
Centre Fédéré en Véri�cation

Technical Report number 2009.118

Partial Projection of Sets Represented by Finite
Automata, with Application to State-Space

Visualization

Bernard Boigelot, Jean-FranÃ�ois Degbomont

http://www.ulb.ac.be/di/ssd/cfv

This work was partially supported by a FRFC grant: 2.4530.02
and by the MoVES project. MoVES (P6/39) is part of the IAP-Phase VI Interuniversity

Attraction Poles Programme funded by the Belgian State, Belgian Science Policy

Partial Projection of Sets Represented by Finite
Automata, with Application to State-Space

Visualization?

Bernard Boigelot and Jean-François Degbomont

Institut Montefiore, B28
Université de Liège

B-4000 Liège, Belgium
{boigelot,degbomont}@montefiore.ulg.ac.be

Abstract. This work studies automata-based symbolic data structures
for representing infinite sets. Such structures are used in particular by
verification tools in order to represent the sets of configurations han-
dled during symbolic exploration of infinite state spaces. Our goal is to
develop an efficient projection operator for these representations. There
are several needs for such an operator during state-space exploration; we
focus here on projecting the set of reachable configurations obtained at
the end of exploration. An interesting application is the state-space visu-
alization problem, which consists in providing the user with a graphical
picture of a relevant fragment of the reachable state space.
For theoretical reasons, the projection of automata-represented sets is
inherently costly. The contribution of this paper is to introduce an im-
proved automata-based data structure that makes it possible to reduce
in several cases the effective cost of projection. The idea is twofold. First,
our structure allows to apply projection to only a part of an automaton,
in cases where a full computation is not necessary. Second, the structure
is able to store the results of past projection operations, and to reuse
them in order to speed up subsequent computations. We show how our
structure can be applied to the state-space visualization problem, and
discuss some experimental results.

1 Introduction

State-space exploration is a powerful technique for analyzing the properties of
computerized systems. It is not restricted to finite models: infinite state spaces
can be explored symbolically, with the help of suitable data structures for repre-
senting the sets of configurations that have to be handled [Boi98,BJNT00]. Con-
cretely, if a system undergoing symbolic state-space exploration is controlled by
n variables defined over the respective domains D1, D2, . . . , Dn, then one needs
a data structure suited for representing subsets of D1×D2×· · ·×Dn. This struc-
ture must be closed under all operations to be performed during exploration.
? This work is supported by the Interuniversity Attraction Poles program MoVES of

the Belgian Federal Science Policy Office, and by the grant 2.4530.02 of the Belgian
Fund for Scientific Research (F.R.S.-FNRS).

2 B. Boigelot and J.-F. Degbomont

1.1 Automata-Based Representations

A simple approach consists in representing sets as finite automata: given a fixed
alphabet Σ, one considers an encoding relation that maps every value in a do-
main D onto words over Σ. Such a relation thus encodes subsets S of D as
languages. Whenever such languages are regular, they can be accepted by finite
automata, which then provide symbolic representations of the sets S. The advan-
tages are that automata are easily manipulated algorithmically, and that most
usual operations on sets (such as intersection, union, . . .) reduce to carrying out
the same operations on the languages accepted by automata [Boi98].

Consider for instance the important case of programs relying on integer vari-
ables. Using the positional notation, an integer number can be encoded as a finite
word over the alphabet {0, 1, . . . , r − 1}, where r > 1 is an arbitrarily chosen
base. It has been established that, in this setting, every subset of Z that is de-
finable in Presburger arithmetic, i.e., the first-order theory 〈Z,+,≤〉, is encoded
by a regular language, and is thus automata-representable [BHMV94]. Interest-
ingly, Presburger-definable sets are those that can be expressed as combinations
of linear constraints and discrete periodicities [Pre29], which matches quite well
the requirements of infinite state-space exploration applications [WB95,SKR98].

In order to represent multidimensional sets, i.e., subsets of D = D1 ×D2 ×
· · ·×Dn, one needs an encoding relation suited for the global domain D. Such a
relation can be obtained by combining together encoding relations suited for each
individual domain Di. Several types of combinations are possible. A first strategy
consists in encoding a value (v1, v2, . . . , vn) ∈ D by concatenating the individual
encodings of v1, v2, . . . , vn, expressed over distinct alphabets. This method is
more suited for domains such as communication channel contents [BG96] than
for integer variables. Indeed, with this scheme, the Presburger-definable subsets
of Zn are generally not encoded by regular languages1.

Another approach is to interleave the encodings of the individual values
v1, v2, . . . , vn, by reading repeatedly and successively one symbol in words w1, w2,
. . . , wn encoding those values. This requires these words to share the same length,
which can always been achieved by appending a suitable number of padding sym-
bols. In the case of integer numbers encoded positionally, padding is not neces-
sary, since every integer admits encodings of any sufficiently large length. It is
known that this composite encoding relation maps every Presburger-definable
subset of Zn onto a regular language [BHMV94,WB95,Boi98].

In this work, we restrict ourselves to multidimensional encoding relations
obtained by the interleaving method. Our motivation stems from the case of
programs manipulating integer variables, which is probably the most relevant
one in actual applications. Nevertheless, the techniques developed in this pa-
per extend naturally to other domains for which interleaved encodings are also
applicable.

1 A simple example is given by the set {(x1, x2) ∈ Z2 | x1 = x2}.

Partial Projection of Automata-Represented Sets 3

1.2 Set Projection and State-Space Visualization

This paper studies the projection operation, which intuitively consists in dis-
carding a given subset of variables from a multidimensional set. Formally, given
a set S ⊆ D1 × D2 × · · · × Dn and a set C = {i1, i2, . . .} ⊆ {1, 2, . . . , n} of
components, the projection of S over C is given by the set S′ = {(ui1 , ui2 , . . .) ∈
Di1 ×Di2 × · · · | ∃(v1, v2, . . . , vn) ∈ S : ∀j : uij

= vij
}.

During symbolic state-space exploration, the projection operation has to be
carried out in several forms. The first one, local projection, is needed when one
needs to compute the image of a subset of configurations by an operation that
discards the current value of some variables. For instance, the effect of an assign-
ment instruction such as x1 := 2 amounts to first projecting the current set of
configurations onto all variables but x1, and then inserting the constant 2 in the
first component of all tuples in the resulting set. A different application, global
projection, corresponds to projecting the whole set of reachable configurations
obtained at the end of state-space exploration. This makes it possible to reason
on the properties of the reachable set without being hampered by the presence
of non-relevant variables.

The aim of this work is to develop an efficient implementation of global pro-
jection operations. Our main motivation is the state-space visualization prob-
lem for programs manipulating integer variables, defined as follows. The goal of
state-space exploration is to compute the set of reachable configurations of the
system under analysis, in the form of a symbolically-represented set of vectors
with integer components. The visualization problem then consists in producing
a two-dimensional image of the values taken by a pair of specified variables. Such
an image can be obtained by projecting the original set over the selected vari-
ables, and then enumerating the values in the resulting set, within given bounds.
The aim of visualization is to provide the user with a synthetic and global view
of the reachable configurations, so as to draw quickly attention towards erro-
neous behaviors (which can then be the subject of more focused investigations),
or modeling errors.

In order for state-space visualization to be helpful during the software devel-
opment process, it has to be reasonably efficient. Of course, state-space explo-
ration in itself is usually a quite costly procedure, but that has only to be carried
out once for a given system. Having obtained a (typically large) symbolic rep-
resentation of the reachable set, the problem is thus to visualize it as efficiently
as possible, with respect to different choices of variables or viewing parameters
(in particular, one should be able to move at will the visualization window, as
well as change the zoom factor). This requires an efficient implementation of the
projection operator.

1.3 Projecting Sets Represented by Automata

In the case of automata-based representations of multidimensional sets, projec-
tion is seemingly a simple operation. Indeed, assuming an interleaved encod-
ing scheme, one can locate in linear time the automaton transitions associated

4 B. Boigelot and J.-F. Degbomont

with the variables discarded by the projection, and simply relabel them with the
empty word. The drawback of this approach is that it gives out non-deterministic
automata.

For state-space exploration however, using non-deterministic representations
is problematic. First, during exploration, working systematically with determin-
istic automata makes it possible to minimize them into a canonical form [Hop71].
This makes the representation of sets independent from their construction, which
often helps to keep the size of the representations under control. Another prob-
lem is that testing inclusion between sets, which is needed for checking that
a fixed point has been reached during exploration, can only be implemented
with a reasonable cost on deterministic automata. Furthermore, visualizing a
set with respect to a given pair of variables requires to check for each pixel
of the display window whether it has to be lit or not. For a given pixel, this
amounts to checking whether the projection of the underlying automaton over
the selected variables accepts or not an encoding of the coordinates of the cor-
responding point. With non-deterministic automata, this procedure requires to
check a prohibitively large number of paths. Finally, it is worth mentioning
that the worst-case exponential cost of the determinization operation is seldom
observed in practice; for automata produced by state-space exploration tools,
determinization usually remains an efficient operation [BW02].

The implementation of a usable state-space visualization tool is thus faced
with the problem of computing as efficiently as possible a deterministic au-
tomaton representing the projection of a given set. This problem is inherently
difficult. Indeed, one can easily build families of deterministic automata whose
determinized projection is exponentially larger. A possible workaround could be
to limit the expressiveness of the symbolic representations. Assuming that only
Presburger-definable sets have to be represented, a potential strategy could be to
exploit the known structure of the automata representing such sets [Lat05,Ler05].
Unfortunately, this approach is not feasible, for a polynomial algorithm for the
projection operator would lead to a polynomial decision procedure for Presburger
arithmetic, which does not exist [Opp78].

In spite of these theoretical limitations, it is nevertheless possible to reduce
the effective cost of projection in some applications. The approach we propose is
based on two ideas. First, projection does not always have to be applied to whole
automata. In particular, we show that state-space visualization can be speeded
up by only projecting subsets of the transition graph of the original automaton
(we name this operation partial projection). Second, some projection computa-
tions can reuse the results of previous computations. For instance, projecting
a set over {x1} becomes simpler if the projection of that set over {x1, x2} is
already available.

The contributions of this paper are the definition of an original data structure
allowing the computation of partial projections as well as the efficient reuse of
the results of past computations. We also show how this data structure can
be exploited for implementing state-space visualization, and then discuss some
experimental results.

Partial Projection of Automata-Represented Sets 5

2 Basic Notions

2.1 Automata-Based Representations of Sets

In order to represent subsets of a domain D by finite automata, one needs an
encoding relation E ⊆ D×Σ∗ mapping the elements of D onto finite words over
a finite alphabet Σ. A word can only encode one value, hence the relation E
must be such that ∀(v1, w1), (v2, w2) ∈ E : v1 6= v2 ⇒ w1 6= w2. Moreover, each
element of D must be encoded by at least one word.

For a set S ⊆ D, we define its encoding as the language E(S) = {w ∈ Σ∗ |
∃v ∈ S : (v, w) ∈ E}. If this language is regular, then any finite automaton
that accepts E(S) is a representation of S. We denote finite automata by tuples
(Q,Σ, δ, q0, F), where Q is a finite set of states, Σ the alphabet, δ a transition
relation, with δ ⊆ Q × (Σ ∪ {ε}) × Q for non-deterministic automata, and δ :
(Q×Σ)→ Q for deterministic ones, q0 ∈ Q an initial state, and F ⊆ Q a set of
accepting states.

2.2 Multidimensional Domains

A domain D is multidimensional if it can be expressed as the Cartesian product
D = D1 × D2 × · · ·Dn of simpler domains Di, where n ≥ 0 is the dimension.
Assuming that encoding relations Ei have been defined for the domains Di, for
i = 1, 2, . . . , n, we build an encoding relation E suited for D in the following
way. First, for simplicity’s sake, we assume that the relations Ei are defined
over the same alphabet, i.e., Ei ∈ Di × Σ∗. Then, we require each Ei to be
such that, for every value vi ∈ Di and sufficiently large integer N , there exists
wi such that |wi| = N and (vi, wi) ∈ Ei. In other words, every value in Di

must admit encodings of any sufficiently large length. Note that any relation
can be turned into one that satisfies this requirement, by appending appropriate
padding symbols to the encodings of values.

In order to encode a multidimensional value v = (v1, v2, . . . , vn) ∈ D, we first
consider individual encodings w1, w2, . . . , wn ∈ Σ∗ of v1, v2, . . . , vn, such that
|w1| = |w2| = · · · = |wn|. Then, we build the word w = a1a2 . . . an b1b2 . . . bn . . .,
where wi = aibi . . . for each i = 1, 2, . . . , n. In other words, w is constructed
by reading repeatedly one symbol in w1, w2, . . . , wn, in fixed order. By mapping
every value v ∈ D onto the words w obtained in this way, we get an encoding
relation E ⊆ D×Σ∗ suited for D. Note that a value may admit several distinct
encodings, and that the length of encodings is restricted to integer multiples of
the domain dimension n. Hence, we have E ⊆ D × (Σn)∗ [Boi98].

2.3 Projection

Let S be a subset of a multidimensional domain D = D1 × D2 × · · ·Dn, and
C ⊆ {1, 2, . . . , n} be a set of components. The projection of S over C is defined
as the set πC(S) = {(ui1 , ui2 , ui3 , . . .) ∈ Di1×Di2×Di3×· · · | ∃(v1, v2, . . . , vn) ∈
S : ∀j : uij = vij}, where C = {i1, i2, i3, . . .} with i1 < i2 < i3, · · ·. In other

6 B. Boigelot and J.-F. Degbomont

words, projecting S over C amounts to removing from every element of S the
components that do not belong to C.

A similar operator can also be defined over words that encode multidimen-
sional values. Given a dimension n and a nonempty set of components C ⊆
{1, 2, . . . , n}, the projection of a word a = a1a2 · · · an over C, with ∀i : ai ∈ Σ,
is given by πC(a) = ai1ai2ai3 . . ., where C = {i1, i2, i3, . . .} with i1 < i2 < i3, · · ·.
For an empty set of components C = { }, we define πC(a) = α, where α
is a distinguished symbol2. Then, the projection of a word w = w1w2 · · ·wq,
with |wi| = n for each i ∈ {1, . . . , q}, over C is then defined as πC(w) =
πC(w1)πC(w2) · · ·πC(wq). Finally, the projection of a language of encodings
L ⊆ (Σn)∗ over C is given by πC(L) = {πC(w) | w ∈ L}.

Note that the projection operator preserves the regularity of languages: an
automaton accepting πC(L) can easily be built from one accepting L. This is done
by first unrolling the transition graph of the automaton so that each transition
corresponds to one individual component. Then, the transitions associated with
the components that do not belong to C are relabeled with the empty word.
This procedure gives out a non-deterministic automaton.

Let S ⊆ D be a set represented by an automaton A. The projection πC(S)
of S over some set of components C cannot be simply computed by constructing
an automaton accepting πC(L(A)), where L(A) denotes the language accepted
by A. Indeed, although each word in πC(L(A)) encodes correctly the projection
of some element of S, this language may not necessarily contain all such encod-
ings. The solution to this problem depends on the encoding relation used, and
consists in first applying the language projection operator, and then performing
a domain-specific saturation operation that adds to the resulting language the
missing encodings of the represented values [Boi98].

2.4 Application to Sets of Integers

Consider the domain Z of integer numbers. Choosing a base r ∈ N \ {0}, the
positional notation encodes a number z ∈ N as a word dp−1dp−2 . . . d1d0 over
the finite alphabet {0, 1, . . . , r − 1}, such that z =

∑
0≤i<p dir

i. This encoding
relation generalizes to numbers in Z by encoding negative numbers by their r-
complement [WB95]. The length p of encodings is not fixed. This implies that
every number has encodings of any sufficiently large length. One can then apply
the technique outlined in Section 2.2 so as to obtain a positional encoding relation
suited for subsets of Zn, for any dimension n ≥ 0.

The resulting automata-based representation for sets of vectors in Zn is called
the Number Decision Diagram (NDD) [WB95,Boi98]. It is known that all sub-
sets of Zn that are definable in Presburger arithmetic, i.e., the first-order theory
〈Z,+,≤〉, can be represented by NDDs [Büc62,BHMV94]. In order to project
a set represented by an NDD A, one simply projects the language L(A) ac-
cepted by A, and then applies the saturation algorithm developed in [BL04].

2 The motivation behind this definition is to keep track of the length of a word in all
its projections, even those over the empty set of components.

Partial Projection of Automata-Represented Sets 7

Automata-based representations of numbers have been extended to sets of vec-
tors with mixed integer and real components, by moving to infinite-word au-
tomata [BJW05].

3 State-Space Visualization

3.1 Problem Statement

Let n ≥ 2 be a dimension, and S ⊆ Zn be a set of vectors represented by a NDD
A in a base r > 1. In our intended application, S is the set of reachable config-
urations of a program controlled by n integer variables, and its representation
A is produced by a symbolic state-space exploration algorithm [Boi98]. In this
setting, r is typically equal to 2.

The visualization problem consists in extracting from A a two-dimensional
picture of some fragment of S that is relevant to the user. More precisely, the user
provides two components i1, i2 ∈ {1, 2, . . . , n}, with i1 6= i2, a center position
(x, y) ∈ Z2, a zoom factor f ∈ N, with f > 0, and a window size (W,H) ∈
N2 with W > 0 and H > 0. The idea is that each pixel in the visualization
window corresponds to a square region of size f × f in the domain Z2, with the
window centered on the point of coordinates (x, y). The goal of the visualization
procedure is to light up the pixels corresponding to regions that contain at least
one value in π{i1,i2}(S).

3.2 Visualization and Projection

Visualization can thus be achieved by first computing a NDD representing the
set π{i1,i2}(S), and then scanning its accepting paths for values that fit in the
visualization window. In order to speed up the latter operation, which has to
be carried out for each pixel in the window, a good strategy is to determinize
the automaton representing π{i1,i2}(S). Then, whether a value (v1, v2) belongs
or not to this set can be checked by examining a single automaton path.

Even with a deterministic automaton, the number of paths to be checked can
become prohibitive for large zoom factors f , since each pixel covers f2 distinct
points of Z2. A solution is to restrict the allowable values of f to be equal to
powers rk, with k ∈ N, of the representation base r, and to align the pixel
boundaries on coordinates that are exact multiples of f (this is not problematic
in actual applications). With those restrictions, the values covered by a single
pixel correspond to a square region of the form [v1rk, (v1 +1)rk−1]× [v2rk, (v2 +
1)rk − 1], with v1, v2 ∈ Z and k ∈ N. It is then sufficient to check whether the
automaton admits a accepting path that reads an encoding of (v1, v2) followed
by 2k arbitrary symbols.

In a deterministic automaton, following a given prefix is a simple operation.
Checking whether, from a given state q, there exists an accepting path of given
length l is more problematic, since it may require to examine a large number
of paths. Remark that this operation is actually equivalent to projecting the

8 B. Boigelot and J.-F. Degbomont

language L(q) accepted from q over the empty set of components, determinizing
the resulting automaton, and then checking whether one has αl ∈ π{ }(L(q)),
which can then be done efficiently.

3.3 Avoiding Redundant Computations

Explicitly carrying out a projection followed by a determinization for each con-
sidered pixel would however lead to redundant computations. First, some au-
tomata states are reached by different prefixes, hence the number of distinct
states from which a projection needs to be performed can actually be smaller
than the total number of pixels. Second, when the user moves the visualiza-
tion window, some pixels may correspond to coordinates that have already been
checked in previous computations.

Our solution for curbing redundant computations is based on an original data
structure, the Partially Projected Automaton (PPA), in which projection and
determinization operations can be applied to sub-automata, with their results
stored in order to be subsequently reusable. For visualization, the idea is thus
to use PPA mainly in order to project efficiently the languages accepted from
automaton states over the empty set of components. Interestingly, it turns out
that the computation of π{i1,i2}(S), i.e., the projection of the whole reachable set
over the pair of selected components, can also benefit from such a data structure.

Indeed, for a regular language L ⊆ (Σn)∗ and a set of components C ∈
{1, 2, . . . , n}, there are several ways of computing a deterministic automaton
accepting πC(L) from one accepting L. A first technique is to build a non-
deterministic automaton accepting πC(L), and then determinize it at once. An
alternative approach is to extract the components i1, i2, . . . , im that do not be-
long to C, i.e., such that {i1, i2, . . . , im} = {1, 2, . . . , n} \C, and to project them
out one by one, in some given order, determinizing the resulting automaton after
each projection. In the context of symbolic state-space exploration of programs
relying on integer variables, we have observed experimentally that the latter
solution is more efficient in practice (see Section 5).

With this solution, the results of past projection operations can in some situ-
ations be reused in order to speed up new computations. Consider for instance a
5-dimensional domain. Assuming that components are projected out individually
in increasing order, the computations of π{2,3}(L) and π{2,5}(L) will respectively
be decomposed into π{1,2} π{1,2,4} π{2,3,4,5}(L) and π{1,3} π{1,2,4} π{2,3,4,5}(L). In
this case, the intermediate result π{1,2,4} π{2,3,4,5}(L) can be reused across both
computations.

4 Partially Projected Automata

4.1 Definition

A Partially Projected Automaton (PPA) A is a tuple (Q,Σ, δ, δD, dim, q0, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : (Q × Σ) → Q is

Partial Projection of Automata-Represented Sets 9

a (deterministic) transition relation, δD : (Q × 2N) → Q is a decomposition
relation, dim : Q → N is a dimension function, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of accepting states.

In order for a PPA to be well formed, its components have to satisfy some
constraints. The language L(A) accepted by A is defined as being equal to
the language accepted by the finite automaton (Q,Σ, δ, q0, F). This language is
supposed to encode some set of vectors from a n-dimensional domain D. This
implies that all words in L(A) have a length that is an integer multiple of n.
In order to enforce this constraint, the function dim associates each state of A
with a dimension, which intuitively corresponds to the dimension of the vectors
recognized from that state. For all states q visited by the paths of (Q,Σ, δ, q0, F),
one thus has dim(q) = dim(q0) = n.

The purpose of the decomposition relation δD is to provide redundant in-
formation, corresponding to the results of language projection operations that
have previously been carried out from automaton states. For states q, q′ ∈ Q
and a subset of components C ⊆ N such that q′ = δD(q, C), we must have
C ⊂ {1, . . . , dim(q)} and dim(q′) = |C|. The language accepted from the state
q′ is then equal to πC(L(q)), where L(q) denotes the language accepted from
q. The paths of (Q, δ) that can be followed from q′ must thus only visit states
q′′ such that dim(q′′) = dim(q′) = |C|. Each such path σ reads a word w that
belongs to π(C,|w|)(L(q)) iff σ ends in an accepting state.

In summary, a PPA accepting a language encoding a set of n-dimensional
vectors can be seen as n distinct finite-state automata, each of them recognizing
sets with a specific dimension in {1, . . . , n}, linked together by the decomposition
relation. Decompositions can be nested, in the sense that from the destination
of a decomposition transition, one may reach states from which other decompo-
sition transitions are defined. The advantage of PPA is that they provide a way
of storing and reusing the results of previous projection operations carried out
from automaton states. These stored results do not have to be kept indefinitely,
since decomposition transitions can always be removed from a PPA without af-
fecting its accepted language. Procedures for constructing well-formed PPA and
manipulating them are discussed in the next section.

4.2 Algorithms

Let L ⊆ Σ∗ be a regular language encoding the n-dimensional set S ⊆ D.
A well-formed PPA A representing S can simply be constructed by associat-
ing a deterministic finite-state automaton (Q,Σ, δ, q0, F) accepting L with an
empty decomposition relation, i.e., by definingA = (Q,Σ, δ, { }, dim, q0, F), with
dim(q) = n for all q ∈ Q.

After obtaining such a PPA, projecting the language accepted from one of
its states may result in adding decomposition transitions, in order to remember
the result of this operation so as to be able to reuse it later. The size of a
PPA thus grows with projection operations. At any time, one may choose to
curb this growth by removing arbitrary decomposition transitions, as well as
the states and transitions that then become unreachable. Different heuristics

10 B. Boigelot and J.-F. Degbomont

can be used for selecting the decomposition transitions to be removed: bounding
the total memory footprint of the structure, discarding the last recently or the
least frequently followed decomposition transition, . . . In all cases, removing
decomposition transitions has no influence on the language accepted by the
PPA.

We now sketch the algorithm computing the projection πC(L(q)) of the lan-
guage accepted from some state q of a PPA A = (Q,Σ, δ, δD, dim, q0, F), with
respect to a set of components C ⊂ {1, . . . , dim(q)}.

If δD = { }, then the projection is carried out by composing the automa-
ton (Q,Σ, δ, q, F) with a finite-state transducer, constructed with a transition
relation that takes the form of a single cycle of length dim(q). Each transition
in this cycle thus corresponds to one vector component in {1, . . . , dim(q)}. The
transitions corresponding to components in C are designed so as to give out a
copy of their input symbol, the other transitions producing an empty word (or,
in a case of a projection over { }, one occurrence of the distinguished symbol
α). The result takes the form of a non-deterministic automaton A′, that can
be determinized into an automaton A′′ using the classical subset construction.
Finally, a decomposition transition δD(q, C) = q′′ is added to A, where q′′ is
the initial state of A′′. Note that each state q′ of the determinized projected
automaton thus corresponds to a subset Qq′ of states of A.

If, on the other hand, δD 6= { }, the construction is similar but it may then
become possible to reuse the results of earlier projections. This happens when
a state q′ of the projected automaton is such that all the states in Qq′ admit
outgoing decomposition transitions with the same destination q′′ and subset C ′

of components, such that C ⊆ C ′. In this case, the computation of the projection
can be continued by exploring the successors of q′′ instead of those of q.

Finally, the automaton obtained after a projection operation are minimized,
by merging states that are known to accept identical languages. This is done by
partitioning the states of the automaton according to their dimension, and then
applying classical finite-state machine minimization [Hop71] to each part.

5 Experimental Results

The data structure and the algorithms outlined in Section 4 have been im-
plemented in a prototype tool for visualizing NDDs. Our evaluation considers
random NDDs generated by the same method as the one used in [BW02], and
measures the time needed for displaying them in a 512× 512 window, changing
the zoom factor from 1 to 256, and moving the view from (0, 0) to (216+1, 216+1).
The results are given in Figure 1. Those results demonstrate that, although the
inherent cost of projection is not avoided, reusing previous results is useful, es-
pecially for translating efficiently the visualization window.

We also evaluated experimentally the benefits of projecting and determinizing
a NDD incrementally instead of at once, as discussed in Section 3.3. Figure 2
gives the time spent by both methods for projecting the family of sets described
in [Lat05] over two components. The incremental approach clearly stands out.

Partial Projection of Automata-Represented Sets 11

NDD size without PPA with PPA
|Q| tdisp tzoom tmove tdisp tzoom tmove

N1 621 0.01 0.85 2.33 0.01 0.07 0.04
N2 755 0.03 2.56 7.63 0.03 0.12 0.12
N3 1938 0.14 15.98 12.06 0.14 0.64 0.28
N4 13944 0.15 15.26 11.58 0.15 11.44 0.84

Fig. 1. Time cost of visualization operations (in seconds).

n |Q| tat-once tincr n |Q| tat-once tincr
S1 4 434 0.02 0.03 S7 7 50135 240.86 9.30
S2 5 224 0.04 0.01 S8 5 4474 1.70 0.50
S3 4 15272 154.15 0.80 S9 7 99169 176.29 100.07
S4 5 915 0.80 0.06 S10 7 132709 243.52 109.94
S5 4 3446 0.30 0.30 S11 6 63410 71.50 2.90
S6 3 1279 0.08 0.10 S12 6 66330 > 1000 5.50

Fig. 2. At-once vs incremental projection (in seconds).

6 Conclusions

In this paper, we have introduced a simple yet powerful data structure for storing
and reusing the results of partial projections of finite automata, i.e., projection
operations carried out from a given state. We have applied our results to the
problem of visualizing a part of the set of reachable configurations produced by
a state-space exploration tool. In this setting, the advantage of our approach
is not to reduce the inherent cost of projection, but rather to avoid performing
redundant computations. This makes the procedure efficient when only slight
modifications are applied to the value of parameters, such as the zoom factor or
the coordinates of the visualization window. A prototype implementation of the
proposed method has been developed, showing that the approach provides clear
benefits. Although the focus of this paper was on sets on integers represented
by finite-word automata, it is worth mentioning that our technique straightfor-
wardly generalizes to mixed integer and real sets represented by weak infinite-
word automata [BJW05]. Future work will address the problem of making PPA
compatible with efficient representations of automata, such as [Cou04].

7 Acknowledgments

We would like to thank Louis Latour and Laetitia Smisdom for their contribution
to the investigation of the visualization problem.

12 B. Boigelot and J.-F. Degbomont

References

[BG96] B. Boigelot and P. Godefroid. Symbolic verification of communication pro-
tocols with infinite state spaces using QDDs. In Proc. 8th CAV, volume
1102, pages 1–12. Springer, 1996.

[BHMV94] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-
recognizable sets of integers. Bulletin of the Belgian Mathematical Society,
1(2):191–238, March 1994.

[BJNT00] A. Bouajjani, B. Jonsson, M. Nilsson, and Tayssir Touili. Regular model
checking. In Proc. 12th CAV, volume 1855 of Lecture Notes in Computer
Science, pages 403–418. Springer, 2000.

[BJW05] B. Boigelot, S. Jodogne, and P. Wolper. An effective decision procedure for
linear arithmetic over the integers and reals. ACM Trans. Comput. Logic,
6(3):614–633, 2005.

[BL04] B. Boigelot and L. Latour. Counting the solutions of Presburger equations
without enumerating them. Theoretical Computer Science, 313:17–29, 2004.

[Boi98] B. Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD
thesis, University of Liège, Belgium, 1998.

[BW02] B. Boigelot and P. Wolper. Representing arithmetic constraints with finite
automata: An overview. In Proc. 18th ICLP, volume 2401 of Lecture Notes
in Computer Science, pages 1–19. Springer, 2002.

[Büc62] J. R. Büchi. On a decision method in restricted second order arithmetic.
In Proc. International Congress on Logic, Methodoloy and Philosophy of
Science, pages 1–12, Stanford, 1962. Stanford University Press.

[Cou04] J.-M. Couvreur. A BDD-like implementation of an automata package. In
Proc. 9th CIAA, volume 3317 of Lecture Notes in Computer Science, pages
310–311. Springer, 2004.

[Hop71] J. E. Hopcroft. An n log n algorithm for minimizing states in a finite au-
tomaton. Theory of Machines and Computation, pages 189–196, 1971.

[Lat05] L. Latour. Presburger Arithmetic: From Automata to Formulas. PhD thesis,
University of Liège, Belgium, 2005.

[Ler05] J. Leroux. A polynomial time Presburger criterion and synthesis for number
decision diagrams. In Proc. 20th LICS, pages 147–156. IEEE Computer
Society, 2005.

[Opp78] D. C. Oppen. A 222pn

upper bound on the complexity of Presburger arith-
metic. Journal of Computer and System Sciences, 16:323–332, 1978.

[Pre29] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt. In Comptes Rendus du Premier Congrès des Mathématiciens des
Pays Slaves, pages 92–101, Warsaw, 1929.

[SKR98] T. R. Shiple, J. H. Kukula, and R. K. Ranjan. A comparison of presburger
engines for EFSM reachability. In Proceedings of the 10th International
Conference on Computer Aided Verification, volume 1427, pages 280–292.
Springer, 1998.

[WB95] P. Wolper and B. Boigelot. An automata-theoretic approach to Presburger
arithmetic constraints. In Proc. 2nd SAS, volume 983 of Lecture Notes in
Computer Science, pages 21–32. Springer, 1995.

