
A Language-Based Comparison of Extensions of

Petri Nets with and without Whole-Place

Operations

Parosh Aziz Abdulla1, Giorgio Delzanno2, and Laurent Van Begin3

1 Uppsala University, Sweden, parosh@it.uu.se
2 Università di Genova, Italy, giorgio@disi.unige.it

3 Université Libre de Bruxelles, Belgium, lvbegin@ulb.ac.be

Abstract. We use language theory to study the relative expressiveness
of infinite-state models laying in between finite automata and Turing ma-
chines. We focus here our attention on well structured transition systems
that extend Petri nets. For these models, we study the impact of whole-
place operations like transfers and resets on nets with indistinguishable
tokens and with tokens that carry data over an infinite domain. Our
measure of expressiveness is defined in terms of the class of languages
recognized by a given model using coverability of a configuration as ac-
cepting condition.

1 Introduction

The class of well-structured transition systems (wsts) [1] includes several inter-
esting examples of infinite-state models whose expressiveness lay in between that
of finite automata and that of Turing machines. Some examples of wsts are Petri

nets [1], transfer and reset nets [2], lossy FIFO channel systems (LCS) [3, 4], and
constrained multiset rewriting systems (CMRS) [5]. Petri nets are a widely used
model of concurrent computations. A Petri net is defined by a finite set of places
containing multisets of tokens and by a finite set of transitions that define the
flow of tokens among places. Each transition first consumes and then produces a
fixed number of tokens in each place. Transfer/reset nets extend Petri net with
whole-place operations, i.e., transitions that operate simultaneously on all tokens
in a given set of places. In a lossy FIFO channel system places are viewed instead
as unreliable FIFO channels. Finally, CMRS can be viewed as an extension of
Petri nets in which tokens carry natural numbers and transitions are guarded
by constraints on data attached to tokens. For all the above mentioned models,
the coverability problem is decidable [5, 3, 4, 2]. This decision problem is of great
importance for verification of safety properties like mutual exclusion.

An interesting research question concerns the study of the relative expres-
siveness of well-structured models. For this purpose, it comes natural to use tools
from language theory to compare the languages generated by labelled transition
systems that describe the operational semantics of different models. Unfortu-
nately, a standard notion of acceptance like reachability of a configuration is

2 P.A. Abdulla, G. Delzanno, and L. Van Begin

not adequate to obtain a fine-grained classification of wsts. For instance, with
this notion of acceptance transfer/reset nets are equivalent to Turing machines.
As shown in [6–8], a finer classification of wsts can be obtained by consider-
ing the class of languages recognized with coverability acceptance conditions (c-
languages for short). A classification of wsts based on c-languages is particularly
interesting since it can be used to extend the applicability of a decision proce-
dure for coverability (e.g. the symbolic backward reachability algorithm in [9])
from a particular wsts model to an entire class.

In this paper we use c-languages as a formal tool to study the impact of
whole-place operations on the expressiveness of Petri nets with black indistin-
guishable tokens and with tokens that carry data over an ordered domain. For
this purpose, we compare the expressiveness of Petri nets, LCS, and CMRS with
that of affine well-structured nets (AWNs) [10] and data nets [11]. AWNs are
a generalization of Petri nets and transfer/reset nets in which the firing of a
transition is split into three steps: subtraction, multiplication, and addition of
black tokens. Multiplication is a generalization of transfer and reset arcs. Data
nets can be viewed as a generalization of AWNs in which these steps are defined
on tokens that carry data taken from an infinite, ordered domain. Conditions
on data values can be used here to restrict the type of tokens on which apply
whole-place operations. Although presented in a different style, a data net can
be viewed as a CMRS enriched with whole-place operations.

For the above mentioned models, we prove the following results. We first
show that AWNs are strictly more expressive than Petri nets and strictly less
expressive than lossy FIFO channel systems. The proof of the second result
exploits a non-trivial property of the class of c-languages recognized by AWNs
based on Dickson’s lemma [12]. We then show that, differently from nets with
indistinguishable tokens, whole-place operations do not augment the expressive
power of models in which tokens carry data taken from an ordered domain. The
proof is based on a weak, effectively constructible encoding of data nets into
CMRS that can be used to reduce the coverability problem from one model to
the other. Weakness refers here to the fact that the CMRS encoding simulates a
lossy version of data nets, i.e., data nets in which tokens may get lost. However
this is enough to show that the two models define the same class of c-languages.

Our analysis has several interesting consequences. First, it can be used to
give a strict classification of the expressiveness of a large class of wsts models
taken from the literature. Furthermore, it shows that the symbolic backward
reachability algorithm for solving the CMRS coverability problem given [5] can
also be applied in presence of whole-place operations like transfer and reset of
colored tokens. Finally, as discussed in the conclusions, our weak encoding of
data nets into CMRS can naturally be adapted to extend the decidability of
coverability to a more general definition of data nets transition than the one
given in [11]. Our extensions include, for instance, generation of fresh values, a
feature present in several models of concurrency like CCS and π-calculus.

Related Work In [7, 8] the authors compare the relative expressiveness of Petri
nets with reset, transfer, and non-blocking arcs. A classification of infinite-state

A Language-Based Comparison of Extensions of Petri Nets 3

systems in terms of decidable properties is presented in [13]. The classification is
extended to well-structured systems in [14]. Both classifications do not include
models like CMRS and data nets. A classification of the complexity of the deci-
sion procedures for coverability of different formulations of data nets is studied
in [11]. In [6] we have compared CMRS with lossy FIFO channel systems and
other weaker models like relational automata. However, we have not considered
whole-place operations like those in AWNs and data nets. We believe that a
comparative study of all these sophisticated models can be useful to find new
applications of the theory of well-structured transition systems.

Preliminary Notions In this paper we consider extensions of finite automata
defined by using labelled transition systems. A transition system T = (S,R)
consists of a set S of configurations and of a set R of transitions, where a transi-
tion ρ−→⊆ S × S. A transition system T is said to be well-structured (wsts) with
respect to a quasi ordering � on configurations iff the following conditions hold:
(i) � is a well-quasi ordering, i.e., for any infinite sequence of configurations
γ1γ2 . . . γi . . . there exist indexes i < j such that γi � γj ; (ii) T is monotonic,
i.e., for any ρ−→∈ R, if γ1 � γ2 and γ1

ρ−→ γ3, then there exists γ4 s.t. γ3 � γ4

and γ2
ρ−→ γ4.

Given a wsts T , we label each transition in R either with a symbol � from
an alphabet Σ or with the empty word � (silent transition). If we associate to
a wsts T an initial configuration γ0 and a final configuration γacc , the language
recognized by T with coverability acceptance (c-language for short) is defined as
follows:

Lc(T) = {w ∈ Σ∗ | γ0
w=⇒ γ and γacc � γ}

where γ0
w=⇒ γ denotes a finite sequence of application of transitions such that

the concatenation of their labels produces the word w. We use Lc(M) to denote
the class of c-languages recognized by instances T of a given model M (e.g. Petri
nets, transfer nets, etc.), i.e., Lc(M) = {L | ∃S ∈M, L = Lc(S)}.
Given a wsts T = (S, R,�) with labels in Σ ∪ {�}, a lossy version of T is a wsts
T � = (S, R�,�) for which there exists a bijection h : R �→ R� such that ρ−→∈ R

and
h(ρ)−−−→ have the same label, ρ−→⊆ h(ρ)−−−→ and if γ

h(ρ)−−−→ γ�, then γ
ρ−→ γ�� with

γ� � γ��. In a lossy version of a wsts, the set of reachable configurations contains
configurations that are smaller than those of the original model. The following
lemma then holds.

Lemma 1. For any lossy version T � of a wsts T , we have that Lc(T) = Lc(T �).

2 Whole-place Operations in Nets with Black Tokens

In this section we use c-languages as a formal tool to compare the expressiveness
of Petri nets, affine well-structured nets (AWNs) [10], and lossy FIFO channel
systems (LCS) [3, 4]. AWNs are a generalization of Petri nets in which transitions
admit whole-place operations, i.e., operations that operate simultaneously on the

4 P.A. Abdulla, G. Delzanno, and L. Van Begin

Ft =

�
p q

1 0

�
Gt =




p q

p 1 0
q 0 0



 Ht =

�
p q

0 1

�

Fig. 1. An example of AWN transition.

whole set of tokens in a given place. Examples of whole-place operations are reset
(all tokens in a place are consumed) and transfer arcs (all tokens in a place are
transferred to another place) [2]. Formally, an AWN consists of a finite set P of
places and of a finite set T of transitions. As in Petri nets, AWN-configurations,
called markings, are vectors in NP , i.e., finite multisets with symbols in P . A
marking counts the current number of tokens in a given place in P . In the rest
of the paper we use [a1, . . . , an] to indicate a multiset with elements a1, . . . , an.
Furthermore, for a marking M , we use M(a) to denote the number of tokens in
place a. Finally we use, − and + to denote multiset difference and union.
An AWN-transition t is defined by two vectors Ft and Ht in NP , and by a
NP ×NP -matrix Gt. Intuitively, Ft defines a subtraction step (how many tokens
to remove from each place), Gt defines a multiplication step (whole-place oper-
ations), and Ht defines an addition step (how many tokens are added to each
place). t is enabled at marking M if Ft ≤ M where ≤ denotes marking (multiset)
inclusion, i.e., M ≤ M � iff M(p) ≤ M �(p) for each p ∈ P . The firing of t at a
marking M amounts to the execution of the three steps in sequence. Formally, it
produces a new marking M � = ((M−Ft) ·Gt)+Ht, where · denotes the multipli-
cation of vector (M−Ft) and matrix Gt. As an example, let P = {p, q} and con-
sider the transition t in Fig. 1. This transition removes a token from p and resets
the number of tokens in q to 1. For instance, from the marking M = [p, p, q, q, q],
i.e., the vector (2, 3) ∈ NP , we obtain the new marking M � = [p, q] defined by the
vector ((2, 3)− (1, 0)) ·Gt + (0, 1) = (1 ∗ 1 + 3 ∗ 0, 1 ∗ 0 + 3 ∗ 0) + (0, 1) = (1, 1).

As shown in [10], AWN are well-structured with respect to marking inclusion
≤. Petri nets are the subclass of AWNs in which Gt is the identity matrix, i.e.,
with no whole-place operations. In [7] the authors have shown that there exists a
c-language L ∈ Lc(Transfer nets) such that L �∈ Lc(Petri nets). Since transfer
nets are a special case of AWNs, we obtain the following property.

Proposition 1. Lc(Petri nets) ⊂ Lc(AWN).

To obtain a sort of upper bound on the expressive power of nets with whole-place
operations, we can consider nets in which places maintain some kind of order
between their tokens as in lossy FIFO channel systems (LCS). A LCS is a tuple
(Q,C, N, δ), where Q is a finite set of control states, C is a finite set of channels,
N is a finite set of messages, δ is a finite set of transitions, each of which is of
the form (q1, Op, q2) where q1, q2 ∈ Q, and Op is a mapping from channels to
channel operations. For any c ∈ C and a ∈ N , an operation Op(c) is either a send

operation !a, a receive operation ?a, the empty test �?, or the null operation nop.
A configuration γ is a pair (q, w) where q ∈ Q, and w is a mapping from C to N∗

giving the content of each channel. The initial configuration γinit of F is the pair

A Language-Based Comparison of Extensions of Petri Nets 5

(q0, ε) where q0 ∈ Q, and ε denotes the mapping that assigns the empty sequence
� to each channel. The (strong) transition relation (that defines the semantics of
machines with perfect FIFO channels) is defined as follows: (q1, w1)

σ−→ (q2, w2)
if and only if σ = (q1, Op, q2) ∈ δ such that, for all c ∈ C, if Op(c) =!a, then
w2(c) = w1(c) · a; if Op(c) =?a, then w1(c) = a · w2(c); if Op(c) = �? then
w1(c) = � and w2(c) = �; if Op(c) = nop, then w2(c) = w1(c). Now let �l be the
well-quasi ordering on LCS configurations defined as: (q1, w1) �l (q2, w2) if and
only if q1 = q2 and ∀c ∈ C : w1(c) �w w2(c), where �w indicates the subword
relation. We introduce then the weak transition relation σ=⇒ that defines the
semantics of LCS: we have γ1

σ=⇒ γ2 iff there exists γ�1 and γ�2 s.t. γ�1 �l γ1,
γ�1

σ−→ γ�2, and γ2 �l γ�2. Thus, γ1
σ=⇒ γ2 means that γ2 is reachable from γ1

by first losing messages from the channels and reaching γ�1, then performing a
transition, and, thereafter losing again messages from channels. As shown in [3,
4], LCS are well-structured w.r.t. �l. The following theorem then holds.

Theorem 1. Lc(AWN) ⊂ Lc(LCS).

Proof. (1) We first prove the inclusion Lc(AWN) ⊆ Lc(LCS). Assume an AWN
W = (P, T, F, G,H) with P = {p1, . . . , pn}. We build a LCS F = (Q,C,N, δ)
such that Lc(W) = Lc(F). W.l.o.g. we assume that channels can be non-empty
in the initial configuration of a LCS. The set of channels is defined as C = P ∪P �

where P � (auxiliary channels) contains a primed copy of each element in P . The
set of messages N contains the symbol • (a representation of a black token).
Assume that q0 ∈ Q is the initial state of F . Then, a marking M is encoded as
a LCS configuration enc(M) with state q0 and in which channel pi ∈ P contains
the word •mi containing mi = M(pi) occurrences of symbol • for i ∈ n, and all
channels in P � are empty (we define n as [1, . . . , n]).
For each transition t with label �, we need to simulate the three steps (subtrac-
tion, multiplication, and addition) that correspond to Ft, Gt and Ht. Subtraction
and addition can be simulated in a straightforward way by removing/adding the
necessary number of tokens from/to each channel. The multiplication step is
simulated as follows. For each i ∈ n, we first make a copy of the content of chan-
nel pi in the auxiliary channel p�i. Each copy is defined by repeatedly moving a
symbol from pi to p�i and terminates when pi becomes empty. When the copy
step is terminated, we start the multiplication step. For each i ∈ n, we remove a
message • from p�i and add as many •’s to channel pj as specified by Gt(pi, pj)
for j ∈ n. This step terminates when the channels p�1, . . . , p

�
n are all empty. For

an accepting AWN-marking Mf , the accepting LCS-configuration is enc(Mf).
The following properties then hold: i) We first notice that M ≤ M � iff enc(M) �l

enc(M �); ii) Furthermore, if M0
w=⇒ M1 in W , then enc(M0)

w=⇒ enc(M1) in
F ; iii) Finally, since • symbols may get lost in F , if enc(M0)

w=⇒ enc(M1) then
there exists M2 such that M0

w=⇒ M2 and M1 ≤ M2. Since we consider lan-
guages with coverability acceptance, Lc(W) = Lc(F) immediately follows from
properties (i),(ii), (iii) and Lemma 1.
(2) We prove now that Lc(LCS) �⊆ Lc(AWN). For this purpose, we exhibit a
language in Lc(LCS) and prove that it cannot be recognized by any AWN.

6 P.A. Abdulla, G. Delzanno, and L. Van Begin

Fix a finite alphabet Σ = {a, b, �} and let L = {w�w�| w ∈ {a, b}∗ and w� �w

w}. It is easy to define a LCS that accepts the language L: we first put w in a
lossy channel and then remove one-by-one all of its messages. Thus, we have that
L ∈ Lc(LCS). We now prove that there is no AWN that accepts L. Suppose it
is not the case and there exists a AWN N , with (say) n places, that recognizes
L with initial marking Minit and accepting marking Mf .

For each w ∈ {a, b}∗, there is a marking Mw such that Minit
w�=⇒ Mw

w=⇒ M
and Mf ≤ M (otherwise w�w would not be in Lc(N)). Consider the sequences
w0, w1, w2, . . . and Mw0 , Mw1 ,Mw2 , . . . of words and markings defined as follows:

– w0 := bn;
– If Mwi = (m1, . . . , mn) then wi+1 := am1 b am2 b · · · b amn , for i = 0, 2, . . .

We observe that (a) w0 ��w wi for all i > 0, since w0 contains n occurrences of b,
while wi contains only n−1 occurrences of b; and (b) for any i < j, Mwi ≤ Mwj iff
wi+1 �w wj+1. By Dickson’s lemma [12], there are i < j such that Mwi ≤ Mwj .
Without loss of generality, we can assume that j is the smallest natural number
satisfying this property. Remark that we have that wi ��w wj . Indeed, w0 ��w wj

for any j > 0 by (a), and in the case of i > 0 we have by (b) that wi ��w wj

since Mwi−1 �≤ Mwj−1 . Since Mwi ≤ Mwj , by monotonicity of AWNs, we have
that Mwi

wi=⇒ M with Mf ≤ M implies that Mwj

wi=⇒ M � with Mf ≤ M ≤ M �.

Hence, Minit
wj�wi=⇒ M � and wj�wi ∈ Lc(N) = L, which is a contradiction. ��

By combining Prop. 1 and Theorem 1 we obtain the following strict classification.

Lc(Petri nets) ⊂ Lc(AWN) ⊂ Lc(LCS)

As a corollary, we have that transfer/reset nets are strictly less expressive than
LCSs.

3 Whole-place Operations in Nets with Colored Tokens

In this section we study the impact of whole-place operations on the expres-
siveness of well-structured colored Petri nets like CMRS [5] and data nets [11].
CMRS is an extension of Petri nets in which tokens are labelled with natural
numbers. For a fixed number of places P , we represent a token in place p with
value v as the term p(v). A CMRS configuration is a multiset of ground terms like
[p(1), p(3), q(4)] (we recall that markings are multisets over P , i.e., a special case
of CMRS configurations). We use P -terms to denote terms associated to colored
tokens. CMRS transitions are defined in terms of conditional multiset rewriting
rules of the form L ❀ R : Ψ where L and R are terms with variables that de-
scribe colored tokens and Ψ is a condition over such variables. Conditions are
expressed by a finite conjunction of constraints in the following form: x + d < y,
x ≤ y, x = y, x < d, x > d, x = d where x, y are variables appearing in L and/or
R and d ∈ N is a constant. A rule r is enabled at a configuration c if there exists
a valuation of the variables V al (V al(x) ∈ N) such that V al(Ψ) is satisfied and

A Language-Based Comparison of Extensions of Petri Nets 7

s =




e1 e2 e3 e4

p q p q p q p q

3 2 5 1 2 10 2 2



 s
� =




e1 e2 e3 e4

p q p q p q p q

29 28 5 1 25 1 2 2





Ft =




R0 S1 R1

p q p q p q

0 0 1 0 0 0





Ht =




R0 S1 R1

p q p q p q

0 0 0 1 0 0





Gt =





R0 S1 R1

p q p q p q

R0
p 1 0 3 0 0 0
q 3 1 0 0 0 0

S1
p 0 0 1 0 0 0
q 2 0 0 0 0 0

R1
p 0 0 0 0 1 0
q 0 0 0 0 0 1





Fig. 2. Two data net markings (s and s
�) and a transition t with arity 1.

c ≥ V al(L). Firing r at c leads to a new multi-set c� = c − V al(L) + V al(R),
where V al(L), resp. V al(R), is the multi-set of ground terms obtained from L,
resp. R, by replacing each variable x by V al(x). As an example, consider the
CMRS rule:

ρ = [p(x) , q(y)] ❀ [q(z) , r(x) , r(w)] : {x + 2 < y , x + 4 < z , z < w}

A valuation which satisfies the condition is Val(x) = 1, Val(y) = 4, Val(z) =
8, and Val(w) = 10. Thus, to fire t on c = [p(1), p(3), q(4)] we first remove
p(1) and q(4) and then add the new tokens q(8), r(1), and r(1), producing the
configuration c� = [p(3), q(8), r(1), r(10)].

The coverability problem for CMRS is decidable for an ordering �c that ex-
tends multi-set inclusion by taking into consideration the relative “gaps” among
the values on different tokens [5]. We come back to this point later.

It is important to remark that CMRS rules does not provide whole-place
operations (the semantics is defined using rewriting applied to sub-multisets
of tokens). Despite of it, in [6] we show that colors and gap-order conditions is
enough to obtain a model that is strictly more powerful than LCS. By combining
this property with Theorem 1, we have that

Lc(Petri nets) ⊂ Lc(AWN) ⊂ Lc(LCS) ⊂ Lc(CMRS)

A natural research question now is whether whole-place operations add power
to models like CMRS or not. To answer this question, instead of defining a new
version of CMRS, we compare its expressiveness with that of data nets [11]. Data

nets are an extension of AWNs in which tokens are colored with data taken from
a generic infinite domain D equipped with a linear ordering ≺. As discussed in
[11], for coverability we can equivalently consider dense or discrete orderings. A
data net has a finite sets of places P and transitions T . A data net marking s
is a multiset of tokens that carry (linearly ordered) data in D, i.e., s is a finite
sequence of vectors in NP \{0}, where 0 is the vector that contains only 0’s. Each

8 P.A. Abdulla, G. Delzanno, and L. Van Begin

index i in the sequence s corresponds to some di ∈ D (data values that occur
in some token) such that i ≤ j if and only if di ≺ dj ; s(i)(p) is the number of
tokens with data di in place p. In Fig. 2 we show two examples of configurations,
namely, s and s�, for a data net with places P = {p, q}. The data in D that
occur in tokens in s and s� are e1 ≺ e2 ≺ e3 ≺ e4.

Transitions like that in Fig. 2 are defined by vectors (of vectors) Ft and Ht

and by a matrix Gt that define resp. subtraction, addition, and multiplication
of colored tokens. Vectors and matrices are indexed by regions defined by the
partitioning of the set of tokens R(αt) = (R0, S1, R1, . . . , Sk, Rk) associated to
the arity αt = k of the rule. The arity is used to select k data values d1, . . . , dk

either fresh or occurring in the current configuration. Region Si is defined as
{di}. Regions Ri’s are used to define whole-place operations (e.g. transfers) for
tokens whose data are not in {d1, . . . , dk}. R0 contains all data d : d ≺ d1 in s,
Ri contains all d : di ≺ d ≺ di+1 in s for i : 1, . . . , k − 1, and Rk contains all
d : dk ≺ d in s. To illustrate, consider the marking s and the rule t with has arity
1 both defined in Fig. 2. The partitioning is defined here as R(αt) = {R0, S1, R1}.
Let us assume that t (non-deterministically) partitions the data in s as follows
R0 = {e1, e2}, S1 = {e3}, and R1 = {e4}, its firing is defined as follows.

Subtraction Ft specifies the number of tokens with data d1, . . . , dk that have to
be removed, for each place in P , from the current configuration s. t is enabled if
places have enough tokens to remove. In our example p contains two tokens with
value e3, and Ft specifies that one token with value e3 must be removed. Thus,
t is enabled in s. The subtraction step produces an intermediate configurations
s1 obtained from s by removing one token with data e3 from place p.

Multiplication Gt specifies whole-place operations on the regions in R(αt). In
our example the third column of Gt defines the effect of multiplication on the
number of tokens with data e3 in place p in s1. Specifically, we add to the tokens
in place p with value e3 (1 in position S1, p, S1, p in Gt), three new tokens with
value e3 for each token with value in R0 that lay into place p in s1 (3 in position
R0, p, S1, p in Gt). Thus, the total number of tokens with value e3 in p becomes
(3 + 5) ∗ 3 + 1 = 25. Furthermore, since the fourth column has only zeroes, all
tokens with data e3 are removed from place q (a reset restricted to all tokens
with value e3 in q). The first column of Gt defines the effect on the tokens with
values in R0 in place p. Specifically, for each d ∈ R0, we add to place p three
tokens with value d for each token with the same value laying into q in s1 (3
in position R0, q, R0, p in Gt); two tokens with data d for each token with data
e3 in q (2 in position S1, q, R0, p in Gt). Thus, the total number of tokens with
value e1 in p is now 3 + 3 ∗ 2 + 2 ∗ 10 = 29 and that for value e2 in p is now
5 + 3 ∗ 1 + 2 ∗ 10 = 28. The other columns of Gt leave the same tokens as those
in the corresponding regions and places in s1. We use s2 to refer to the resulting
intermediate configuration.

Addition Ht specifies the number of tokens that are added, for each place, region,
and data to the configuration s2 to obtain the successor configuration s�. In our

A Language-Based Comparison of Extensions of Petri Nets 9

example, we simply add one token with data e3 to place q. Finally, the new
configuration s� is given in Fig. 2.

It is important to remark that whole-place operations are uniformly applied
to each data value in a region. Whole-place operations between region Ri and
Rj as well as subtractions from a region Ri are forbidden. Furthermore, in case
of whole-place operations from Ri to Sj (or vice versa) tokens may change data
value (e.g. all tokens with data d ∈ Ri in p are moved to place q with value dj),
whereas in operations within a single region Ri tokens do not change data value.

As proved in [11], data nets are well-structured with respect to the well-quasi
ordering �d defined on markings as follows. Let Data(s) be the set of data values
that occur in a marking s. Then, s1 �d s2 iff there exists an injective function
h : Data(s1) �→ Data(s2) such that (i) h is monotonic and (ii) s1(d)(p) ≤
s2(h(d))(p) for each d ∈ Data(s1) and p ∈ P . In other words we compose
subword ordering (condition (i)) with multiset inclusion (condition (ii)).

3.1 CMRS, Petri Data Nets, and Data Nets

Data nets without whole place operations (i.e. in which Gt is the identity matrix)
are called Petri data nets. Petri data nets defined on a domain with a single
data value d are equivalent to Petri nets. Furthermore, as discussed in [11], it is
possible to effectively build an encoding of CMRS into Petri data nets such that
coverability in CMRS can be reduced to coverability into Petri data nets. Indeed,
the well-quasi ordering �c used in CMRS is basically the same as that used in
Data nets (the only technical difference is due to the presence of constants in
conditions of CMRS rules). Thus, we have that

Lc(CMRS) = Lc(Petri data nets) ⊆ Lc(Data nets)

We show next that the inclusion is not strict, and that Petri data nets, CMRS,
and data nets have all the same expressive power. To prove this result, we have
to show that for each Data nets D we can effectively build a Petri data net or a
CMRS S such that Lc(S) = Lc(D). Since CMRS rules have a format similar to a
(logic) programming language, we find more convenient to describe the encoding
in CMRS.

Configurations Given a multi-set M with symbols in P and a value or variable
x, we use Mx to denote the multi set of P -terms such that Mx(p(x)) = M(p)
(=number of occurrences of p in M) for each p ∈ P , and Mx(p(y)) = 0 for any
y �= x and p ∈ P .
Now assume an initial data net marking s0 with data d1 ≺ . . . ≺ dn. We build a
CMRS representation of s0 by non-deterministically selecting n natural numbers
v1 < . . . < vn strictly included in some interval [f, l]. P -terms with parameter vi

represent tokens with data di in place p. Formally, we generate the representation
of s0 by adding to S a rule that rewrites an initial zero-ary term init as follows

[init] ❀ [first(f), last(l)] +
�

i:1,...,n Mxi
i : f < x1 < . . . < xn < l (init)

10 P.A. Abdulla, G. Delzanno, and L. Van Begin

Here Mi is the multiset s0(di) for each i ∈ n. The non-determinism in the choice
of f, l, x1, . . . , xn makes the CMRS representation of s0 independent from specific
parameters assumed by terms.

Transitions are encoded by CMRS rules that operate on the values in [f, l]
used in the representation of a marking. Most of the CMRS rule are based on
left-to-right traversals of P -terms with parameters in [f, l].

Consider a transition t with αt = k. We first define a (silent) CMRS-rule
that implements the subtraction step of t:

[first(f), last(l)] + Ft(S1)x1 + . . . + Ft(Sk)xk ❀ (subtract)
[ı0(f), ı1(x1),, ık(xk), ık+1(l), newt] : f < x1 < ... < xk < l

Here newt is a nullary predicate (with no data) that indicates the action to be
performed next. In the subtract rule we non-deterministically associate a value,
represented by variable xi in the above defined rule, to region Si. The selection
is performed by removing (from the current configuration) the multiset Ft(Si)xi

that contains Ft(Si, p) occurrences of p(xi) for each p ∈ P . The association be-
tween value xi and region Si is maintained by storing xi in a ıi-term (introduced
in the right-hand side of the rule). If Ft(Si, p) = 0 for any p ∈ P , then a value
xi may be associated to a data di not occurring in the current marking (i.e.
selection of fresh data is a special case). Furthermore, by removing both the
first- and the last-term, we disable the firing of rules that encode other data
net transitions. The values x1, . . . , xk stored in ı1-,. . . ,ık-terms play the role of
pointers to the regions S1, . . . , Sk. We refer to them as to the set of αt-indexes.
The parameters of terms in [f, l] associated to the other regions R0, . . . , Rk are
called region-indexes.

To simulate the multiplication step we proceed as follows. We first make a
copy of the multiset of P -terms with parameters v1, . . . , vn in [f, l] by copying
each p-term with parameter vi in a p-term with parameter wi such that f � <
w1 < . . . < wn < l� and [f �, l�] is an interval to the right of [f, l], i.e., l < f �. The
newt-term in the subtract rule is used to enable a set of (silent) CMRS rules
(omitted for brevity) that create the copy-configuration. During the copy we add
a �-term for any visited region index. These terms are used to remember region
indexes whose corresponding P -terms are all removed in the multiplication step
(e.g. when all tokens with data d ∈ Ri are removed).

For instance, [p(v1), p(v2), p(v2), q(v3)] with f < v1 < v2 < v3 < l is copied
as [p(w1),�(w1), p(w2), p(w2), �(w2), q(w3)�(w3)] for some w1, w2, w3 such that
f < l < f � < w1 < w2 < w3 < l�. The copy process is implemented by a left-
to-right scan of the values that represent data. The scan uses a predicate as a
pointer to the current value to consider. The pointer is moved to the right by
non-deterministically jumping to a larger value (CMRS conditions cannot specify
the “next” value). Thus, during the traversal we may forget to copy some token.
This is the first type of loss we find in our encoding. Notice that lost tokens have
parameters strictly smaller that f �.

The simulation of the multiplication step operates on the copy-configuration
only (with P -terms only). The intuition behind its definition is as follows. We

A Language-Based Comparison of Extensions of Petri Nets 11

first consider all αt-indexes of P -terms from left to right. For each αt-index vi,
we proceed as follows. We first select and remove a term p(vi) (encoding a given
token). We compute then the effect of the whole-place operation on the entire set
of αt-indexes (including vi itself). More specifically, for an αt-index vj we add
Gt(Si, p, Sj , q) occurrences of the term q(vj) to the current CMRS configuration.
The use of P - and P -terms with parameters in the same interval allows us to
keep track of tokens still to transfer (P -terms) and tokens already transferred
(P -terms). We then consider all remaining indexes by means of a left-to-right
traversal of region-indexes in the current configuration. During the traversal, we
add new P -terms with region-indexes as parameters as specified by Gt. During
this step, we may forget to transfer some P -term. This is the second type of loss
we find in the encoding. After this step we either consider the next token with
αt-index vi or we move to the next αt-index.

After the termination of the whole-place operations for terms with αt-indexes,
we have to simulate the transfer of P -terms with region-indexes. For each such
an index, we transfer tokens within the same region-index or to an αt-index.
To simulate these operations we scan region-indexes from left-to-right to apply
the matrix Gt. Furthermore, we mark visited region-indexes using �-terms. The
�-terms are used in the simulation of the addition step.

As a last step we add tokens to αt-indexes and visited region-indexes as
specified by Ht. For αt-indexes, we need a single rule that applies the matrix
Ht. For region-indexes, we traverse from left-to-right the current configuration
and apply Ht to each marked (with a �-term) region-index w. As mentioned
before, the �-term allows us to apply Ht to regions emptied by the multiplication
step. All the rules are silent except the last rule used to encode addition whose
label is the same as that of t.

During the traversal, we may ignore some (marked) region-index. This is the
last type of loss in our encoding. The new configuration is the final result of the
simulation of the transition. Due to the possible losses in the different simulation
steps, we may get a representation of a data net configuration smaller than the
real successor configuration.

To formalize the relation between a data net D and its CMRS encoding
E(D), for a configuration s with data d1 ≺ . . . ≺ dk we use sv to denote the
CMRS representation with indexes v = (v1, . . . , vk). For configurations s0, s1, s,
we have that (i) if s0

w=⇒ s1 in D, then there exists v such that [init] w=⇒ s1
v

in E(D). Furthermore, (ii) if [init] w=⇒ c in E(D) and sv �c c for some v, then
there exists s1 such that s0

w=⇒ s1 in D with s �d s1. Finally, suppose that
the accepting data net marking is a sequence M1 . . . Mk of k vectors (multi-sets)
over NP . Then, we add a silent CMRS rule

[first(f), last(l)] +
�

i∈{1,...,k}

Mxi
i ❀ [acc] : f < x1 < x2 < . . . < xk < l, x = 0

where acc is a fresh (with arity zero) predicate. By adding this rule, the accept-
ing CMRS configuration can be defined as the singleton [acc]. From properties
(i), (ii) and Lemma 1, we have the following result.

12 P.A. Abdulla, G. Delzanno, and L. Van Begin

Theorem 2. Lc(Data nets) = Lc(CMRS)

4 Conclusions

By combining the results in the present paper with the relation between LCS and
CMRS describe in [6], we obtain the following classification of well-structured
extensions of Petri nets

Lc(Petri nets) ⊂ Lc(AWN) ⊂ Lc(LCS) ⊂ Lc(CMRS) = Lc(Data nets)

This classification reveals a different impact of whole-place operations on nets
with black and colored tokens: they augment the expressive power of basic models
like Petri nets, but they can be simulated in extended models in which tokens
carry ordered data.

We believe that our analysis can also be applied to extend the scope of the
decidability results given in [11] to more general well-structured systems obtained
by relaxing some of the constraints in the definition of data nets transitions. We
plan to explore this research direction in future work.

References

1. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! TCS
256(1-2) (2001) 63–92

2. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and
undecidability. In: Proc. ICALP’98. (1998) 103–115

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2) (1996) 91–101

4. Cécé, G., Finkel, A., Iyer, S.P.: Unreliable channels are easier to verify than perfect
channels. Information and Computation 124(1) (1996) 20–31

5. Abdulla, P.A., Delzanno, G.: On the coverability problem for constrained multiset
rewriting. In: Proc. AVIS’06, an ETAPS 2006 workshop. (2006)

6. Abdulla, P.A., Delzanno, G., Van Begin, L.: Comparing the expressive power of
well-structured transition systems. In: Proc. CSL ’07. (2007) 99–114

7. Finkel, A., Geeraerts, G., Raskin, J.F., Van Begin, L.: On the ω-language expressive
power of extended petri nets. TCS 356 (2006) 374–386

8. Geeraerts, G., Raskin, J.F., Van Begin, L.: Well-structured languages. Acta Infor-
matica 44(3-4) (2007) 249–288

9. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: Proc. LICS’96. (1996) 313–321

10. Finkel, A., McKenzie, P., Picaronny, C.: A well-structured framework for analysing
petri net extensions. Information and Computation 195(1-2) (2004) 1–29

11. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with
tokens which carry data. In: Proc. ICATPN’07. (2007) 301–320

12. Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Amer. J. Math. 35 (1913) 413–422

13. Henzinger, T.A., Majumdar, R., Raskin, J.F.: A classification of symbolic transi-
tion systems. ACM Trans. Comput. Log. 44(1) (2005) 1–32

14. Bertrand, N., Schnoebelen, P.: A short visit to the sts hierarchy. ENTCS 154(3)
(2006) 59–69

