
HAL Id: hal-00430482
https://hal.science/hal-00430482

Submitted on 7 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Average Size of Glushkov’s Automata
Cyril Nicaud

To cite this version:
Cyril Nicaud. On the Average Size of Glushkov’s Automata. 3rd International Conference on Language
and Automata Theory and Applications (LATA 2009), Apr 2009, Tarragona, Spain. pp.626-637,
�10.1007/978-3-642-00982-2_53�. �hal-00430482�

https://hal.science/hal-00430482
https://hal.archives-ouvertes.fr

On the Average Size of Glushkov’s Automata

Cyril Nicaud1

LIGM, UMR CNRS 8049, Université Paris Est, 77454 Marne-la-Vallée, France
nicaud@univ-mlv.fr

Abstract. Glushkov’s algorithm builds an ε-free nondeterministic au-
tomaton from a given regular expression. In the worst case, its number
of states is linear and its number of transitions is quadratic in the size
of the expression. We show in this paper that in average, the number of
transitions is linear.

1 Introduction

Kleene’s Theorem states that regular expressions and automata describe the
same objects, regular languages. They both are finite objects which encode infi-
nite sets of words and they play a key role in formal language theory as well as
in its many fields of application.

One can often take advantage of having this two different representations,
the algorithmic problems of transforming one representation into another are
therefore fundamental. They have been widely studied and are still improved
nowadays, as one can see in a recent survey by J. Sakarovitch [1].

In this paper we focus on one particular such transformation, Glushkov’s
algorithm [2], an algorithm that builds an ε-free nondeterministic automaton
from a given regular expression. Starting from a regular expression with n let-
ters, it builds an automaton with n + 1 states and O(n2) transitions. In [3], J.
Hromkovic̃, S. Seibert and T. Wilke proposed a variation on this algorithm where
the produced automaton has O(n log2 n) states. They also proved a lower bound
of Ω(n log n) states for this general problem. Based on this work, C. Hagenah
and A. Muscholl proposed in [4] an algorithm of time complexity O(n log2 n) to
achieve the construction. See also [5, 6] for some efficient related algorithms.

Our contribution is to give an average case analysis of the size of Glushkov’s
automata. Using the framework of analytic combinatorics, we prove that for the
uniform distribution of regular expressions, the average number of transitions is
linear.

The use of generating functions and complex analysis have proved to be
useful in average case analysis of algorithms [7]. The methodology we shall use
here can be summarized as follows:
1. Find an unambiguous specification of the objects, which can be recursive.
2. Transform the specification into a functional equation for the associated

generating function.
3. Analyze the dominant singularities of the generating function to obtain the

needed asymptotics.

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

Author manuscript, published in "3rd International Conference on Language and Automata Theory and Applications (LATA'09),
Spain (2009)"

http://hal-univ-mlv.archives-ouvertes.fr/hal-00620388/fr/
http://hal.archives-ouvertes.fr

2 Cyril Nicaud

The paper is organized as follows. In Section 2, we recall the basic definitions
and present some analytic tools. In Section 3, we study the generating function
associated to regular expressions. Section 4 is devoted to our main result. Finally,
a short discussion about the distribution is presented in Section 5.

Note that due to the lack of space, we can not show all the details of the
computations, but most of them are easily done with the help of a computer-
algebra system.

2 Preliminaries

2.1 Automata and Regular Expressions

An automaton defined on a finite alphabet A is a tuple (A,Q, T, I, F) where Q is
the finite set of states, T ⊂ Q×A×Q is the set of transitions, I ⊂ Q is the set of
initial states and F ⊂ Q is the set of final states. We refer the reader unfamiliar
with basic notions of automata and regular languages to [8] for definitions and
fundamental results.

The set of nonempty regular expressions R on a finite alphabet A is a set of
words on the alphabet {ε, ·, ∗,∪, (,)} ∪A defined inductively by: ε ∈ R, A ⊂ R,
(R)∗ ∈ R for all R ∈ R, (R1 ·R2) and (R1∪R2) for every R1, R2 ∈ R. A language
defined on A is denoted by a regular expression of R when it is exactly the set
of words obtained by interpreting each symbol ∗, · or ∪ as the corresponding
regular operation on sets of words. Let L(R) be the language denoted by R ∈ R.
For convenience, we shall freely remove parenthesis symbols that are not needed
in an element of R. It is also often useful to see regular expressions as trees, with
this equivalent inductive definition:

ε ∈ R
a ∈ R ∀a ∈ A
∗
|
R
∈ R ∀R ∈ R
∪
/\

R1 R2
∈ R ∀R1, R2 ∈ R

•
/\

R1 R2
∈ R ∀R1, R2 ∈ R

(1)

The size of an element of R is the number of nodes in its tree representation:

|ε| = |a| = 1;
∣∣∣∗|
R

∣∣∣ = |R|+ 1;
∣∣∣ ∪/\
R1 R2

∣∣∣ =
∣∣∣ •
/\

R1 R2

∣∣∣ = |R1|+ |R2|+ 1

Note that one usually add to R the symbol ∅ that denotes the empty language.
For technical reasons it is slightly more convenient in this paper to work on
nonempty regular languages.

2.2 Glushkov’s Automaton

Let m be the number of letter symbols in R, for R ∈ R. We consider the
expression R̃ obtained from R by distinguishing the letters with subscripts in

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

On the Average Size of Glushkov’s Automata 3

{1, · · · ,m}, marking them from left to right on its string representation, or
equivalently using depth-first order on its tree representation. For instance R =
b∗ ·(a∪b·b)∗ is changed into R̃ = b∗1 ·(a2∪b3 ·b4)∗. We denote by pos(R) the set of
subscripted letters in R̃: pos(R) = {b1, a2, b3, b4} in the example. We also denote
by ν the function from pos(R) to A that removes the subscripts, ν(a2) = a for
instance.

Let First(R) and Last(R) be the sets defined by

First(R) = {α ∈ pos(R) | ∃u ∈ L(R̃), u starts with the letter α}
Last(R) = {α ∈ pos(R) | ∃u ∈ L(R̃), u ends with the letter α}

And for any letter α in pos(R), the set follow(R,α) is defined by

follow(R,α) = {β ∈ pos(R) | ∃u ∈ L(R̃), αβ is a factor of u}

The Glushkov’s automaton of R, also called the position automaton, is the
automaton AR = (A,Q, T, {i}, F) with Q = pos(R) ∪ {i}, F = Last(R) ∪ {i} if
ε ∈ L(R) and F = Last(R) otherwise, and T = {(i, ν(α), α) | α ∈ First(R)} ∪
{(α, ν(β), β) | β ∈ follow(R,α)}. This classical construction provides an au-
tomaton that recognizes L(R).

Let Edges(R) be the set of pairs (α, β) ∈ pos(R)2 such that β ∈ follow(α).
The number of transitions in AR is thus |First(R)| + |Edges(R)|. The set
Edges(R) can also be defined inductively as follows.

Edges(ε) = 0
Edges(a) = 0

Edges
(∗
|
R

)
= Edges(R) ∪ Last(R)× First(R)

Edges
(∪

/\
R1 R2

)
= Edges(R1) ∪ Edges(R2)

Edges
(•

/\
R1 R2

)
= Edges(R1) ∪ Edges(R2) ∪ Last(R1)× First(R2)

(2)

2.3 Generating Functions

A combinatorial class C is a set of objects with a size function | · | from C to N
such that, for any n ∈ N, the number cn of objects of size n in C is finite. The
generating function C(z) of a combinatorial class C is the formal power series

C(z) =
∑
C∈C

z|C| =
∑
n≥0

cnz
n

We also denote by [zn]C(z) = cn the coefficient of zn in C(z).
Let C be a combinatorial class of generating function C(z) and let f : C → R

be a mapping from this class to R. The cost generating function F (z) of C
associated to f is

F (z) =
∑
C∈C

f(C)z|C| =
∑
n≥0

fnz
n, with fn =

∑
C∈C
|C|=n

f(C)

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

4 Cyril Nicaud

For a given n, the average value of f for the uniform distribution on the elements
of size n of C is therefore

µn(C, f) =
[zn]F (z)
[zn]C(z)

The following lemma, though trivial, will be useful throughout this article.

Lemma 1. Let A and B be two combinatorial classes. Let f : A → R and
g : B → R be two mappings from A and B to R. The following property holds.∑

A∈A

∑
B∈B

(f(A) + g(B))z|A|z|B| = F (z)B(z) +A(z)G(z)

where A(z), B(z), F (z) and G(z) respectively denote the generating functions of
A and B and the cost generating functions associated to f and g.

2.4 Symbolic Methods and Transfer Theorem

The symbolic methods were introduced in [9]. When they can be applied, they
directly and almost automatically build the generating functions associated to
combinatorial classes. The idea is to avoid recurrence formulas on the number
of objects by providing a dictionary that maps combinatorial constructions on
classes into constructions on generating functions. This dictionary covers a lot
of used constructions, and one can easily use it to describe combinatorial classes
such as trees, permutations, set partitions, integer partitions, random mappings,
etc. therefore obtaining directly their generating functions.

In this article we shall only use a small part of this dictionary, the most basic
one. If A = B ∪ C are combinatorial classes such that B and C are disjoint, it
is direct to prove that the associated generating functions A(z), B(z) and C(z)
satisfy A(z) = B(z) + C(z). Moreover if A = B × C, one can see that A(z) =
B(z)C(z). We shall only need this two constructions here, but in this framework,
one can directly derive the generating functions of sequences of elements in
A, sets of elements in A, and so on. We refer the reader to P. Flajolet and
R. Sedgewick’s book for more informations about this topic [7].

Once the generating function is known, either in close or implicit form, sev-
eral theorems exist to compute asymptotic estimations of its coefficients. This
theorems mainly use the theory of complex analysis, seeing generating functions
as analytic functions from C to C. The main idea is that the asymptotics of the
coefficients of a generating function can be obtained by studying it around its
dominant singularities (its singularities of smallest moduli). Informally, given a
generating function A(z) of unique dominant singularity ρ, the transfer theo-
rem states under some analytic conditions that if A(z) ∼ B(z) as z → ρ, then
[zn]A(z) ∼ [zn]B(z), for some useful functions B(z) whose coefficient asymp-
totics are well-known.

We use the notations of [7] to give a formal description of the theorem. Let
R > 1 and 0 < φ < π/2 be two real numbers, the domain ∆(φ,R) is

∆(φ,R) = {z ∈ C | |z| < R, z 6= 1 and |Arg(z − 1)| > φ}

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

On the Average Size of Glushkov’s Automata 5

A domain is a ∆-domain at 1 if it is a ∆(φ,R) for some R and φ. For a given
complex number ζ 6= 0, a ∆-domain at ζ is the image by the mapping z 7→ ζz
of a ∆-domain at 1. A function is ∆-analytic if it is analytic in some ∆-domain.

Theorem 1 (part of Transfer Theorem). Let α and β be real number and
let f(z) be a function that is ∆-analytic that satisfies, on the intersection of a
neighborhood of 1 and its ∆-domain, the condition

f(z) = o

(
(1− z)−α

(
log

1
1− z

)β)
then [zn]f(z) = o(nα−1(log n)β).

Recall that Pringsheim’s Theorem states that if f(z) is representable at the
origin by a series expansion with nonnegative coefficients, one of its dominant
singularities, if any, is on R+. This theorem is useful as generating functions
always have nonnegative coefficients.

2.5 Analytic Tools for This Paper

The generating functions we shall study in this paper always have a unique domi-
nant singularity, which is therefore in R+ by Pringsheim’s theorem. For any fixed
alphabet size k, the dominant singularity of each generating function will always
be the same ρk. Moreover, as they are all made of polynomials, quotients and
square roots, their analysis have a lot of similarities. In particular, all generating
functions satisfy one of the two conditions of the following proposition.

Proposition 1. Let f(z) be a function that is ∆-analytic at ρ ∈ R+.

1. If on the intersection of a neighborhood of ρ and its ∆-domain,

f(z) = a− b
√

1− z/ρ+ o(
√

1− z/ρ), with a, b ∈ R, b 6= 0

then [zn]f(z) ∼ b
2
√
π
ρ−nn−3/2.

2. If on the intersection of a neighborhood of ρ and its ∆-domain,

f(z) =
a√

1− z/ρ
+ o

(
1√

1− z/ρ

)
, with a ∈ R, a 6= 0

then [zn]f(z) ∼ a√
π
ρ−nn−1/2.

This proposition is a direct consequence of Theorem 1, using classical formulas
for the asymptotic of the coefficients of z 7→

√
1− z and z 7→ (1 − z)−1/2.

If f(z) is a function which is ∆-analytic at ρ ∈ R+, we say that f satisfies the
property Π1 or Π2 at ρ if it satisfies the first or second condition of Proposition 1
respectively.

The computations involved here can be technical, but can be done almost
automatically (with the help of computer algebra software for the most complex
ones). It is always straightforward to check that this functions satisfy the analytic
conditions of Proposition 1. The value of a (and b) can also be computed, and
will be some functions of the size of the alphabet. In the rest of the paper, due
to the lack of space, most details of the computations will be omitted.

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

6 Cyril Nicaud

3 Generating Functions for Regular Expressions

In this section we apply the framework of analytic combinatorics to the classes
of regular expressions we are studying. From now on, the alphabet considered is
A = {a1, . . . , ak}, where k ≥ 1 is a positive integer.

3.1 General Regular Expressions

From Equation (1), one can use the symbolic method to obtain the following
specification

R = ε+ a1 + · · ·+ ak +
∗
|
R

+
∪
/\
R R

+
•
/\
R R

And therefore, using the dictionary, one obtain the following equation for R(z),
the generating function associated to R:

R(z) = (k + 1)z + zR(z) + 2zR2(z)

From which one can derive the following expression for R(z), using the fact that
its Taylor coefficients are nonnegative:

R(z) =
1− z −

√
∆k(z)

4z
, with ∆k(z) = 1− 2z − (7 + 8k)z2

The unique dominant singularity of R(z) is ρk = 2
√

2k+2−1
7+8k , and around ρk, one

has the following expansion of R(z)

R(z) =
1− ρk

4ρk
− 1

4ρk

√
∆k(z) + o

((
1− z

ρk

) 1
2
)

R(z) =
√

2k + 2
2

−
√

2(1− ρk)
4ρk

(
1− z

ρk

) 1
2

+ o

((
1− z

ρk

) 1
2
)

therefore, using Proposition 1, one can obtain an asymptotic equivalent to the
number of nonempty regular expressions.

Lemma 2. The number of elements of size n in R is asymptotically equivalent

to Ckρ−nk n−3/2, with Ck =
√

2(1−ρk)

8ρk
√
π

.

Note that if some generating function f(z) has a unique dominant singularity
on ρk where we can apply Proposition 1, and satisfies as z → ρk:

f(z) = a− b

4ρk

√
∆k(z) + o(

√
1− z/ρk)

then [zn]f(z) ∼ b [zn]R(z). Therefore, for our computations, it is often more
convenient to obtain developments in terms of 1

4ρk

√
∆k(z) instead of

√
1− z/ρk.

The techniques are of course the same, since they only differ by a multiplicative
constant as z → ρk.

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

On the Average Size of Glushkov’s Automata 7

3.2 Regular Expressions of Languages Containing ε

Denote by Rε and Rε the regular expressions whose associated languages re-
spectively recognize and do not recognize the empty word. A specification of Rε
is the following:

Rε = ε+
∗
|
R

+
∪
/\
Rε R

+
∪
/\
Rε Rε

+
•
/\
Rε Rε

(3)

From which one can obtain the following expression:

Rε(z) =
z + zR(z)
1− 2zR(z)

The dominant singularity of Rε(z) is also ρk and it satisfies Π1 at ρk:

Rε(z) =
2k +

√
2k + 2

4k + 2
− 1− 2k + 4k

√
2k + 2

(2k + 1)2

√
∆k(z)
4ρk

+ o

((
1− z

ρk

) 1
2
)

Therefore, using Proposition 1 one can obtain an asymptotic equivalent to its
coefficients:

[zn]Rε(z) ∼ Dk[zn]R(z), with Dk =
1− 2k + 4k

√
2k + 2

(2k + 1)2
(4)

Note that, as a consequence, the ratio of regular expressions whose denoted lan-
guage contains the empty word is asymptotically Dk. For a two-letters alphabet,
the value of Dk is approximatively D2 ≈ 0.664.

4 Main Result

This section is devoted to the proof of our main theorem:

Theorem 2. The average number of transitions of the Glushkov’s automaton
associated to a regular expression of size n, for the uniform distribution, is in
Θ(n).

4.1 Lower Bound

First remark that if an expression R ∈ R contains m letters, then its Glushkov’s
automaton has m+ 1 states. Moreover, since it is accessible by construction, it
has at least m transitions. For R ∈ R, let `(R) be the number of letters in R.
Let L(z) be the cost generating function of the number of letters in an element
R of R:

L(z) =
∑
R∈R

`(R)z|R|

From Equation (1) and Lemma 1, we have

L(z) = kz + zL(z) + 2zL(z)R(z) + 2zL(z)R(z)

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

8 Cyril Nicaud

Hence, using the fact that 1− z − 4zR(z) =
√
∆k(z):

L(z) =
kz√
∆k(z)

Therefore, L(z) has a unique dominant singularity at ρk and satisfy Π2 at ρk.
By Proposition 1,

[zn]L(z) ∼ kρk√
2π(1− ρk)

ρ−nk n−1/2

and the average number of letters in an element of size n of R is equivalent to
4kρ2k
1−ρk

n as n → ∞. For k = 2, an approximation of 4kρ2k
1−ρk

is 0.408. We conclude
that in average, the number of transitions in the Glushkov’s automaton of an
element of size n of R is in Ω(n).

4.2 Outline of the Proof of the Upper Bound

In the following subsections we establish some results used to compute an upper
bound for the average number of transitions in a Glushkov’s automaton. As
stated before, the size of the Glushkov’s automaton associated to a nonempty
regular expression R ∈ R is equal to the number of elements in First(R) plus
the number of elements in Edges(R). In the next subsection we prove that in
average, the size of First(R) tends towards a constant. For the remaining part,
we actually compute an upper bound of the size of Edges(R), not its exact
average cardinality. Define the function e : R −→ N by:

e(ε) = 0
e(a) = 0 ∀a ∈ A
e
(∗
|
R

)
= e(R) + |Last(R)| · |First(R)| ∀R ∈ R

e
(∪

/\
R1 R2

)
= e(R1) + e(R2) ∀R1, R2 ∈ R

e
(•

/\
R1 R2

)
= e(R1) + e(R2) + |Last(R1)| · |First(R2)| ∀R1, R2 ∈ R

(5)

Clearly e(R) is an upper bound of |Edges(R)|, since its definition is obtained
from the one of Edges, Equation (2), and the inequality |X ∪ Y | ≤ |X|+ |Y |.

Let E(z) and F (z) be the cost generating functions of e and |First(·)| re-
spectively, and let P (z) be the following generating function

P (z) =
∑
R∈R
|First(R)| · |Last(R)|z|R|

Note that, by symmetry, F (z) is also the cost generating function of last, F (z) =∑
R∈R last(R)z|R|.
Using Equation (5) and Lemma 1, one has

E(z) = zE(z) + zP (z) + 2zR(z)E(z) + 2zR(z)E(z) + zF (z)2

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

On the Average Size of Glushkov’s Automata 9

hence
(1− z − 4zR(z))E(z) = zP (z) + zF (z)2

and as 1− z − 4zR(z) =
√
∆k(z), we finally obtain

E(z) =
zP (z) + zF (z)2√

∆k(z)
(6)

At this point we need more informations about P (z) and F (z) in order to con-
clude that [zn]E(z) = nO([zn]R(z)). They will be obtained in the next subsec-
tions.

4.3 The Cost Generating Function F (z)

For an element R ∈ R, let first(R) and last(R) denote respectively the car-
dinalities of the sets First(R) and Last(R). We analyze the average value of
first(R), for a regular expression R ∈ R of size n. F (z) is the cost generating
function of first, and we also consider its restrictions Fε(z) to Rε and Fε(z)
to Rε:

Fε(z) =
∑
R∈Rε

first(R)z|R|; Fε(z) =
∑
R∈Rε

first(R)z|R|

For a given R ∈ R, the value of first(R) can be computed inductively as

first(ε) = 0;
first(a) = 1 ∀a ∈ A
first

(∗
|
R

)
= first(R) ∀R ∈ R

first
(∪

/\
R1 R2

)
= first(R1) + first(R2) ∀R1, R2 ∈ R

first
(•

/\
R1 R2

)
= first(R1) + first(R2) ∀R1 ∈ Rε, ∀R2 ∈ R

first
(•

/\
R1 R2

)
= first(R1) ∀R1 ∈ Rε, ∀R2 ∈ R

(7)

We consider the following specification of R

R = ε+ a1 + · · ·+ ak +
∗
|
R

+
∪
/\
R R

+
•
/\
Rε R

+
•
/\
Rε R

This specification can be transformed into a functional equation on cost gener-
ating functions using Lemma 1 and Equation (7). For instance, the construction
•
/\
Rε R

produces the term:

z
∑

R1∈Rε

∑
R2∈R

(first(R1) + first(R2))z|R1|z|R2| = zRε(z)F (z) + zFε(z)R(z)

All computations and simplifications done, we obtain:

F (z) =
kz

1− z − 3zR(z)− zRε(z)

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

10 Cyril Nicaud

As R(z) and Rε(z) are known, it is straightforward to obtain the expansion of
F (z) near its dominant singularity ρk and to check that it satisfies Π1 at ρk:

F (z) = Ek − Fk
√
∆k(z)
4ρk

+ o

((
1− z

ρk

) 1
2
)

(8)

with Ek = 1 +
√

2k + 2 and Fk = 12+6k+8
√

2k+2
k . Hence, using Proposition 1,

one can prove the following proposition.

Proposition 2. For any fix integer k ≥ 1, the average size of first tends
toward a constant Fk = 12+6k+8

√
2k+2

k , as n tends toward infinity: [zn]F (z) ∼
Fk [zn]R(z).

For k = 2, an approximation of Fk is F2 ≈ 21.8.

4.4 The Cost Generating Function Fε(z)

Similarly, one can use the specification of Rε of Equation (3) to compute Fε(z).
We obtain

Fε(z) =
zF (z) + 2zRε(z)F (z)

1− 2zR(z)

Once again, Fε(z) satisfies Π1 at ρk with

Fε(z) = Gk −Hk

√
∆k(z)
4ρk

+ o(
√
∆k(z)), with Gk =

4k + 1 +
√

2k + 2
2k + 1

The expression of Hk > 0 in terms of k can also be computed, but is not needed
in the following.

4.5 The Cost Generating Function of the Product first × last

We analyze the average value of the product of first(R) and last(R), for a
regular expression R ∈ R of size n. We consider the cost generating function
P (z) of this product, and its restriction Pε(z) to Rε and Pε(z) = P (z)− Pε(z)
to Rε:

Pε(z) =
∑
R∈Rε

first(R) · last(R)z|R|; Pε(z) =
∑
R∈Rε

first(R) · last(R)z|R|

We use the following specification of R:

R = ε+ a1 + · · ·+ ak +
∗
|
R

+
∪
/\
R R

+
•
/\
Rε Rε

+
•
/\
Rε Rε

+
•
/\
Rε Rε

+
•
/\
Rε Rε

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

On the Average Size of Glushkov’s Automata 11

The cost generating function associated to each term of the specification is com-
puted separately. For instance, one has the following cost function for

•
/\
Rε Rε

:

∑
R1∈Rε

∑
R2∈Rε

first
(•

/\
R1 R2

)
last

(•
/\

R1 R2

)
z1+|R1|+|R2|

= z
∑

R1∈Rε

∑
R2∈Rε

(first(R1) + first(R2)) last(R2)z|R1|z|R2|

= z
∑

R1∈Rε

∑
R2∈Rε

first(R1)last(R2)z|R1|z|R2| + zRε(z)Pε(z)

= zFε(z)Fε(z) + zRε(z)Pε(z)

Using the same techniques for the other parts of the expression, we obtain:

P (z) =
kz + 3zF (z)2 + zFε(z)2

1− z − 2zR(z)− 2zRε(z)

From which, using the previous results, we conclude that P (z) satisfies Π1 at ρk
and that there exists some real numbers Ik and Jk such that, as z → ρk,

P (z) = Ik − Jk
√
∆k(z) + o(

√
∆k(z))

with Ik = 38k2+77k+28+(14k2+45k+20)
√

2k+2
2k(k+1) and Jk > 0.

4.6 Concluding the Proof of Theorem 2

We can now analyze Equation (6). As both F (z) and P (z) satisfy Π1, so does
zP (z) + zF (z)2, since the constant term of its development near ρk is not zero.
Hence E(z) satisfies Π2 at ρk and Proposition 1 can be applied:

[zn]E(z) ∼ ekn [zn]R(z)

The value of ek is not needed to prove the theorem, but is still an indication on
a bound of the average number of transitions in a Glushkov’s automaton:

ek =
32k4 + 204k3 + 406k2 + 306k + 72 + (80k3 + 230k2 + 193k + 52)

√
2k + 2

2k(k + 1)(2k + 1)(8k + 7)

For k = 2, an approximation of ek is e2 ≈ 6.77.
The quantity [zn]E(z)/[zn]R(z) is an upper bound of the average cardinality

of Edges and the average cardinality of First is bounded by Proposition 2,
therefore, by linearity of the average, the average number of transitions in a
Glushkov’s automaton is in O(n). This concludes the proof of Theorem 2.

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

12 Cyril Nicaud

5 Remarks

In this paper we used the specification of regular expressions that directly follows
the inductive definition. One could try to use a more precise specification to
prevent some useless patterns in regular expressions to appear, as was done
for instance in [10] for enumeration purposes. Depending on the chosen such
rules, the analysis we conduct here could still be doable, but probably much
more complicated. Especially if the specification is not context-free (see [11] for
a related analysis). However, we believe that the result would be the same in
much cases. Indeed, the proofs of Theorem 2 and Proposition 2 are based on
the fact that for a non-negligible proportion of regular expressions, the denoted
language does not recognize the empty word, and that the average number of
concatenation operators is non-negligible. This must be true for most natural
specifications.

Also note that we could have used bivariate generating functions instead of
cost generating functions in this paper. The computations would have been the
same here, but this approach should be useful if one want to go one step further,
and try to obtain some informations not only about the average value, but also
about the limit distribution.

The author is supported by the ANR (GAMMA - project BLAN07-2 195422).

References

1. Sakarovitch, J.: The language, the expression, and the (small) automaton. In:
CIAA. Volume 3845 of LNCS. (2005) 15–30

2. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16
(1961) 1–53

3. Hromkovic, J., Seibert, S., Wilke, T.: Translating regular expressions into small
epsilon-free nondeterministic finite automata. In: STACS. Volume 1200 of LNCS.
(1997) 55–66

4. Hagenah, C., Muscholl, A.: Computing epsilon-free NFA from regular expressions
in O(n log2(n)) time. ITA 34(4) (2000) 257–278

5. Ilie, L., Yu, S.: Constructing NFA s by optimal use of positions in regular expres-
sions. In: CPM. Volume 2373 of LNCS. (2002) 279–288

6. Champarnaud, J.M., Nicart, F., Ziadi, D.: Computing the follow automaton of an
expression. In: CIAA. Volume 3317 of LNCS. (2004) 90–101

7. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2008)

8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

9. Flajolet, P., Odlyzko, A.M.: The average height of binary trees and other simple
trees. J. Comput. Syst. Sci. 25(2) (1982) 171–213

10. Lee, J., Shallit, J.: Enumerating regular expressions and their languages. In: CIAA.
Volume 3317 of LNCS. (2004) 2–22

11. Fernández-Camacho, M.I., Steyaert, J.M.: Algebraic simplification in computer
algebra: An analysis of bottom-up algorithms. TCS 74(3) (1990) 273–298

ha
l-0

06
20

38
8,

 v
er

si
on

 1
 -

30
 S

ep
 2

01
1

