). According to Lemma 1
we have (qC , qA) ∈ %CA and (qC , qB) ∈ %CB. Let x ∈MC ∪ {τ} and let there be
an x-transition in qC . From C ∈ Match(OGA) ∩Match(OGB) and from Def. 9
(i.e. the weak simulation relation), there is an x-transition in qA and in qB. By
the construction of δ in we can conclude Def. 14, there is an x-transition in q.

Furthermore, we conclude from C ∈ Match(OGA)∩Match(OGB) and Def. 9
that the assignment βC(qC) satisfies φA(qA) and φB(qB). Hence, by the construc-
tion of φ in Def. 14, βC(qC) also satisfies φ((qA, qB)). Consequently, C matches
with OG⊗ and therefore C ∈ Match(OG⊗).

The product ⊗ of operating guidelines is commutative and associative, that
is, for operating guidelines OGA,OGB ,OGC holds OGA⊗OGB = OGB⊗OGA

and (OGA⊗OGB)⊗OGC = OGA⊗(OGB⊗OGC). Thus, we conclude that OG⊗
represents exactly the intersection of all sets of strategies for services automata
in S:
Corollary 1.
Let S = {S1, . . . , Sn} be a set of interface equivalent service automata and let
OGSi be the operating guideline of Si, for all 1 ≤ i ≤ n. Let OG⊗ denote the
product of all OGSi

. Then, Match(OG⊗) =
⋂
S∈S Strat(S). y

With the help of the above corollary we can prove a theorem which shows
that substituting A by A′ preserves S iff A′ is a strategy represented by the
product operating guideline OG⊗.

Theorem 3 (Deprecation check with product OGs).
Let A and A′ be service automata and let S = {S1, . . . , Sn} ⊆ Strat(A). Let
OGSi , 1 ≤ i ≤ n, be the operating guideline of Si and let OG⊗ denote the
product of all OGSi . Then, A′ preserves S iff A′ ∈ Match(OG⊗). y

Proof.
We will show that Match(OG⊗) characterizes all service automata A′ that can
substitute A while preserving S. We have:

Match(OG⊗) =
⋂
S∈S

Strat(S) (Cor. 1)

= {A′ | for all S ∈ S : A′ ∈ Strat(S)}
= {A′ | for all S ∈ S : S ∈ Strat(A′)} (strategy is symmetric)
= {A′ | A′ preserves S} (Def. 13)

Consequently, the theorem holds.

15

In order to decide whether substituting A by A′ preserves S ⊆ Strat(A), we
have to construct the operating guideline for each S ∈ S and then calculate the
product of these operating guidelines. Time and space complexity for calculating
the product of two operating guidelines is proportional to the product of their
states. Therefore, this complexity effort only pays off if we check several A′. The
deprecation check based on Thm. 3 has been implemented in our tool Fiona.

Intuitively, the fewer strategies shall be preserved by the substitution (i.e.
the smaller S is), the more service automata A′ exist that may substitute A (i.e.
the bigger is Match(OG⊗)). Because accordance requires all strategies for A to
be preserved by A′, but deprecation requires only a subset of A’s strategies to
be preserved by A′, there are less services A′ that accord with A, than services
A′ that satisfy deprecation. Note that for S = Strat(A) deprecation coincides
with accordance.

As an advantage, the notion of deprecation provides with OG⊗ an abstract
representation of all substitutable service automata A′. In case of accordance,
in contrast, A′ has either to be guessed or derived by applying accordance-
preserving transformation rules.

6 Derived Substitutability Notions

In this section, we introduce two more substitutability notions. Both notions can
be derived from the notions of accordance and deprecation.

6.1 Equivalence

The first substitutability notion we derive is a notion of equivalence for service
automata. This can be achieved easily by restricting the notion of accordance.
Two service automata are equivalent iff they have the same set of strategies.

Definition 15 (Equivalence).
Let A and A′ be interface equivalent service automata. Then, A′ equivalently
substitutes A (short: A′ and A are equivalent) iff Strat(A) = Strat(A′). y

Obviously, in order to check equivalence of two service automata, we can
check equivalence of their respective operating guidelines. Since equivalence
means accordance in both directions, we apply Thm. 1 in both directions.

Corollary 2 (Checking equivalence with OGs).
Two operating guidelines OGA and OGB are equivalent, denoted OGA ≡ OGB,
iff OGA v OGB and OGA w OGB. y

6.2 Constraints

For many substitutability scenarios the three notions of substitutability we have
introduced so far are well-suited. However, there are other scenarios in practice

16

that require less restrictive notions. Accordance demands to preserve all strate-
gies for a given service, even those which are practically infeasible: consider that a
service A has to interact with two other services, B and C. Assume that A sends
a request to either service B or C and concurrently expects an acknowledgement
from the respective service. There is a strategy S for A such that S receives the
request which A has sent to B and acknowledges on behalf of C. This is, in fact,
a valid strategy, but practically impossible if B and C do not communicate with
each other. This problem arises in the decentralized setting [15]. Such strategies
need not to be preserved when substituting A by A′.

As another example, if we want to restrict the set of strategies to profitable
strategies or to enforce or exclude certain scenarios (e.g. payment via VISA),
then deprecation is too inflexible, because we would have to identify all infeasible
strategies.

These examples motivate the introduction of a notion of a constraint. Such
a constraint can been seen as a behavioral pattern or communication scenario.
We will show how to restrict a set of strategies to those strategies that enforce
or exclude certain behavioral patterns. In [16] such constraints have been intro-
duced to characterize all strategies for a service that conform to a constraint.
This approach is used to filter service registries for services that fit respective
strategies and for validating services by checking whether there exist strategies
that access certain features. In contrast to [16], we are interested in services that
preserve all strategies that conform to a constraint.

In the following, we define the notion of a constraint BSA Cψ. Intuitively,
Cψ is a BSA that constrains send and receive actions of an operating guideline
OGA. Here, to constrain means to enforce or to exclude the respective actions
of OGA.

Definition 16 (Constraint BSA).
Let A and C be two interface equivalent service automata. Let OGA be an oper-
ating guideline of A and let ψ be an annotation to C. Then, Cψ is a constraint
BSA for OGA. y

Intuitively, OGA represents the set of strategies for A and the constraint
BSA Cψ describes the behavior we want to allow or disallow in the restricted
subset of strategies. Therefore, their product characterizes all strategies for A
that conform to Cψ. Figure 7 depicts generic constraint automata for enforcing
or excluding a communication action a.

Given a product OGA⊗Cψ, each service automaton A′ where OGA′ charac-
terizes exactly these strategies is a well-suited candidate for substituting A. This
yields a more fine-grained notion of substitutability under deprecation which is
covered by the following corollary.

Corollary 3 (Constraint-conforming substitution).
Let A, A′ be service automata and OGA, OGA′ be the corresponding operating
guidelines. Let Cψ be a constraint BSA for OGA. Then, the substitution of A
by A′ conforms to Cψ iff Match(OGA′) = Match(OGA ⊗ Cψ). y

17

c1:
∨

x∈Iio
x

c2: true

a

Iio \ {a}

Iio

(a) enforce(a)

c1: true

c2: false

a

Iio \ {a}

Iio

(b) exclude(a)

Fig. 7. Generic constraint
automata to enforce or ex-
clude a communication ac-
tion a.

In order to apply the results presented in this section, a designer has either to
construct or to guess a service automaton A′. The correctness of A′ can then be
checked by applying Cor. 3. The notion of constraints and the substitutability
check based on Cor. 3 has been implemented in our tool Fiona.

7 Related Work

Various substitutability notions can be found in literature. However, most of
them lack of an asynchronous communication model as it is necessary in the
context of SOC or efficient decision algorithms; or they are restricted to an
equivalence notion.

Vogler presents in [17] a livelock and deadlock preserving equivalence between
Petri nets with interfaces. However, there is no direct implication in either di-
rection between the equivalence of Vogler and accordance.

For workflow nets (WFNs) [5] the notion of inheritance [18, 19] is used two
relate two WFNs that can be substituted. Inheritance bases on branching bisim-
ulation. As a difference, the inheritance approach assumes a synchronous com-
munication model (i.e. transition fusion). Furthermore, in [12], our notion of
accordance has been proven to be more liberal than the notion of projection
inheritance, that is, projection inheritance implies accordance.

Bonchi et al. [20] also model the behavior of services with Petri nets. They
propose saturated bisimulation as equivalence notion which is, however, too re-
strictive to allow reordering of messages (in contrast to our equivalence notion).

In [21–24] automata models are used to decide substitutability. All these
approaches use only synchronous communication whereas we consider asyn-
chronous message passing. Benatallah et al. [23] present four notions of sub-
stitutability. In this paper, we cover all of them. Equivalence and subsumption
mean in our notion equivalence and accordance. In the third notion, service S
can be substituted by S′ assuming the environment E is known. In this setting,
we would check whether S is a strategy for E. Finally, in the fourth notion, S is
substituted by S′ w.r.t. an interaction role R, that is, the intersection of S and
R has to behave as S′. In our notion we would check if OGR ⊗OGS v OGS′ .

Refinement relations similar to our notion of accordance are also used in the
setting of service contracts. Several refinement relations, called conformance,
have been proposed in literature.

Castagna et al. [25] introduce a conformance notion for finite-state systems
that formalizes like our notion of accordance the absence of deadlocks and in
addition livelocks. In contrast to accordance and other conformance notions,

18

conformance in [25] only demands the termination of the environment but not
the termination of the process itself.

In [26] Bravetti and Zavattaro propose a conformance notion that guarantees
the absence of deadlocks, livelocks, and infinite runs in cyclic systems.

As the main difference to our notion of accordance, [25, 26] define their no-
tions for synchronous communication and they do not explicitly show how asyn-
chronous message passing can be translated into their calculi although it seems
to be possible in general.

Fournet et al. [27] present stuck-free conformance, a refinement relation be-
tween two CCS processes of asynchronous message passing software components.
Stuck-freedom formalizes the absence of deadlocks. To check conformance, the
model checker Zing [28] is used. Stuck-free conformance requires among others
that an implemented process S′ simulates its original process S. Our approach,
in contrast, requires a simulation relation between operating guidelines of S and
S′, that is, we do not compare S and S′, but their strategies. It seems that our
notion of accordance is more general than stuck-free conformance.

The ComFoRT framework [29] analyzes whether a software component S
implemented in the programming language C can be substituted by another
software component S′. S can be substituted by S′ if the following two crite-
ria hold: (i) Every behavior possible in S must also be a behavior of S′, and
(ii) the new version of the software system must satisfy previously established
correctness properties. This notion coincides with our notion of accordance.

Pathak et al. [30] focus on a substitutability notion that preserves certain
properties of a service S to be substituted. The properties are expressed by a
µ-calculus formula φ. Then, a µ-calculus formula ψ is calculated such that all
services S′ that satisfy ψ can substitute S. Due to the expressiveness of the
µ-calculus in comparison to our proposed constraints on visible actions of open
nets, this approach generalizes of our property-preserving substitution, but it
assumes, however, a synchronous communication model.

8 Conclusion

We have investigated the problem whether a service S can be substituted by an-
other service S′. Based on our formal models of open nets and service automata,
we have defined different substitutability notions for services: accordance, dep-
recation (in two variants), and equivalence. That way we can formally support
various substitutability scenarios which may occur in practice.

As our substitutability notions compare the infinite sets of all deadlock-freely
interacting services for S and S′, the presented decision algorithms apply the con-
cept of an operating guideline as a finite representation of these sets of services.
That way we can decide accordance and equivalence for S and S′. In addition, we
defined the notion of a product operating guideline to specify the intersection
of the services represented by several operating guidelines. Product operating
guidelines are well-suited to characterize all deadlock-freely interacting services

19

for a fixed set of services and can therefore be used for deciding deprecation and
the more fine-grained deprecation notion of property-preserving substitutability.

We implemented all decision algorithms presented in this paper in our anal-
ysis tool Fiona. The main functionality of Fiona is to calculate an operating
guideline of a service modeled as an open net. With the help of the compiler
BPEL2oWFN we can translate WS-BPEL processes into our formal model open
nets. Using Fiona we can decide on the Petri net model whether these WS-
BPEL processes can be substituted according to one of the substitutability no-
tions presented in this paper. That way we can apply our results to practical
applications.

In ongoing research, we will work on other termination criteria than deadlock-
freedom. This includes the absence of livelocks and the absence of infinite runs.

References

1. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice
Hall, Essex (2007)

2. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: 05462
Service-Oriented Computing: A Research Roadmap. In Curbera, F., Krämer,
B.J., Papazoglou, M.P., eds.: Service Oriented Computing (SOC), 15.-18. Novem-
ber 2005. Volume 05462 of Dagstuhl Seminar Proceedings., Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many (2006)

3. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science edn.
Springer-Verlag (1985)

4. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3) (2005) 35–43

5. Aalst, W.v.d.: The application of Petri nets to workflow management. Journal of
Circuits, Systems and Computers 8(1) (1998) 21–66

6. Kindler, E.: A compositional partial order semantics for Petri net components.
In: 18th International Conference on Applications and Theory of Petri Nets and
Other Models of Concurrency (ICATPN 1997). Volume 1248 of Lecture Notes in
Computer Science., Springer-Verlag (1997) 235–252

7. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing Interacting BPEL
Processes. In Dustdar, S., Fiadeiro, J.L., Sheth, A., eds.: 4th International Con-
ference on Business Process Management (BPM 2006). Volume 4102 of Lecture
Notes in Computer Science., Vienna, Austria, Springer-Verlag (2006) 17–32

8. Alves, A., et al.: Web Services Business Process Execution Language Version
2.0. Committee Specification, Organization for the Advancement of Structured
Information Standards (OASIS) (2007)

9. Massuthe, P., Schmidt, K.: Operating Guidelines - An Automata-Theoretic Foun-
dation for the Service-Oriented Architecture. In Cai, K.Y., Ohnishi, A., Lau,
E.M.F., eds.: 5th International Conference on Quality Software (QSIC 2005), Mel-
bourne, Australia, IEEE Computer Society (2005) 452–457

10. Lohmann, N., Massuthe, P., Wolf, K.: Operating Guidelines for Finite-State Ser-
vices. In Kleijn, J., Yakovlev, A., eds.: 28th International Conference on Applica-
tions and Theory of Petri Nets and Other Models of Concurrency (ICATPN 2007).
Volume 4546 of Lecture Notes in Computer Science., Siedlce, Poland, Springer-
Verlag (2007) 321–341

20

11. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Preprint
CS-01-08, Universität Rostock, Rostock, Germany (2008)

12. Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: From Pub-
lic Views to Private Views – Correctness-by-Design for Services. In Dumas, M.,
Heckel, R., eds.: Web Services and Formal Methods, Forth International Workshop,
WS-FM 2007 Brisbane, Australia, September 28-29, 2007, Proceedings. Volume
4937 of Lecture Notes in Computer Science., Springer-Verlag (2008) 139–153

13. Aalst, W.M.P.v.d., Massuthe, P., Stahl, C., Wolf, K.: Multiparty Contracts: Agree-
ing and Implementing Interorganizational Processes. Informatik-Berichte 213,
Humboldt-Universität zu Berlin (2007) submitted to a journal.

14. Massuthe, P., Wolf, K.: An Algorithm for Matching Non-deterministic Services
with Operating Guidelines. International Journal of Business Process Integration
and Management (IJBPIM) 2(2) (2007) 81–90

15. Schmidt, K.: Controllability of Open Workflow Nets. In Desel, J., Frank, U., eds.:
Enterprise Modelling and Information Systems Architectures. Volume P-75 of Lec-
ture Notes in Informatics (LNI)., Bonn, Entwicklungsmethoden für Information-
ssysteme und deren Anwendung (EMISA, RWTH Aachen), Köllen Druck+Verlag
GmbH (2005) 236–249

16. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral Constraints for Services. In
Alonso, G., Dadam, P., Rosemann, M., eds.: Business Process Management, 5th
International Conference, BPM 2007, Brisbane, Australia, September 24-28, 2007,
Proceedings. Volume 4714 of Lecture Notes in Computer Science., Springer-Verlag
(2007) 271–287

17. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.
Volume 625 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Hei-
delberg, New York (1992)

18. Aalst, W.M.P.v.d., Basten, T.: Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science 270(1-2) (2002) 125–
203

19. Basten, T., Aalst, W.M.P.v.d.: Inheritance of Behavior. Journal of Logic and
Algebraic Programming 47(2) (2001) 47–145

20. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A Behavioural Congruence for Web
Services. In Arbab, F., Sirjani, M., eds.: International Symposium on Fundamentals
of Software Engineering, International Symposium, FSEN 2007, Tehran, Iran, April
17-19, 2007, Proceedings. Volume 4767 of Lecture Notes in Computer Science.,
Springer-Verlag (2007) 240–256

21. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are Two Web Services
Compatible? In Shan, M., Dayal, U., Hsu, M., eds.: Technologies for E-Services,
5th International Workshop, TES 2004. Volume 3324 of Lecture Notes in Computer
Science., Springer-Verlag (2004) 15–28

22. Beyer, D., Chakrabarti, A., Henzinger, T.: Web service interfaces. In Ellis, A.,
Hagino, T., eds.: Proceedings of the 14th international conference on World Wide
Web, WWW 2005, ACM (2005) 148–159

23. Benatallah, B., Casati, F., Toumani, F.: Representing, Analysing and Managing
Web Service Protocols. Data Knowl. Eng. 58(3) (2006) 327–357

24. Cerná, I., Vareková, P., Zimmerová, B.: Component Substitutability via Equiva-
lencies of Component-Interaction Automata. In: Proceedings of the International
Workshop on Formal Aspects of Component Software (FACS’06), Amsterdam, The
Netherlands, Elsevier ENTCS (2007) 39–55

25. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services.
SIGPLAN Not. 43(1) (2008) 261–272

21

26. Bravetti, M., Zavattaro, G.: Contract Based Multi-party Service Composition. In
Arbab, F., Sirjani, M., eds.: International Symposium on Fundamentals of Software
Engineering, International Symposium, FSEN 2007, Tehran, Iran, April 17-19,
2007, Proceedings. Volume 4767 of Lecture Notes in Computer Science., Springer-
Verlag (2007) 207–222

27. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-Free Conformance.
In Alur, R., Peled, D., eds.: Computer Aided Verification, 16th International Con-
ference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings. Volume 3114
of Lecture Notes in Computer Science., Springer-Verlag (2004) 242–254

28. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A Model Checker
for Concurrent Software. In: Computer Aided Verification, 16th International Con-
ference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings. Volume 3114
of Lecture Notes in Computer Science., Springer-Verlag (2004) 484–487

29. Sharygina, N., Chaki, S., Clarke, E., Sinha, N.: Dynamic Component Substitutabil-
ity Analysis. In Fitzgerald, J., Hayes, I., Tarlecki, A., eds.: FM 2005: Formal Meth-
ods, International Symposium of Formal Methods Europe, Proceedings. Volume
3582 of Lecture Notes in Computer Science., Springer-Verlag (2005) 512–528

30. Pathak, J., Basu, S., Honavar, V.: On Context-Specific Substitutability of Web
Services. In: 2007 IEEE International Conference on Web Services (ICWS 2007),
July 9-13, 2007, Salt Lake City, Utah, USA, IEEE Computer Society (2007) 192–
199

22

