An Information System for Real-Time Online
Interactive Applications*

Vlad Nae, Jordan Herbert, Radu Prodan, and Thomas Fahringer

Institute of Computer Science, University of Innsbruck,
Technikerstrae 21a, A-6020 Innsbruck, Austria
{vlad, jordan,radu,tf}@dps.uibk.ac.at

Abstract. The edutain@grid European project [I] is developing a sup-
port platform for deployment, management and execution of Real-Time
Online Interactive Applications (ROIA) on Grid. In this paper we present
an information system designed by the edutain@grid project which pro-
vides support for ROIA deployment and monitoring, and offers a generic
frontend for ROIA-specific optimisations. We conduct a variety of exper-
iments that justify various decisions of our design, and investigate the
performance and scalability of our system with respect to various types
of queries.

Keywords: Real-time Online Interactive Applications, Information Sys-
tem, Relational Databases, MySQL.

1 Introduction

The IST-034601 edutain@grid project [I] is focusing on enabling Grid support
for general Real-time Online Interactive Applications (ROIA), with particular
focus on online games and e-learning applications, including massively multi-
user applications embracing large user communities. To achieve this goal, the
project classifies ROTA as a new class of Grid applications with the following
distinctive features that makes them unique in comparison to traditional param-
eter study or scientific workflows, highly studied by previous Grid research [2]:
(1) the applications often support a very large number of users connecting to
a single application instance; (2) the users sharing an application interact as
a community, but they have different goals and may compete (or even try to
cheat) as well as cooperate with each other; (3) users connect to applications in
an ad-hoc manner, at times of their choosing, and often anonymously or with
different pseudonyms; (4) the applications mediate and respond to real-time user
interactions, and typically involve a very high level of user interactivity; (5) the
applications are highly distributed and highly dynamic, able to change control
and data flows to cope with changing loads and levels of user interaction; (6)
the applications must deliver and maintain certain Quality of Service (QoS)
parameters related to the user interactivity even in the presence of faults.

* This research is funded by the IST-034601 edutain@grid project.

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 361 2009.
© Springer-Verlag Berlin Heidelberg 2009

362 V. Nae et al.

Two of the main objectives of the edutain@grid project are automatic deploy-
ment of ROTA and load balancing of ROTA sessions by starting new servers or
migrating users from overloaded servers to less loaded or newly started ones. To
achieve these goals, static information about ROIA deployment procedures and
dynamic ROTA session monitoring information needs to be collected and pro-
cessed. To this end, we designed as part of the edutain@grid management layer
an information system where all management services store relevant information
about the running ROIA session and the underlying system information.

We present the detailed design of the database schema describing our infor-
mation system in Section 2l In Section [3 we present experimental results that
justify our design and investigate its scalability to various query types. Section F
concludes the paper and outlines future work.

2 Database Schema

In the following section we present the database schema used by the information
system in detail. For performance reasons, we establish no generic schema ca-
pable of supporting all types of data structures because such a generic solution
would not explore most of the benefits databases provide and would not satisfy
type-specific needs. As a result, we define the database schema as a composition
of independent, generic, type-specific schemas called from here on beans, each
bean consisting of one or more customised tables. We describe these schemas in
the following sections.

2.1 Host Bean

The host bean is designed to store all ROIA-relevant
information about the resources available to the
edutain@grid platform (e.g. machines with their
connection details). It is defined as a simple tuple of
primitive types without any complex nested struc-

hosts

¢ hostname : varchar(100)
serverStartupPort : int

tures. Since such un-nested types of tuples are ex- lowestROIAPort - int
actly the kind of structure a database is working highestROIAPort : int
with, it can easily be mapped to a single table. Its

schema is shown within Figure [Il Fig. 1. Bean table

As stated by the host bean definition, the host-
name field is representing the primary key. Since no
use cases have been stated by the edutain@grid requirements [3] for querying
hosts by anything else than their name, no additional indices have been added.

2.2 ROIA Type Bean

The ROIA type beans are a representation of the ROIA characteristics, com-
pletely and uniquely defining individual ROIA such as name, version, interaction
complexity, load model, or hardware requirements. Similarly to the host bean,
the ROIA type bean can be mapped to the database as shown in Figure

An Information System for Real-Time Online Interactive Applications 363

The key is given by a combination of both the
name and the version of a ROIA. Since no use case
for querying ROIAs by their versions have been
stated by the edutain@grid requirements [3], no ad-
ditional index structure is so far necessary.

roiatypes

¢ name : varchar(100)
¢7 version : varchar(100)

Fig. 2. ROIA bean table
2.3 Start-Up Descriptor Bean

The ROIA deployment and start-up information is stored in the start-up de-
scriptor bean which represents a mapping between the resources and the ROTA
deployed on them. The start-up descriptor bean has a more complex data struc-
ture which, unlike the previous very simple types, is represented through a tuple
containing a list of arguments and a map describing the state of environment
variables to be set upon execution. Since lists and maps are not supported by
databases directly, they had to be decomposed to match the simple tuple-like
scheme as requested by any relational database.

When applying standard decomposition rules, any start-up descriptor has to
be distributed among three tables. The first table called startupdescriptor con-
tains everything defined by the tuple the start-up descriptor is describing with-
out the list and map-like structures, which can be represented through primitive
types. The other two tables contain all elements stored within the list and the
map, respectively. However, this approach would require a join across all three
tables whenever a start-up descriptor has to be read. Further, any resulting set
would contain the cross product of the items stored in the list and map struc-
tures which potentially produces a lot of unnecessary overhead and increases the
result set parsing complexity.

As a consequence, we unified the list and map-like structures into a single
table called startupdescriptorparameter against common decomposition rules.
The downside of this approach might be a slightly bigger disc space consumption
caused by potentially unused fields. However, this drawback is rather limited
considering the small number of descriptors to be managed. Based on these
considerations, the resulting database schema for this data type is as shown in
Figure Bl

To be capable of assigning references within the startupdescriptorparameter
table to the basic startupdescriptor table, we add the corresponding primary
and foreign keys. As the referential integrity is not checked by the database, any

startupdescriptor startupdescriptorparameter
¢7 hostname : varchar(100) 1 n ¢7 hostname : varchar(100)
¢7 name : varchar(100) ¢ name : varchar(100)
€7 version : varchar(100) €7 version : varchar(100)
workingPath : varchar(100) ¢ nr: int auto_increment
executable : varchar(100) variable : varchar(100)
numThreads : int value : varchar(100)

Fig. 3. Start-up descriptor bean table

364 V. Nae et al.

entry within the argument list will be inserted into the parameter table using
the key values of its associated descriptor along with an auto generated index
number to ensure a correct reconstruction of the argument order. Environment
entries use the name field to represent environment variables and the value field
to define their corresponding state.

Based on this schema, a single join is required whenever reading a descriptor
from the database. Additionally, the number of rows to be transferred between
the database server and client during this read operation is reduced from the
product (as it would be based on the original three table approach) to the sum
between the number of arguments and the environment variables.

2.4 Record Types Bean

The last type of beans handled by the information system are the record types
bean used to store measurement values produced by a service monitoring edu-
tain@grid entities (e.g. ROTIA sessions, ROIA servers, resources). The bean
records are elements consisting of a single tuple without any nested structures.
However, based on the potentially high number of entries and the requirement
of providing good performance on insert and query operations, we applied a few
special modifications.

A record on its own consists of a metric, a source identifier, a start and end
timestamp, a type indicating how the resulting value has been aggregated, and
the actual value. We support two record types in a similar way, based on the
type of value to be stored. The simple record type is supporting a single double
value, whereas the extended record type supports an array of bytes.

Based on this distinction, two tables each covering all records of a single
type would theoretically be sufficient. However, another problem we encountered
was to determine the key field ordering. Most queries cover only a single type
of metric, which means that the metric should be the first key field and the
back-end database tree storing the table content should be sorted according
to its value. Unfortunately, this results into out-of-order inserts, since various
metrics are getting inserted over time, while experiments showed us that in-
order inserts could be executed faster (see Section B.I]). Therefore, we consider
that the start timestamp should be selected as the main key element to speed
up the insert operations, while the frequent metric-based query is slowed down
since the metric-based clustering within the sorting tree is lost.

To overcome this problem and gain advantage of both solutions, we designed
a separate table for each metric and, therefore, metric based-clustering can be
provided such that entries are sorted according to their timestamps. The main
disadvantage is that reading multiple metrics within a single request requires to
unify multiple tables. However, since there is no known requirement for such a
scenario in the edutain@grid use cases [3], we decided to accept this disadvantage.

Figure [shows the resulting table schema where the x symbol within the
name of the record table has to be substituted by the unique key of the asso-
ciated metric (e.g. for the metric name CONNECTION COUNT the resulting

An Information System for Real-Time Online Interactive Applications 365

record_metrics record_x
¢” uniqueKey : short & Zt:drt':lgonng
uri : varchar(100) z o Iéng g
shortName : varchar(40) 0
displayName : varchar(100) & gBiALJ{fX'II'EI\R/,éGE
valueType : {SINGLE, MULTIPLE} |NSTANTANE&)US}
basicMeasurementUnit : varchar(10) value : double / byte[65465]

Fig. 4. Record bean table

record table name is record CONNECTION COUNT). The record metric ta-
ble is mainly intended for documentation issues as it is created and updated
whenever the system is started but never read. All its information is extracted
from an internal, hard-coded enumeration-like class type. The record tables on
the right contain the corresponding measurements. Since the starting timestamp
has been chosen as the first field within the primary key, quick start time-based
range queries are supported and insertions are executed in-order decreasing the
insert time.

3 Experiments

As ROIA are very dynamic applications which can generate large amounts of
monitoring data in short time intervals, we optimised our information system’s
performance with a special emphasis on the data storing speed. In this section
we report several experiments we carried out to evaluate the performance of
our information system implemented on top of the MySQL [4] database plat-
form, which we run on a four dual core processor server with 16 gigabytes of
shared memory, a 1000BASE-T network connection, and desktop machines used
as clients.

3.1 In-Order and Out-of-Order Insertion

The following experiment evaluates the differences between in-order and out-
of-order insertion of monitoring data into our information system. One of the
most critical requirements of the information system is the capability to process
new monitoring data quickly to fulfill the ROIA real-time QoS requirements.
Since monitoring data is usually provided ordered according to some kind of
timestamp, the benefits resulting from the in-order insertion should be exploited.

We designed the experiment by generating a random list of five million par-
tially random monitoring entries as described in Table[Il We ordered the result-
ing list according to the starting time of its entries, memorised it, and used it in
a similar way within all successive experiments.

Each experiment starts by creating a new table to store the generated records
in the database. For the first run, the table is created using a composed primary
key which does not use any of the timestamps as its first component. In our case,

366 V. Nae et al.

we used the quadruplet [id, type, start, end] as key. Afterwards, the generated
record list is inserted into the created table in batches of 20 thousand items and
the execution time is measured and recorded. After all items have been inserted,
the table is cleaned up and the insertion is started again for seven times to
eliminate eventual noises.

After the insertion test for the out-

- . Table 1. Random data generation
of-order key has finished, we continue

the experiment by dropping the previ- Field Value

ous table and recreating it using an in- Id Random value € [0..99]
order key, in this case: [start, end, id, ~Start time Linear incremented by 100
type]. The complete test procedure is ~ End time Start time + 100
repeated for the new table and the re- Type Random value € [0..9]

sults are stored. Finally, since MySQL Value Random value € [0,1)

is supporting multiple ways for physi-

cal table handling, we covered in this experiment the two most important ones:
the index sequential access method (MyISAM) and the InnoDB using a B-tree-
based approach.

Even though the MyISAM-based databases have a major flow of not sup-
porting real transactions which are required by our information system for data
integrity, we still performed this experiment for the sake of performance com-
parison.

Figure shows the results collected using the MyISAM storage engine
and inserting elements out-of-order. Every point in the graph represents the
average time required to insert the 20 thousand entries in the seven repetitions
of the experiment. Obviously, the time required to insert new values is increasing
with the number of preexisting elements and becomes quite unpredictable above
approximately 750 thousand entries. Therefore, the tables using this storage
engine should be limited in size.

Figure [5(b)| shows the results of the same experiment with the same storage
engine but using a primary key allowing in-order insertion of elements. It can be
clearly observed that the time required to insert additional in-order elements is
much more stable than for the out-of-order case. The average time of inserting
new elements is approximately at the same level as in the best case of the out-
of-order insertions. Further, the time required to insert new elements remains
constant as the size of the table increases.

The last graph in Figure [l investigates the impact of the storage engine on
this experiment by showing the in-order results of the experiment using the

g 2000 = 2000
£ 1500 £ 1500
= 1000 - ~ 1000
igsog igsog e
0 1 2 3 4 55 0 1 2 3 4 5 .
MyISAM out of order element insertions * 10 MyISAM in order element insertions X 10
(a) Out-of-order insertion times (b) In-order insertion times

Fig. 5. MyISAM insertion times

An Information System for Real-Time Online Interactive Applications 367

alternative transaction-safe InnoDB g 2000
storage engine. The pattern is similar

. . . GJ
to the MyISAM in-order insertion, al- £ sop M
. . =
though the actual time values are twice %% i 3 3 a <
as high. InnoDB in order element insertions X 10"

The corresponding out-of-order ex-
periment using InnoDB produced a Fig. 6. InnoDB in order insertion times
pattern similar to the corresponding
MyISAM experiment, however, the actual times for inserting new elements were
orders of magnitude higher. Because of the slow progress, this experiment was
aborted.

3.2 JDBC Usage

The goal of the next experiment is to evaluate the various ways of executing
database operations using the Java Database Connectivity (JDBC) toolkit [5].
Most JDBC operations can be performed in multiple ways. For instance, querying
information can be performed through ordinary statement or prepared statement
instances, where the latter is potentially caching internally processed compiled ver-
sions. While for querying information the decision towards prepared statements is
clear (since in this case the query must only be compiled once), for data manipula-
tion operations the problem of choosing the right option remains open.

We designed three types of experiments which we executed for three times
using a MySQL server (version 5.0.22) on a remote location through a MySQL
Connector/J (version 5.1.6).

The first experiment concentrates on timing six different techniques of in-
serting new tuples into a database table. Next to simple statements or prepared
statements, we included their batched counterparts, as well as two versions using
the extended insert syntax of SQL which inserts multiple tuples using a single
call. The experiment starts by creating a new test table containing a key and
a value field (both integers), where the key is used as primary key. This step
is followed by 10 thousand items inserted using each technique. After each test,
the table is cleared to provide equal starting conditions for the next run.

The second experiment performs a similar benchmark for update operations.
It first creates and pre-fills the table and afterwards uses multiple techniques to
perform 4000 simple update operations on the table to reach a common resulting
state. Before each additional technique, the table is restored to its initial state.

Finally, a last experiment performs the same experiment for the delete com-
mand. Eight different techniques are deleting 5.000 entries within the same table.
The classic statement and prepared statement as well as their batched counter-
parts are included. Additionally, database entries may be deleted using stored
procedures which can be batched too. The pre-compiled operations managed by
databases are supported since MySQL version 5 and are intended to reduce the
amount of traffic between the database server and client. Further, the extended
delete syntax allows to define a where clause which indicates the tuples to be
deleted and which can be used to specify multiple tuples at once.

368 V. Nae et al.

Figure shows the average times in milliseconds required to insert 10.000
entries. It can be observed that the traditional statements and prepared state-
ments have the worst performance. The sometimes recommended batched ver-
sion required a reduced execution time and the version using the extend insert
syntax turned out to be the fastest. Additionally, although most of the times the
prepared version seems to be slightly faster, the simple version is doing better
for the extend syntax.

Figure shows the average times measured during the update test. Un-
fortunately, there is no extended syntax for the update statement, however, the
batched and the not batched versions of the operations are still supported. Again,
the gap between the stand alone and batched variant can be observed, as well
as a slight improvement when using prepared statements.

6000
5000 - 3000
g — 2500 |
8 4000 - o
E 000 2 2000 -
g i < 1500 -
= 2000 - E 1000 -
0 0
X X Y X
& & & & &S & & & &
S S N S R & & &
S S S X 5 X 5@
ORI @ @ @ @
> > > > > S b"’ b‘" gf’
5 & & &
Q@Q P &8 & bQ@Q Q@Q Q;z?‘ X
e < >
%&& ’@ob & ©
<F <
(a) Insertion (b) Update
14000 350000
~ 12000 £ 300000
2 10000 & 250000
£ 8000 S 200000
2 6000 § 150000
£ 4000 = 100000 -
& ENE R
i 0
S ES S ESS
e,é\z e@z Y z&e e&e S e@e, 0&0 z,bb R z,bb /bg-;
NI S S S S S & &
P G GRS GRS G S G < N < &
DR R R D ™ ¢ ™
& (_}o& & & (;~°@ & & S o @ @
€ & € & F € N
\(\0 x& bQ/
Q;ﬁé' & d&é\
(c) Delete (d) Throughput

Fig. 7. JDBC and parallelism experimental results

An Information System for Real-Time Online Interactive Applications 369

Finally, Figure shows the results of the delete experiments where an im-
provement of the batched versions compared to the none-batched once is obvious.
However, this effect is not working for stored procedures. The extended syntax
does not provide any benefit compared to the other variants.

3.3 Parallelism

The goal of this final rather small experiment was to determine whether there
is a difference in accessing multiple tables in parallel using different threads.
The reason for this test is the separation of the measurement record bean types
among multiple tables, each of them featuring a certain type of measurement.
Since most access operations only focus on a single type, the access is reduced
to a single table which, combined with the locking mechanism of the database,
can speedup access.

For evaluating whether separate tables have an impact on the information
system’s performance, we developed load producer clients which generate high
load for specific time intervals (for this experiment we selected a ten minute
interval). Each load producer generates ten simple records and five additional
extended records with random content, and adds them to the database. This
sequence is timed and continuously repeated for the specified (ten minute) time
interval. The experiment output is the number of insert cycles completed in the
given amount of time. We executed this experiment on one and four tables all
scenarios being evaluated using a single, respectively four threads.

Figure shows the
results of this experi-
ment. As expected, the Table 2. Speedup and efficiency

number of completed in- .
sertion cycles scales with 1 thread 4 Threads Speedup Efficiency
the number of threads. 1 table 103686 264108 2.55 63.8%

By increasing the mum. 4 tables 112604 324685 2.88 72.1%

ber of tables, the inter-

nal locking mechanism is

more efficient even for the single threaded version. The total lock cycle count
increases by approximately 8%. The results from Table Bl demonstrate that the
distribution of the data correlates with an increased efficiency.

4 Conclusions

In this paper we presented the design and evaluation of an information system
for ROIA as part of the edutain@grid project [I]. The novelty of our approach
is a performance-tunable information system that provides a at the same time
a flexible and generic frontend, which makes it suitable for being applied to
ROIA. We designed the information system as a relational database on top of
the MySQL platform consisting of three main beans: the host bean, the ROTA
type bean, and a record types bean. We conducted a thorough set of experiments

370 V. Nae et al.

for validating our design and for testing the responsiveness and scalability of the
system to various kinds of queries.

Our experiments show first the great potential of inserting data in-order into
the information system by reducing time required to insert new entries on one
hand, and by keeping the data processing time predictable even after insertion
of millions of entries, on the other hand. The MyISAM storage engine proved to
be faster than the InnoDB in this particular use case, however, InnoDB is the
only one providing the required transaction management.

For the insert operation, the JDBC extend syntax provides the best solution
although its implementation requires advanced complexity. Since the length of
an insert statement is no longer predefined (and therefore limited), it may hap-
pen that the overall length exceeds the maximum data package size accepted by
the database server. For the update operation, the batched mode of the prepared
statements provides the best performance. Fortunately, its realisation does not
introduce any additional hazards except the effort of handling transactions. Fi-
nally for the delete operations, the result is rather open. The difference between
the batched and prepared statements is rather small and may be neglected.

Finally, we observed that the separation of the measurement values among
multiple tables does not harm parallel efficiency. However, the internal locking
mechanism of the database seems to be capable of handling parallel operations
well. Therefore, the data separation on multiple tables appears to have only
limited impact. However, the experiment shows that the metric separation does
not have any negative side effects when used in parallel too. To investigate the
reasons of limiting the parallel efficiency, we need to perform more sophisticated
experiments as part of the future work.

References

1. Fahringer, T., Anthes, C., Arragon, A., Lipaj, A., Miiller-Iden, J., Rawlings, C.,
Prodan, R., Surridge, M.: The edutain@grid project. In: Veit, D.J., Altmann, J.
(eds.) GECON 2007. LNCS, vol. 4685, pp. 182-187. Springer, Heidelberg (2007)

2. Taylor, 1., Deelman, E., Gannon, D., Shields, M. (eds.): Workflows for e-Science:
Scientific Workflows for Grids. Springer, Heidelberg (2007)

3. Aragon, A., Fahringer, T., Glinka, F., Lindstone, M., Miiller, J., Prodan, R., Sur-
ridge, M.: User requirements specification. Deliverable 1.1, IST 034601 edutain@grid
Project (March 2007)

4. Atkinson, L.: Core MySQL: The Serious Developer’s Guide. Prentice-Hall, Engle-
wood Cliffs (2002)

5. Konchady, M.: An introduction to JDBC. Linux Journal 55, 34-37 (1998)

	An Information System for Real-Time Online Interactive Applications
	Introduction
	Database Schema
	Host Bean
	ROIA Type Bean
	Start-Up Descriptor Bean
	Record Types Bean

	Experiments
	In-Order and Out-of-Order Insertion
	JDBC Usage
	Parallelism

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

