Skip to main content

Descriptional and Computational Complexity of Finite Automata

  • Conference paper
Language and Automata Theory and Applications (LATA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5457))

Abstract

Over the last half century, a vast literature documenting the importance of deterministic, nondeterministic, and alternating finite automata as an enormously valuable concept has been developed. In the present paper, we tour a fragment of this literature. Mostly, we discuss developments relevant to finite automata related problems like, for example, (i) simulation of and by several types of finite automata, (ii) standard automata problems such as, e.g., fixed and general membership, emptiness, universality, equivalence, and related problems, and (iii) minimization and approximation. We thus come across descriptional and computational complexity issues of finite automata. We do not prove these results but we merely draw attention to the big picture and some of the main ideas involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addision-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Álvarez, C., Jenner, B.: A very hard log-space counting class. Theoret. Comput. Sci. 107, 3–30 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ajtai, M.: \(\Sigma_1^1\) formulae on finite structures. Ann. Pure. Appl. Logic 24, 1–48 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, T., Rampersad, N., Santean, N., Shallit, J., Loftus, J.: Detecting palindroms, patterns and borders in regular languages (2008) arXiv:0711.3183v2 [cs.CC]

    Google Scholar 

  5. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. System Sci. 38, 150–164 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within \(\mbox{NC}^1\). J. Comput. System Sci. 41, 274–306 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrington, D.M., Thérien, D.: Finite monoids and the fine structure of \(\mbox{NC}^1\). J. ACM 35, 941–952 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 27–38. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata, and sequential networks. Theoret. Comput. Sci. 10, 19–35 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 21, 114–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cho, S., Huynh, D.T.: Finite-automaton aperiodicity is PSPACE-complete. Theoret. Comput. Sci. 88, 99–116 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cho, S., Huynh, D.T.: The parallel complexity of finite-state automata problems. Inform. Comput. 97, 1–22 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47, 149–158 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chrobak, M.: Errata to finite automata and unary languages. Theoret. Comput. Sci. 302, 497–498 (2003)

    Article  MathSciNet  Google Scholar 

  15. Cohen, R.S., Brzozowski, J.A.: Dot-depth of star-free events. J. Comput. System Sci. 5, 1–16 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eilenberg, S.: Automata, Languages, and Machines (Volume B), vol. 59-B. Academic Press, London (1976)

    MATH  Google Scholar 

  17. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata. Internat. J. Comput. Math. 35, 117–132 (1990)

    Article  MATH  Google Scholar 

  18. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Systems Theory 17, 13–27 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Galil, Z.: Hierarchies of complete problems. Acta Inform. 6, 77–88 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  21. Gold, E.M.: Complexity of automaton identification from given data. Inform. Control 37, 302–320 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gramlich, G.: Probabilistic and nondeterministic unary automata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 460–469. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Gramlich, G., Schnitger, G.: Minimizing nFA’s and regular expressions. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 399–411. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity is hard. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite and unary languages. In: Language and Automata Theory and Applications (LATA 2007), pp. 261–272. Technical Report 35/07, Universitat Rovira i Virgili, Tarragona (2007)

    Google Scholar 

  26. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition complexity assuming \(\mbox{P}\neq\mbox{NP}\). In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  27. Hartmanis, J., Hunt III, H.B.: The LBA problem and its importance in the theory of computing. In: SIAM AMS. Complexity of Computing, vol. 7, pp. 1–26 (1974)

    Google Scholar 

  28. Holzer, M.: On emptiness and counting for alternating finite automata. In: Developments in Language Theory II; at the Crossroads of Mathematics, Computer Science and Biology, pp. 88–97. World Scientific, Singapore (1996)

    Google Scholar 

  29. Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 148–157. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  30. Holzer, M., Kutrib, M.: Nondeterministic finite automata—recent results on the descriptional and computational complexity. In: Ibarra, O., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 1–16. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic finite automata. J. Autom., Lang. Comb. 6, 453–466 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Hopcroft, J.: An nlogn algorithm for minimizing the state in a finite automaton. In: The Theory of Machines and Computations, pp. 189–196. Academic Press, London (1971)

    Chapter  Google Scholar 

  33. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  34. Hunt III, H.B.: On the time and tape complexity of languages. Ph.D. thesis, Cornell University, Ithaca, New York, USA (1973)

    Google Scholar 

  35. Hunt III, H.B.: On the time and tape complexity of languages I. In: Symposium on Theory of Computing (STOC 1973), pp. 10–19. ACM Press, New York (1973)

    Google Scholar 

  36. Hunt III, H.B.: Observations on the complexity of regular expressions problems. J. Comput. System Sci. 19, 222–236 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hunt III, H.B., Rosenkrantz, D.J.: On equivalence and contaiment problems for formal languages. J. ACM 24, 387–396 (1977)

    Article  MATH  Google Scholar 

  38. Hunt III, H.B., Rosenkrantz, D.J.: Computational parallels between the regular and context-free languages. SIAM J. Comput. 7, 99–114 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hunt III, H.B., Rosenkrantz, D.J., Szymanski, T.G.: On the equivalence, containment, and covering problems for the regular and context-free languages. J. Comput. System Sci. 12, 222–268 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  40. Huynh, D.T.: Complexity of closeness, sparseness and segment equivalence for context-free and regular languages. In: Informatik, Festschrift zum 60, Geburtstag von Günter Hotz, Teubner, pp. 235–251 (1992)

    Google Scholar 

  41. Ibarra, O.H., Ravikumar, B.: On sparseness, ambiguity and other decision problems for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  42. Ilie, L., Yu, S.: Follow automata. Inform. Comput. 186, 140–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J. Comput. 17, 935–938 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal NFAs over a unary alphabet. Internat. J. Found. Comput. Sci. 2, 163–182 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jiang, T., Ravikumar, B.: A note on the space complexity of some decision problems for finite automata. Inform. Process. Lett. 40, 25–31 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22, 1117–1141 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jones, N.: Space-bounded reducibility among combinatorial problems. J. Comput. System Sci. 11, 68–85 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kozen, D.: Lower bounds for natural proof systems. In: Foundations of Computer Science (FOCS 1977), pp. 254–266. IEEE Society Press, Los Alamitos (1977)

    Google Scholar 

  49. Lange, K.J., Rossmanith, P.: The emptiness problem for intersections of regular languages. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 346–354. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  50. Leiss, E.: Succinct representation of regular languages by Boolean automata. Theoret. Comput. Sci. 13, 323–330 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  51. Leiss, E.: Succinct representation of regular languages by Boolean automata. II. Theoret. Comput. Sci. 38, 133–136 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  52. Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Comput. Sci. 327, 375–390 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. McKenzie, P., Péladeau, P., Thérien, D.: \(\mbox{NC}^1\): The automata-theoretical viewpoint. Comput. Compl. 1, 330–359 (1991)

    Article  MATH  Google Scholar 

  54. McNaughton, R., Papert, S.: Counter-free automata. Research monographs, vol. 65. MIT Press, Cambridge (1971)

    MATH  Google Scholar 

  55. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30, 1976–1992 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  56. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: IEEE Symposium on Switching and Automata Theory (SWAT 1971), pp. 188–191. IEEE Society Press, Los Alamitos (1971)

    Chapter  Google Scholar 

  57. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential time. In: Symposium on Switching and Automata Theory (SWAT 1972), pp. 125–129. IEEE Society Press, Los Alamitos (1972)

    Chapter  Google Scholar 

  58. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput. 20, 1211–1214 (1971)

    Article  MATH  Google Scholar 

  59. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3, 114–125 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  60. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inform. Control 8, 190–194 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  61. Sipser, M.: Lower bounds on the size of sweeping automata. J. Comput. System Sci. 21, 195–202 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  62. Stearns, R.E., Hunt, H.B.: On the equivalence and containment problems for unambiguous regular expressions, regular grammars, and finite automata. SIAM J. Comput. 14, 598–611 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  63. Stern, J.: Complexity of some problems from the theory of automata. Inform. Control 66, 163–176 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  64. Stockmeyer, L.J.: The Complexity of Decision Problems in Automata Theory and Logic. Ph.D. thesis, MIT, Cambridge, Massasuchets, USA (1974)

    Google Scholar 

  65. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Symposium on Theory of Computing (STOC 1973), pp. 1–9. ACM Press, New York (1973)

    Google Scholar 

  66. Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Inform. 26, 279–284 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  67. Thérien, D.: Classification of finite monoids: the language approach. Theoret. Comput. Sci. 14, 195–208 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  68. Yu, S.: State complexity of regular languages. J. Autom., Lang. Comb. 6, 221–234 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzer, M., Kutrib, M. (2009). Descriptional and Computational Complexity of Finite Automata. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds) Language and Automata Theory and Applications. LATA 2009. Lecture Notes in Computer Science, vol 5457. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00982-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00982-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00981-5

  • Online ISBN: 978-3-642-00982-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics