A Case Study on Using RTF for Developing
Multi-player Online Games*

Alexander Ploss, Frank Glinka, and Sergei Gorlatch

University of Miinster, Germany
{a.ploss,glinkaf,gorlatch}@uni-muenster.de

Abstract. Real-Time Online Interactive Applications (ROIA) include
a broad spectrum of online computer games, as well as challenging dis-
tributed e-learning applications, like virtual classrooms and collaborative
environments. Development of ROIA poses several complex tasks that
currently are addressed at a low level of abstraction. In our previous
work, we presented the Real-Time Framework (RTF) - a novel middle-
ware for a high-level development and execution of ROIA in single- and
multi-server environments. This paper describes a case study in which a
simple but representative online computer game is developed using RTF.
We explain how RTF supports the design of data structures and their
automatic serialization for network transmission, as well as determining
and processing user actions when computing a new game state; the chal-
lenge is to provide the state updates to all players in real time at a very
high frequency.

1 Introduction

Real-Time Online Interactive Applications (ROIA) form a novel class of techni-
cally challenging distributed applications. They include for example e-learning
applications, like virtual classrooms, as well as a broad spectrum of online com-
puter games reaching from fast-paced action games to large-scale massively mul-
tiplayer online games (MMOG). In order to support high numbers of users, the
processing of the application state needs to be implemented in an efficient, scal-
able manner, e.g., via parallelization and distribution on multiple servers. The
communication among participating processes in a ROIA session (clients and
servers) needs to be efficient and optimized for highly frequent data transfers.
Since generic development approaches able to handle multiple aspects of scalable
ROIAs are still lacking, developers implement ROIAs from scratch and at a low
level of abstraction, which is error-prone and time-consuming.

The Real-Time Framework (RTF) [5] is a novel middleware developed at the
University of Minster as part of the European edutain@grid [2] project. RTF
simplifies the development process of ROIAs in which users continuously inter-
act and concurrently modify a shared application state. RTF is implemented
as a C++ library which is optimized for efficient processing and supports the

* This work is supported by the EU through IST-034601 edutain@grid project.

E. César et al. (Eds.): Euro-Par 2008 Workshops, LNCS 5415, pp. 390 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Case Study on Using RTF for Developing Multi-player Online Games 391

eventual consistency update model and light-weight UDP communication. RTF
enables a high-level development of scalable ROIAs and transparently integrates
monitoring and controlling functionality for dynamic resource management. Fur-
thermore, RTF supports various distribution concepts (zoning, instancing and
replication) which allow to overcome the saturation of computational and net-
work resources caused by a growing number and/or increasing density of online
users.

Our previous work [4] described the high-level concepts of RTF, showed how
its distribution mechanisms can be used to implement scalable online games and
how the RTF-based approach compares to existing development methods. The
process of application development using RTF comprises two groups of tasks:
1) basic tasks like designing data structures to model the application state,
distributing the processing between client and server including communication,
and introducing new entities, and 2) parallelization tasks of organizing a scalable
distributed processing when using multiple servers.

In this paper, we present a case study on using RTF for developing a simple
but still quite challenging example ROIA — a multiplayer online computer game.
Because of lack of space, we omit the developer tasks needed for the multi-server
case; they are left for a future publication. We describe RTF from the developer
perspective, in order to show how a particular application can be designed on a
high level of abstraction.

The remainder of the paper is as follows. Section 2] describes the fundamental
Real-Time-Loop processing model for ROTA and gives a short overview of RTF.
Section [3] provides an in-depth view of a development use case for an online
computer game. Section [4] describes both the case study and RTF in the context
of dynamic resource management. Finally, Section [Bl concludes the single-server
development case using RTF and outlines the multi-server aspect.

2 Real-Time Loop in Multiplayer Games

The majority of today’s online games typically simulate a spatial virtual world
which is conceptually separated into a static part and a dynamic part. The static
part covers, e.g., environmental properties like the landscape, buildings and
other non-changeable objects. Since the static part is pre-known, no information
exchange about it is required between servers and players. The dynamic part
covers objects like avatars, non playing characters (NPCs) controlled by the
computer, items that can be collected by players or, generally, objects that can
change their state. These objects are called entities and the sum of all entities is
the dynamic part of the game world. Both parts, together, build the game state
which represents the game world at a certain point of time.

For the creation of a continuously progressing game, the game state is repeat-
edly updated in an endless real-time loop [If9]. Figure [Il shows one iteration of
the server real-time loop for multiplayer games based on the client-server ar-
chitecture. A loop iteration consists of three major steps: At first the clients
process the users’ input and transmit them to the server (step 1 in the figure).

392 A. Ploss, F. Glinka, and S. Gorlatch

/9\ Client g_ Receive .- movement
> user actions @ /\

/9\ (gl \ Server g - .~ interaction
ient P

User Actions

processing

® Calculate new E < >
environment state W

Server

/% c ient\ Send new ® W(;Fld,

environment state

/ virtual environment
C . Server
I

T entity

ent state Update

Fig. 1. Real-Time Loop for entity-based ROIAs

The server then calculates a new game state by applying the received user ac-
tions and the game logic, including the artificial intelligence (AI) of NPCs and
the environmental simulation, to the current game state (step 2). As the result
of this calculation, the states of several dynamic entities have changed. The final
step 3 transfers the new game state back to the clients. The figure shows one
server involved in each step, but in a multi-server scenario this may be a group
of server processes distributed among several machines.

FigurePlshows an overview of the use of RTF in a session of a ROIA. The devel-
oper implements the application-specific processing following the Real-Time-Loop
processing model. This application-specific part can use other application-specific
components, like graphics engine, depending on the purpose of the software (client-
or server side). To implement the processing, the application developer uses the
parallelization and communication functionality provided by RTF. RTF automat-
ically deals with the distribution, both, between client/ server and among multiple
servers, and with the communication among all processes participating in a session
of the ROIA.

RTF transparently implements the transmission of events between clients
and servers and of state updates to clients and other servers (right-hand side
of the figure). RTF automatically gains introspection to the application state
(performance characteristics) and is thus aware of the current distribution sta-
tus. This information can be provided to an external, application-independent

ROIA Process

application-specific
RTL Real-Time Loop based processing Other ROIA Processes

| use |

C i t RTL RTL
omputation Communication events [
Paralellization . .
< monitoring Dynamic entity state
controlling Distribution updates

J

System

Management

Fig. 2. Overview of the Real-Time Framework used in a ROIA

A Case Study on Using RTF for Developing Multi-player Online Games 393

management system (left-hand side of the figure), which is then able to perform
dynamic resource management for the ROIA via RTF. This monitoring and
controlling by a resource management system is transparent for the application.

3 Case Study: Development of an Online Game

As a development example we will use a simple online game (RTFDemo), which,
however, incorporates all fundamental (technical) features of a ROIA:

— Game world is simulated as a 3D virtual environment;

— Each player has one avatar;

— Players can move their avatars (using keyboard and mouse);
— Players interact by shooting other player’s avatars (direct hit);
— Entities are solely controlled by the game logic.

To implement the basic ROIA state processing, the developer addresses the
following tasks: 1) data structure design to model the application state, 2) appli-
cation state processing to distribute the computations between clients and server
using events and state updates, and 3) Area of Interest management, as well as
some general tasks, like creating and introducing new entities. In the following
we will describe how these tasks are addressed using RTF.

3.1 Task: Data Structure Design

The dynamic state of a ROIA is usually described as a set of entities which
represent avatars or non-player characters in the game world. Besides entities,
events are the other important structure in a virtual environment for represent-
ing user inputs and game world actions. Hierarchical data structures for events
and entities in complex virtual worlds have to be serializable for efficient network
communication.

Describing the Entity State. When using RTF, entities and events are im-
plemented as object-oriented C++ classes. The developer defines the semantics
of the data structures according to the game logic. The only semantics of entities
that are predetermined by RTF is the information about their position in the
virtual world. Entities, therefore, are derived from a particular base class Local
of RTF that defines the representation of a position for entities. This is neces-
sary since the distribution of the game state processing across multiple servers
is based upon the location of an entity in the game world. Besides the require-
ment of inheriting from Local, the design of the data structures is completely
customizable to the particular game logic.

In order to enable platform independence, RTF defines primitive data types
to be used (e.g., gcf_int8). Also, easy-to-use complex data types for vectors
and collections are provided to the developer. Overall, more complex entity and
event data structures can be easily defined using these primitives.

We start to develop our application RTFDemo from a class to model the state
of a player’s avatar:

394 A. Ploss, F. Glinka, and S. Gorlatch

class Avatar : public emf::Local {
public:

/* process a new avatar state x/

void think(const double& passedSec);

void move (emf::Vector movement) ;

[..]

DECLARE_SERIALIZABLE_PUBLIC(Avatar, TypeAvatar)
private:

AvatarType avatarType; // type of the Avatar (enum)
10 emf ::Vector velocity; // movement
11 emf ::Vector orientation; // direction
12 gcf_uint16 health; // cur hitpoints
13 gcf_uint16 maxHealth; // max hitpoints
14 gcf::Annotation annotations; // State changes, Actions
15 DECLARE_SERIALIZABLE_PRIVATE(Avatar) };

© 00~ O U W

Listing 1. Class Avatar models the state of a player’s avatar

Listing[Ilshows our class Avatar inheriting from Local (line 1) in which the posi-
tion and dimension of the entity are described. Other attributes describe the game-
dependent state of the avatar (lines 9-14). Attributes can be primitive types (health
, maxHealth) including enumerations (AvatarType in line 9), classes (velocity and
dimension), or even more complex containers of classes (annotations). Methods
think and move (lines 5 and 6) implement the modification of the avatar state.

RTF Serialization. RTF provides automatic serialization of the entities and
events defined in C++4, implements marshalling and unmarshalling of data types
and optimizes the bandwidth consumption of the messages. While the developer
specifies entities and events as usual C++ classes, RTF provides a generic com-
munication protocol implementation for all data structures following a special
class hierarchy. All network-transmittable classes inherit from the base class
Serializable of RTF. The Serializable interface can be a) implemented by the
developer, or b) automatically implemented using the serialization mechanism
provided by RTF which is generated using convenient pre-processor macros. For
all entities and events implemented in this manner, RTF automatically generates
network-transmittable representations and uses them at runtime.

Non-entity classes, like actions, are directly derived from Serializable,
whereas the Avatar automatically inherits the Serializable interface via Local.
The DECLARE_SERIALIZABLE_* statements (lines 7 and 15 in Listing [Il) generate
code for the implementation of the Serializable interface. TypeAvatar (line 7) is
a system-wide unique integer to distinguish Avatar from other Serializables.

[..1] // application-specific code goes here

#include <gcf/GenericSerializerImpl.cpp>

IMPLEMENT_SERIALIZABLE_DERIVED(Avatar, emf::Local,
ADD_ATTRIBUTE (Avatar, velocity, Unreliable, Public)
[..] // dito for all network-transmittable attributes
ADD_ATTRIBUTE_DEFAULT (Avatar, annotations))

SO W N =

Listing 2. Implementation of the avatar

A Case Study on Using RTF for Developing Multi-player Online Games 395

Listing [2] shows the use of RTF’s automatic serialization mechanism. The
IMPLEMENT_SERTALIZABLE statement (line 3) generates the implementation of the
Serializable interface. The developer needs to describe attributes that should
be transmitted over the network. For example, the ADD_ATTRIBUTE statement
(line 4) adds the velocity attribute to the description of the serialized form of
the Avatar. The automatic serialization mechanism can handle delta updates,
i.e., only transmitting changed information, and differentiated updates for dif-
ferent processes. In order to use delta updates, the developer tracks modification
to attributes in a mask provided by RTF. To use differentiated updates, the de-
veloper can specify different types of visibilities for attributes (Public in line 4).
The developer also specifies for each process its level of visibility.

3.2 Task: Application State Processing

The central aspect of the development approach using RTF is the real-time loop
model (Figure [I). Most contemporary multiplayer games are based on such a
loop whose iterative updates are called ticks. RTF allows the game developer to
implement his own real-time loop in the well-understood manner and, moreover,
provides him a substantial support for implementing and running this loop on
both the server- and client side.

The client side needs to 1) determine the user actions, and 2) display the
current game state. The server side has to perform 1) processing of the events,
and 2) updating of the game state.

Client: Determine User Actions. At first, we read the user’s input (from key-
board/mouse). Then we determine the desired action and send it to the server,
using the ClientCCPModule (Listing [line 5). Serialization and transmission
are done by RTF transparently.

1 void ClientActionFactory ::sendActionMove (){

2 serverPos = mAvatar->getLocation ().getPos();

3 emf ::Vector newPos = mGraphicManager ->getPlayersPosition
O

4 ActionMove moveEvent (newPos-serverPos) ;

5 mClientCCP->sendEvent (moveEvent); }

Listing 3. Send a user action via ClientCCPModule from client to server.

Server: Process User Actions On the server side, events are automatically
received by RTF and appended to the event queue. We process these events and
calculate the new game state as shown in Listing @l

396 A. Ploss, F. Glinka, and S. Gorlatch

1 // emf::EventManager& em = ccpModule.getEventManager () ;

2 // emf::ClientManager& cm = ccpModule.getClientManager ();

3 void Server::processEvents () {

4 for(emf::Event* e=em.popEvent(); e!=NULL; e=em.popEvent ()
) o

5 switch(e->getEvent () .getType 0) {

6 case ActionMove::TYPE: {

7 Avatar &actor = (Avatar&)

8 cm.findClient (e->getSender ()) ->getAvatar ());

9 ActionMove& actionMove = (ActionMove&)e->getEvent ();

10 actor.move (actionMove .getMovement ());

11 } break; } } }

Listing 4. Process Events

We access RTF’s event queue via the EventManager (line 4) and use the RTF
type identification to determine the correct class of the event (lines 5 and 6).
The move action refers to a specific entity (line 7) which can be retrieved from
RTF via the ClientManager, which allows to determine the client which has sent
an event and get the avatar from that client (line 8). After having determined
the event’s type and actor, the action is applied to the game state (line 10).

Server: Process New Game State. At this step, the active entities are
updated accordingly to the game rules and game logic. As our implementation
applies move actions directly to the entity state, we do not have to move players’
avatars in this step anymore. But we have to update the rest of the game state,
e. g., to move the non-player characters:

1 void Server::updateAllEntities () {

2 std::map<gcf::DGObjectID, emf::Local*>::const_iterator
it

3 = om.getActiveObjects () .begin();

4 for(; it !'= om.getActiveObjects ().end(); it++) {

5 switch(it->second->getType ()) {

6 case Avatar::TYPE:

7 Avatar& avatar = (Avatar&) *it->second;

8 avatar.think(ticklength); // let every active

9 [..1 »} } // process other types of entities etc.

Listing 5. Update all Entities

Server Real-Time Loop. The complete processing cycle for the server is shown
in Listing[6l During the onBeforeTick (Listing[6l line 2) and onFinishedTick (line
6) calls, RTF fills the event queue and sends the state updates to the clients. There-
fore, the game application should not modify the game state concurrently to these
calls. The call in line 6 processes the Aol Management which we will deal with in

section [3.3]

A Case Study on Using RTF for Developing Multi-player Online Games 397

1 while(!serverQuit) {
ccpModule .onBeforeTick () ; // inform RTF about begin of
tick
processEvents () ;
updateAllEntities () ;
interestManagement .update () ;
ccpModule . onFinishedTick (); // inform RTF about end of
tick
7 [..]1 } // sleep, check for server quit etc.

[\V]

S U W

Listing 6. Server Real-Time Loop

Client Real-Time Loop. The real-time loop on the client side looks similar
to the one on the server side, but works with a specific client-side version:

1 while(mInputProcessor ->mContinue) {

2 // sleep, calculate time since last tick

3 mClientCCP .onBeforeTick () ;

4 // Capture input and send actions (e.g.,
sendActionMove)

5 mInputProcessor ->capture (inputTimer .getTicklength ());

6 updateEntities (timeSinceLastTick); // apply state
updates

7 mGraphicManager ->renderFrame () ; // render a frame

8 mClientCCP .onFinishedTick (); }

Listing 7. Client Real-Time Loop

After determining user actions and sending them to the server (line 5), newly
arrived updates from the server are processed (line 6) and the new game state
is displayed on the screen (line 7). The client loop is completed by surrounding
onFinishedTick (line 8) and onBeforeTick (line 3) calls, during which incoming
events sent by the server are enqueued and game state updates are applied.

3.3 Task: Aol Management

An Area of Interest (Aol) concept assigns each avatar in the game world a specific
area where dynamic game information is relevant and thus has to be transmitted
to the avatar’s client. Aol optimizes network bandwidth by omitting irrelevant
information in the communication. RTF supports the custom implementation of
arbitrary Aol concepts by offering a generic publish/subscribe interface. The en-
gine continuously determines which entity is relevant for a client and notifies RTF
of each change of an “interested” relation through a client.subscribe(entity)
and client.unsubscribe(entity) call. RTF automatically takes care that the en-
tity is available/ updated at the client or removed from it. RTF automatically
replicates a new entity to other processes (clients or servers) according to the
Aol management. Clients will be informed about (dis-) appearing entities via the
ClientCCPModuleListener interface.

398 A. Ploss, F. Glinka, and S. Gorlatch

1 void Client::objectAppeared (emf::Local& obj) {

2 switch(obj.getType (D)) {

3 case gcf::TypeAvatar: {

4 Avatar& avatar = static_cast<Avatar&>(obj);

5 mGraphicManager ->AvatarAppeared (avatar); break; } } }

Listing 8. Notification about new entities (client-side)

Listing [shows the implementation of the objectAppeared callback for
RTFDemo. During this callback the application can perform procedures to han-
dle the newly appeared object, e. g., preparing the entity for introduction to the
graphics engine (line 5).

3.4 General Tasks: Client Connection and Entity Creation

A general task that occurs independently of the continuously state update is
introducing new entities to the application state when they are created. A typical
example for introducing new entities is a client connecting to the session or a
newly spawned NPC. RTF informs the application about connecting clients with
the clientConnected callback of the ClientListener interface.

1 // Place a walking NPC in the world.
2 Avatar& npc = *new Avatar (Avatar::ZONE_TRAVELER,

3 emf :: Space (2400, FLAT_HEIGHT, 750, 40.0f, 85.0f, 40.0
£),

4 emf::Vector (50,0,0), emf::Vector(1,0,0));

5 ccpModule.getObjectManager () .registerActive (npc);

Listing 9. Introducing new entities to the application state

Listing[@shows how new entities can be introduced to the application state. The
server creates a new instance of the Avatar class (line 2) and registers this new entity
with RTF by invoking the registerActive method of the ObjectManager (line 5).

4 Benefits of Using RTF

After all the described basic tasks are solved and the desired game logic is im-
plemented, our RTFDemo game appplication is ready to operate online sessions
with multiple users using a single server. Fortunately, RTF’s development and
runtime support for ROIA goes beyond this single-server case. RTF supports
multi-server distribution of the application state processing to implement scal-
able ROIAs and, furthermore, dynamic monitoring and controling of ROIAs
during runtime. This allows to operate ROIAs using distributed resources and,
with the possibility of allocating additional resources on peak-loads and increas-
ing resource usage efficiency, as described in [6].

RTF supports the ROTA distribution approaches zoning, instancing, and repli-
cation on a high level. Each of these approaches allows to scale a different aspect
of a ROIA. for example, zoning scales the overall size of the application state,

A Case Study on Using RTF for Developing Multi-player Online Games 399

i.e., the number of users, by identifying independent parts of application state.
First scalability experiments that demonstrate the performance of RTF’s zoning
support are covered in [6]. Another work [7] evaluates the scalability of the First
Person Shooter game Quake 3 using RTF’s replication support and compares
the performance of the original Quake 3 with the version using RTF.

5 Conclusion and Related Work

The main novel features of our RTF middleware are as follows: (1) Highly opti-
mized and dynamic real-time communication links adapt to changes in the dy-
namic distributed environment and can automatically and transparently redirect
the communication to new servers; (2) Hidden background mechanisms allow the
runtime transfer and redistribution of parts of a game onto additional resources
without noticeable interruptions for the users; (3) A high-level interface for the
game developer abstracts the game processing from the location of the partici-
pating resources; (4) Monitoring data are gathered in the background and used
by a management system for capacity planning.

Our case study has demonstrated how an example online game can be devel-
oped using RTF on a high level of abstraction. Some game development studios
re-use existing solutions, e. g., successful game engines like Unreal or Quake, or
use optimized libraries for particular tasks like network communication. When
using only a communication library, like Torque Network-Library [3], or HawkNL
[8], developers have to build data structures and serialization mechanisms from
scratch, while using an existing engine requires the use of predefined entities
and events, which reduces flexibility. In contrast, RTF provides an optimized
high-level entity and event concept enabling automatic serialization while still
providing full design flexibility. In a future publication, we will cover in detail
how RTF solves additional implementation tasks for multi-server processing, like
distribution and scalable parallel processing, transparently for the user.

References

1. Dalmau, D.S.-C.: Core Techniques and Algorithms in Game Programming. New
Riders Games (2003)

2. Fahringer, T., Anthes, C., Arragon, A., et al.: The edutain@grid Project. In: Veit,
D.J., Altmann, J. (eds.) GECON 2007. LNCS, vol. 4685, pp. 182-187. Springer,
Heidelberg (2007)

3. GarageGames. Torque network library, http://www.opentnl.org/

4. Glinka, F., Ploss, A., Gorlatch, S., Miiller-Iden, J.: High-level Development of Multi-
server Online Games. International Journal of Computer Games Technology Article
ID 327387 (2008)

5. Glinka, F., Ploss, A., Miiller-Iden, J., Gorlatch, S.: RTF: A Real-Time Framework
for Developing Scalable Multiplayer Online Games. In: NetGames 2007, Melbourne,
Australia, September 2007, pp. 81-86 (2007)

6. Gorlatch, S., Glinka, F., Ploss, A., et al.: Enhancing Grids for Massively Multiplayer
Online Games. In: Luque, E., Margalef, T., Benitez, D. (eds.) Euro-Par 2008. LNCS,
vol. 5168, pp. 466-477. Springer, Heidelberg (2008)

http://www.opentnl.org/

400 A. Ploss, F. Glinka, and S. Gorlatch

7. Ploss, A., Wichmann, S., Glinka, F., Gorlatch, S.: From a Single- to Multi-Server
Online Game: A Quake 3 Case Study using RTF. In: ACE 2008, Yokohama, Japan
(December 2008) (to appear)

8. H. Software. HawkNL, http://www.hawksoft.com/hawknl/

9. Valente, L., Conci, A., Feij, B.: Real Time Game Loop Models for Single-Player
Computer Games. In: SBGames 2005 (2005)

http://www.hawksoft.com/hawknl/

	A Case Study on Using RTF for Developing Multi-player Online Games
	Introduction
	Real-Time Loop in Multiplayer Games
	Case Study: Development of an Online Game
	Task: Data Structure Design
	Task: Application State Processing
	Task: AoI Management
	General Tasks: Client Connection and Entity Creation

	Benefits of Using RTF
	Conclusion and Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

