Skip to main content

Multiobjective Decomposition of Positive Integer Matrix: Application to Radiotherapy

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5467))

Included in the following conference series:

Abstract

We consider the following problem: to decompose a positive integer matrix into a linear combination of binary matrices that respect the consecutive ones property. The positive integer matrix corresponds to fields giving the different radiation beams that a linear accelerator has to send throughout the body of a patient. Due to the inhomogeneous dose levels, leaves from a multi-leaf collimator are used between the accelerator and the body of the patient to block the radiations. The leaves positions can be represented by segments, that are binary matrices with the consecutive ones property. The aim is to find a decomposition that minimizes the irradiation time, and the setup-time to configure the multi-leaf collimator at each step of the decomposition. We propose for this NP-hard multiobjective problem a heuristic method, based on the Pareto local search method. Experimentations are carried out on different size instances and the results are reported. These first results are encouraging and are a good basis for the design of more elaborated methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angel, E., Bampis, E., Gourvès, L.: A dynasearch neighborhood for the bicriteria traveling salesman problem. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 153–176. Springer, Berlin (2004)

    Chapter  Google Scholar 

  2. Baatar, D., Hamacher, H., Ehrgott, M., Woeginger, G.: Decomposition of integer matrices and multileaf collimator sequencing. Discr. Appl. Math. 152, 6–34 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bortfeld, T., Boyer, A., Kahler, D., Waldron, T.: X-ray filed compensation with multileaf collimators. Int. J. Radiat. Oncol. Biol. Phys. 28(3), 723–730 (1994)

    Article  Google Scholar 

  4. Burkard, R.: Open problem session. In: Conference on Combinatorial Optimization, Oberwolfach, pp. 24–29 (November 2002)

    Google Scholar 

  5. Ehrgott, M., Güler, Ç., Hamacher, H.W., Shao, L.: Mathematical optimization in intensity modulated radiation therapy. 4OR: a Quarterly Journal of Operations Research 6(3), 162–199 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ehrgott, M., Hamacher, H., Nußbaum, M.: Decomposition of matrices and static multileaf collimators: a survey. In: Alves, C., Pardalos, P., Vincente, L. (eds.) Optimization in medicine, pp. 27–48. Springer, Berlin (2007)

    Google Scholar 

  7. Engel, K.: A new algorithm for optimal multileaf collimator field segmentation. Discrete Appl. Math. 152(1-3), 35–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hansen, P.: Bicriterion path problems. Lecture Notes in Economics and Mathematical Systems 177, 109–127 (1979)

    Article  MathSciNet  Google Scholar 

  9. Hansen, P., Mladenovic, N.: First vs. best improvement: An empirical study. Discrete Appl. Math. 154, 802–817 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Helsgaun, K.: An effective implementation of the lin-kernighan traveling salesman heuristic. European Journal of Operational Research 126, 106–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kalinowski, T.: Realization of intensity modulated radiation fields using multileaf collimators. In: General Theory of Information Transfer and Combinatorics, pp. 1010–1055. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Paquete, L., Chiarandini, M., Stützle, T.: Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–199. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Siochi, R.A.C.: Minimizing static intensity modulation delivery time using an intensity solid paradigm. Int. J. Radiat. Oncol. Biol. Phys. 43, 671–680 (1999)

    Article  Google Scholar 

  14. Taşkin, Z., Smith, J., Romeijn, H., Dempsey, J.: Optimal multileaf collimator leaf sequencing in IMRT treatment planning. Technical report, Department of Industrial and Systems Engineering, University of Florida (2007)

    Google Scholar 

  15. Wake, G.M.G.H., Boland, N., Jennings, L.S.: Mixed integer programming approaches to exact minimization of total treatment time in cancer radiotherapy using multileaf collimators. Computers and Operations Research 36(3), 795–810 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lust, T., Teghem, J. (2009). Multiobjective Decomposition of Positive Integer Matrix: Application to Radiotherapy. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, JK., Sevaux, M. (eds) Evolutionary Multi-Criterion Optimization. EMO 2009. Lecture Notes in Computer Science, vol 5467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01020-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01020-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01019-4

  • Online ISBN: 978-3-642-01020-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics