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Bayesian Methods for Graph Clustering

Pierre Latouche pierre.latouche@genopole.cnrs.fr

Laboratoire Statistique et Genome
UMR CNRS 8071-INRA 1152-UEVE F-91000
Evry
France
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Abstract

Networks are used in many scientific fields such as biology, social science, and informa-
tion technology. They aim at modelling, with edges, the way objects of interest, represented
by vertices, are related to each other. Looking for clusters of vertices, also called commu-
nities or modules, has appeared to be a powerful approach for capturing the underlying
structure of a network. In this context, the Block-Clustering model has been applied on
random graphs. The principle of this method is to assume that given the latent structure
of a graph, the edges are independent and generated from a parametric distribution. Many
EM-like strategies have been proposed, in a frequentist setting, to optimize the parameters
of the model. Moreover, a criterion, based on an asymptotic approximation of the Inte-
grated Classification Likelihood (ICL), has recently been derived to estimate the number
of classes in the latent structure. In this paper, we show how the Block-Clustering model
can be described in a full Bayesian framework and how the posterior distribution, of all
the parameters and latent variables, can be approximated efficiently applying Variational
Bayes (VB). We also propose a new non-asymptotic Bayesian model selection criterion.
Using simulated and real data sets, we compare our approach to other strategies. We show
that our Bayesian method is able to handle large networks and that our criterion is more
robust than ICL.

1. Introduction

For the last few years, networks have been increasingly studied. Indeed, many scientific fields
such as biology (Albert and Barabási (2002)), social science, and information technology, see
those mathematical strutures as powerful tools to model the interactions between objects of
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interest. Examples of data sets having such structures are friendship (Palla et al (2007)) and
protein-protein interaction networks (Barabási and Oltvai (2004)), powergrids (Watts and
Strogatz (1998)), and the Internet (Zanghi et al (2007)). In this context, a lot of attention
has been paid on developing models to learn knowledge from the network topology. Many
methods have been proposed, and in this work, we focus on statistical models that describe
the way edges connect vertices.

A well known strategy consists in seeing a given network as a realization of a random
graph model based on a mixture distribution (Frank and Harary (1982), Snijders and Now-
icki (1997), Newman and Leicht (2007), Daudin et al (2008)). The method assumes that,
according to its connection profile, each vertex belongs to a hidden class of a latent struc-
ture and that, given this latent structure, all the observed edges are independent and binary
distributed. Many names have been proposed for this model, and in the following, it will be
denoted MixNet, which is equivalent to the Block-Clustering model of Snijders and Nowicki
(1997).

A key question is the estimation of the MixNet parameters. So far, the optimization
procedures that have been proposed are based on heuristics (Newman and Leicht (2007))
or have been described in a frequentist setting (Daudin et al (2008)). Bayesian strategies
have also been developed but are limited in a sense that they can not handle large networks.
All those methods face the same difficulty. Indeed, the posterior distribution p(Z|X,α,π),
of all the latent variables Z given the observed edges X, can not be factorized. To tackle
such problem, Daudin et al (2008) proposed a variational approximation of the posterior,
which corresponds to a mean-field approximation. Online strategies have also been devel-
oped (Zanghi et al (2007)). They give biased estimates but are very efficient in terms of
computational cost.

Another difficulty is the estimation of the number of classes in the mixture. Indeed,
many criteria, such as the Bayesian Information Criterion (BIC) or the Akaike Information
Criterion (AIC) (Burnham and Anderson (2004)) are based on the likelihood p(X|α,π) of
the incomplete data set X, which is intractable here. Therefore, Mariadassou and Robin
(2007) derived a criterion based on an asymtotic approximation of the Integrated Classifi-
cation Likelihood (also called Integrated Complete-data Likelihood). More details can be
found in Biernacki et al (2000). They found that this criterion, that we will denote ICL for
simplicity, was very accurate in most situations but tended to underestimate the number
of classes when dealing with small graphs. We emphasize that ICL is currently the only
model based criterion developed for MixNet.

In this paper, extending the work of Hofman and Wiggins (2008) who considered affil-
iation models, where only two types of edges exist (edges between nodes of the same class
and edges between nodes of different classes), we propose a full Bayesian version of MixNet.
Thus, after having presented MixNet and the frequentist approach of maximum likelihood
estimation in Section 2, we introduce some prior distributions and describe the MixNet
Bayesian probabilistic model in Section 3. We derive the model optimization equations
using Variational Bayes and we propose a new criterion to estimate the number of classes.
Finally, in Section 5, we carry out some experiments using simulated data sets and the
metabolic network of Escherichia coli to compare both the number and the quality of the
estimated clusters obtained with the ICL criterion and the variational frequentist strategy
and our approach.
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2. A Mixture Model for Networks

2.1 Model and Notations

We consider a binary random graph G, where V denotes a set of N fixed vertices and
X = {Xij , (i, j) ∈ V

2} is the set of all the random edges.
MixNet assumes that each vertex i belongs to an unknown class q among Q classes and

the latent variable Zi reflects our uncertainty as to which one that is:

Zi ∼M
(

1, α = {α1, α2, . . . , αQ}
)

,

where we denote α, the vector of class proportions. The edge probabilities are then given
by:

Xij |{ZiqZjl = 1} ∼ B(Xij |πql).

According to MixNet probabilistic model (Fig. 1), the latent variables in the set Z =
(Z1, . . . ,ZN) are iid and given this latent structure, all the edges are supposed to be inde-
pendent. Thus, when considering an undirected graph without self loops, we obtain:

p(Z|α) =

N
∏

i=1

M(Zi; 1,α) =

N
∏

i=1

Q
∏

q=1

α
Ziq
q ,

and

p(X|Z,π) =
∏

i<j

p(Xij |Zi,Zj,π) =
N
∏

i<j

Q
∏

q,l

B(Xij |πql)
ZiqZjl .

In the case of a directed graph, the products over i < j must be replaced by products over
i 6= j. The edges Xii must also be taken into account if the graph contains self-loops.

2.2 Maximum likelihood estimation

The likelihood p(X|α,π) of the incomplete data set X can be obtained through the marginal-
ization p(X|α,π) =

∑

Z p(X,Z|α,π). This summation involves QN terms and quickly
becomes intractable. To tackle such problem, the well known Expectation-Maximization
(EM) algorithm (Dempster et al (1977)) has been applied with success on a large variety
of mixture models. Unfortunately, the E-step requires the calculation of the posterior dis-
tribution p(Z|X,α,π) which can not be factorized in the case of networks and need to be
approximated (Daudin et al (2008)).

A first strategy consists in considering directly the predictions of Z rather than the
full distribution p(Z|X,α,π). This Classification EM (CEM) approach has been subject to
previous work (Zanghi et al (2007)). It gives biased estimates but is very efficient in terms of
computational cost. Variational techniques have also been used to approximate the posterior
with another distribution q(Z). Thus, when using the Kullback-Leibler divergence KL(. || .),
the log-likelihood of the incomplete data set is decomposed into two terms:

ln p(X|α,π) = L
(

q(.); α,π
)

+ KL
(

q(.) || p(.|X,α,π)
)

, (1)
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α

Zi Zj

π

Xij

∀(i, j) ∈ V

Figure 1 Graphical representation of the MixNet probabilistic model

where

L
(

q(.); α,π
)

=
∑

Z

q(Z) ln{
p(X,Z|α,π)

q(Z)
}, (2)

and

KL
(

q(.) || p(.|X,α,π)
)

= −
∑

Z

q(Z) ln{
p(Z|X,α,π)

q(Z)
}. (3)

It can be easily verified that minimizing (3) is equivalent to maximizing the lower bound (2)
of (1). To obtain a tractable algorithm, the variational methods assume that the distribution
q(Z) can be factorized such that:

q(Z) =
N
∏

i=1

q(Zi) =
N
∏

i=1

M(Zi; 1, τi).

This gives rise to a Variational EM procedure. Indeed, during the variational E-step, the
model parameters α and π are fixed and by optimizing (2), with respect to the distribu-
tion q(Z), the algorithm looks for the optimal approximation of the posterior distribution.
Conversely, during the Variational M-step, q(Z) is fixed and the log-likelihood of the in-
complete data set is optimized with respect to α and π. This procedure is repeated until
convergence.
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3. Bayesian view of MixNet

3.1 Bayesian probabilistic model

We now show how MixNet can be described in a full Bayesian framework. To transform
the MixNet frequentist probabilistic model, we first specify some prior distributions for
the model parameters. To simplify the calculations, we use conjugate priors. Thus, since
p(Zi|α) is a multinomial distribution, we choose a Dirichlet distribution for the mixing
coefficients:

p
(

α|n0 = {n0
1, . . . , n

0
Q}
)

= Dir(α; n0) =
Γ(
∑Q

q=1 n
0
q)

Γ(n0
1) . . .Γ(n0

Q)

Q
∏

q=1

α
n0

q−1
q ,

where we denote n0
q , the prior number of vertices in the q-th component of the mixture.

In order to obtain a posterior distribution influenced primarily by the network data rather
than the prior, small values have to be chosen. A typical choice is n0

q = 1
2 ,∀q. This leads to

a non-informative Jeffreys prior distribution (Jeffreys (1946)). It is also possible to consider
a uniform distribution on the Q− 1 dimensional simplex by fixing n0

q = 1,∀q.
Since p(Xij |Zi,Zj,π) is a Bernoulli distribution, we use Beta priors to model the con-

nectivity matrix π:

p
(

π|η0 = (η0
ql), ζ

0 = (ζ0
ql)
)

=

Q
∏

q≤l

Beta(πql; η
0
ql, ζ

0
ql)

=

Q
∏

q≤l

Γ(η0
ql + ζ0

ql)

Γ(η0
ql)Γ(ζ0

ql)
π
η0

ql
−1

ql (1− πql)
ζ0
ql
−1
,

(4)

where η0
ql and ζ0

ql represent respectively the prior number of edges and non-edges connecting

vertices of cluster q to vertices of cluster l. A common choice consists in setting η0
ql = ζ0

ql =
1,∀q. This gives rise to a uniform prior distribution. Note that if the graph G is directed, the
products over q ≤ l, must be replaced by products over q, l since π is no longer symmetric.

Thus, the model parameters are now seen as random variables, represented by circles
in the Directed Acyclic Graph (DAG) Fig. 2. They depend on parameters n0, η0, and ζ0

which are called hyperparameters in the Bayesian literature (MacKay (1992)). The joint
distribution of the Bayesian probabilistic model is then given by:

p(X,Z,α,π|n0,η0, ζ0) = p(X|Z,π)p(Z|α)p(α|n0)p(π|η0, ζ0).

For the rest of the paper, since the prior hyperparameters are fixed and in order to keep
the notations simple, they will not be shown explicitly in the conditional distributions.
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α

ZjZi

π
Xij

∀(i, j) ∈ V

Figure 2 Directed acyclic graph representing the Bayesian view of the MixNet proba-
bilistic model

3.2 Variational inference

The inference task consists in evaluating the posterior p(Z,α,π|X) of all the hidden vari-
ables (latent variables Z and parameters α and π) given the observed edges X. Unfor-
tunately, under MixNet, this distribution is intractable. To overcome such difficulties, we
follow the work of Attias (1999), Corduneanu and Bishop (2001), Svensén and Bishop (2004)
on Bayesian mixture modelling and Bayesian model selection. Thus, we first introduce a
factorized distribution:

q(Z,α,π) = q(α)q(π)q(Z) = q(α)q(π)
N
∏

i=1

q(Zi),

and we use Variational Bayes to obtain an optimal approximation q(Z,α,π) of the posterior.
This framework is called the mean field theory in physics (Parisi (1988)). The Kullback-
Leibler divergence enables us to decompose the log-marginal probability, usually called the
model evidence or the log Integrated Observed-data Likelihood, and we obtain:

ln p(X) = L
(

q(.)
)

+ KL
(

q(.) || p(.|X
)

, (5)

where

L
(

q(.)
)

=
∑

Z

∫ ∫

q(Z,α,π) ln{
p(X,Z,α,π)

q(Z,α,π)
}dαdπ, (6)
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and

KL
(

q(.) || p(.|X)
)

= −
∑

Z

∫ ∫

q(Z,α,π) ln{
p(Z,α,π|X)

q(Z,α,π)
}dαdπ. (7)

Again, as for the variational EM approach (Section 2.2), minimizing (7) is equivalent to
maximizing the lower bound (6) of (5). However, we now have a full variational optimization
problem since the model parameters are random variables and we are looking for the best
approximation q(Z,α,π) among all the factorized distributions. In the following, we call
Variational Bayes E-step, the optimization of each distribution q(Zi) and Variational Bayes
M-step, the approximations of the remaining factors. We derive the update equations in
the case of an undirected graph G without self-loop.

3.2.1 Variational Bayes E-step

Proposition 1 The optimal approximation at vertex i is:

q(Zi) =M(Zi; 1, τi = {τi1, . . . , τiQ}), (8)

where τiq is the probability (responsability) of node i to belong to class q. It satisfies the fix
point relation:

τiq ∝ e
ψ(nq)−ψ(

PQ
l=1

nl)
N
∏

j 6=i

Q
∏

l=1

e

τjl

(

ψ(ζql)−ψ(ηql+ζql)+Xij

(

ψ(ηql)−ψ(ζql)

)

)

, (9)

where ψ(.) is the digamma function.

Proof According to Variational Bayes, the optimal distribution q(Zi) is given by:

ln q(Zi) = EZ\i,α,π[ln p(X,Z,α,π)] + cst

= EZ\i,π[ln p(X|Z,π)] + EZ\i,α[ln p(Z|α)] + cst

= EZ\i,π[
∑

i<j

∑

q,l

ZiqZjl

(

Xij lnπql + (1−Xij) ln(1− πql)
)

]

+ EZ\i,α[
N
∑

i=1

Q
∑

q=1

Ziq lnαq] + cst

=

Q
∑

q=1

Ziq

(

Eαq [lnαq] +
N
∑

j 6=i

Q
∑

l=1

τjl

(

Xij

(

Eπql
[lnπql]− Eπql

[ln(1− πql)]
)

+ Eπql
[ln(1− πql)]

)

)

+ cst

=

Q
∑

q=1

Ziq

(

ψ(nq)− ψ(
N
∑

l=1

nl) +
N
∑

j 6=i

Q
∑

l=1

τjl

(

Xij

(

ψ(ηql)− ψ(ζql)
)

+ ψ(ζql)− ψ(ηql + ζql)
)

)

+ cst,

(10)
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where Z\i denotes the class of all nodes except node i. Moreover, to simplify the calcula-
tions, the terms that do not depend on Zi have been absorbed into the constant. Taking
the exponential of (10) and after normalization, we obtain the multinomial distribution (8).

The matrix τ is obtained by iterating the relation (9) until convergence.

3.2.2 Variational Bayes M-step : optimization of q(α)

Proposition 2 The optimization of the lower bound with respect to q(α) produces a dis-
tribution with the same functional form as the prior p(α):

q(α) = Dir(α; n), (11)

where nq is the pseudo number of vertices in the q-th component of the mixture:

nq = n0
q +

N
∑

i=1

τiq. (12)

Proof According to Variational Bayes, the optimal distribution q(α) is given by:

ln q(α) = EZ,π[ln p(X,Z,α,π)] + cst

= EZ[ln p(Z|α)] + ln p(α) + cst

=
N
∑

i=1

Q
∑

q=1

τiq lnαq +

Q
∑

q=1

(n0
q − 1) lnαq + cst

=

Q
∑

q=1

(

n0
q − 1 +

N
∑

i=1

τiq

)

lnαq + cst.

(13)

Taking the exponential of (13) and after normalization, we obtain the Dirichlet distribution
(11).

3.2.3 Variational Bayes M-step : optimization of q(π)

Proposition 3 Again, the functional form of the prior p(π) is conserved through the vari-
ational optimization:

q(π) =

Q
∏

q≤l

Beta(πql|ηql, ζql), (14)

where ηql and ζql represent respectively the pseudo number of edges and non-edges connecting
vertices of cluster q to vertices of cluster l. For q 6= l, the hyperparameter ηql is given by:

ηql = η0
ql +

N
∑

i6=j

Xijτiqτjl, (15)

9
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and ∀q:

ηqq = η0
qq +

N
∑

i<j

Xijτiqτjq, (16)

Moreover, for q 6= l, the hyperparameter ζql is given by:

ζql = ζ0
ql +

N
∑

i6=j

(1−Xij)τiqτjl, (17)

and ∀q:

ζqq = ζ0
qq +

N
∑

i<j

(1−Xij)τiqτjq, (18)

Proof According to Variational Bayes, the optimal distribution q(π) is given by:

ln q(π) = EZ,α[ln p(X,Z,α,π)] + cst

= EZ[ln p(X|Z,π)] + ln p(π) + cst

=
N
∑

i<j

Q
∑

q,l

τiqτjl

(

Xij lnπql + (1−Xij) ln(1− πql)
)

+

Q
∑

q≤l

(

(η0
ql − 1) lnπql + (ζ0

ql − 1) ln(1− πql)
)

+ cst

=

Q
∑

q<l

N
∑

i6=j

τiqτjl

(

Xij lnπql + (1−Xij) ln(1− πql)
)

+

Q
∑

q=1

N
∑

i<j

τiqτjq

(

Xij lnπqq + (1−Xij) ln(1− πqq)
)

+

Q
∑

q≤l

(

(η0
ql − 1) lnπql + (ζ0

ql − 1) ln(1− πql)
)

+ cst

=

Q
∑

q<l

(

(

η0
ql − 1 +

N
∑

i6=j

τiqτjlXij

)

lnπql +
(

ζ0
ql − 1 +

N
∑

i6=j

τiqτjl(1−Xij)
)

ln(1− πql)

)

+

Q
∑

q=1

(

(

η0
qq − 1 +

N
∑

i<j

τiqτjqXij

)

lnπqq +
(

ζ0
qq − 1 +

N
∑

i<j

τiqτjq(1−Xij)
)

ln(1− πqq)

)

.

(19)
Taking the exponential of (19) and after normalization, we obtain the product of Beta dis-
tribution (14).

10
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3.2.4 Lower bound

Proposition 4 When computed just after the Variational Bayes M-step, most of the terms
of the lower bound disappear. Only one term in τ and the normalizing constants of the
Dirichlet and Beta distributions remain:

L
(

q(.)
)

= ln{
Γ(
∑Q

q=1 n
0
q)
∏Q
q=1 Γ(nq)

Γ(
∑Q

q=1 nq)
∏Q
q=1 Γ(n0

q)
}+

Q
∑

q≤l

ln{
Γ(η0

ql + ζ0
ql)Γ(ηql)Γ(ζql)

Γ(ηql + ζql)Γ(η0
ql)Γ(ζ0

ql)
}−

N
∑

i=1

Q
∑

q=1

τiq ln τiq.

(20)

The proof is given in the appendix.

3.3 Model selection

So far, we have seen that the Variational Bayes optimization of the lower bound leads to
an approximation of the posterior of all the hidden variables, given the observed edges.
However, we have not addressed yet the problem of estimating the number Q of classes
in the mixture. Following Bishop (2006), we propose a Bayesian model selection criterion.
First, note that the model evidence (5) depends on Q. Indeed, if the number of classes
is changed, the all Variational Bayes optimization procedure presented in Section 3.2 is
modified. To take this dependency into account, the model evidence can be written p(X|Q)
and Bayes rule leads to the posterior:

p(Q|X) ∝ p(X|Q)p(Q), (21)

where Q is now seen as a random variable. If the prior p(Q) is broad, maximizing (21)
with respect to Q is equivalent to maximizing p(X|Q). However, since MixNet is a mixture
model, for any given setting of the parameters α and π there will be a total of Q! parameters
which lead to the same distribution over the edges. Moreover, as we saw previously, the
model evidence is intractable and needs to be approximated. Thus, we propose to use
the lower bound (20) and to add a term lnQ! to take the multimodality into account. In
the case of networks, we emphasize that our work led to the first criterion based on a
non-asymptotic approximation of the model evidence, also called Integrated Observed-data
likelihood. When considering other types of mixture models, Biernacki et al (2000) showed
that such criteria were very powerful to select the number of classes.

11
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4. Iterative algorithm

Algorithm 1: Variational Bayes EM algorithm for undirected graphs without self-
loop

// INITIALIZATION

Initialize τ with a spectral clustering algorithm
n0 ← 11×N (or

11×N

2 ); η0 ← 1Q×Q; ζ0 ← 1Q×Q;

// OPTIMIZATION

repeat
// M-step

for q=1:Q do

nq ← n0
q +

∑N
i=1 τiq;

end
for q=1:Q do

for l=q:Q do

ηql ← η0
ql +

∑N
i6=j Xijτiqτjl;

ζql = ζ0
ql +

∑N
i6=j(1−Xij)τiqτjl;

if q=l then
ηql ←

ηql

2 ;

ζql ←
ζql

2 ;

end
else

ηlq ← ηql;
ζlq ← ζql;

end

end

end
// E-step

repeat
for i=1:N do

for q=1:Q do

τiq ←
∏N
j 6=i

∏Q
l=1 e

τjl

(

ψ(ζql)−ψ(ηql+ζql)+Xij

(

ψ(ηql)−ψ(ζql)

)

)

;

τiq ← eψ(nq)−ψ(
PQ

l=1
nl)τiq;

end
Normalize τi.;

end

until τ converges

until L
(

q(.)
)

converges

12
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5. Experiments

We present some results of the experiments we carried out to assess our Bayesian version
of MixNet and the model selection criterion we proposed in Section 3.3. Through all our
experiments, we compared our approach to the work of Daudin et al (2008) who used ICL
as a criterion to identify the number of classes in latent structures and the frequentist
approach of variational EM, described in Section 2.2, to estimate the model parameters.
We considered both synthetic data, generated according to known random graph models,
and the metabolic network of bacteria Escherichia coli. In the first set of experiments, we
used the synthetic graphs and we concentrated on analyzing the capacity of ICL and our
criterion to retrieve the true number of classes in the latent structures. We recall that our
criterion is the first criterion developed based on a non-asymptotic approximation of the
model evidence, also called Integrated Observed-data likelihood. Finally, we applied our
approach to the metabolic network and we analyzed the number of estimated classes and
the learnt partitions.

5.1 Comparison of the criteria

In these experiments, we consider simple affiliation models where only two types of edges
exist : edges between nodes of the same class and edges between nodes of different classes.
Each type of edge has a given probability, respectively πqq = λ and πql = ǫ. Following
Mariadassou and Robin (2007) who showed that ICL tended to underestimate the number
of classes in the case of small graphs, we generated graphs with only n = 50 vertices to
analyze the robustness of our criterion. Moreover, to limit the number of free parameters,
we studied the cases where λ = 1 − ǫ and λ = 1

2 − ǫ which correspond respectively to
dense graphs (ADC1 greater than 6) and sparser graphs (ADC smaller than 3.5). Thus, we
considered seven affiliation models shown in Table 1. The differences between these models
are related to their modular structure which varies from no structure to strong modular
structure.

For each affiliation model, we analyzed graphs with QTrue ∈ {2, . . . , 5} classes mixed in
the same proportions α1 = · · · = αQTrue

= 1
QTrue

. Thus, we studied a total of 28 graph
models.

Table 1 Parameters of the seven affiliation models considered

Model λ ǫ

1 0.9 0.1
2 0.85 0.15
3 0.8 0.2
4 0.75 0.25

5 0.49 0.01
6 0.47 0.03
7 0.45 0.05

1. Average Degree of Connectivity
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For each of these graph models, we simulated 100 networks. In order to estimate the
number of classes in the latent structures, we applied our algorithm (Section 4) and the
variational EM approach of Daudin et al (2008) on each network, for various numbers of
classes Q ∈ {1, . . . , 6}. Note that, we chose n0

q = 1, ∀q ∈ {1, . . . , Q} for the Dirichlet prior
and η0

ql = ζ0
ql = 1, ∀(q, l) ∈ {1, . . . , Q}2 for the Beta priors. We recall that such distributions

correspond to uniform distributions. Like any optimization technique, the Bayesian and
frequentist methods depend on the initialization. Thus, for each simulated network and
each number of classes Q, we started the algorithms with five different initializations of
τ obtained using a spectral clustering method (Ng et al (2001)). Then, for the Bayesian
algorithm, we used the criterion we proposed in Section 3.3 to select the best learnt model,
whereas we used ICL in the frequentist approach. Finally, for each simulated network, we
obtained two estimates QICL and QV B of the number QTrue of latent classes by selecting
Q ∈ {1, . . . , 6} for which the corresponding criteria were maximized.

In Table 2, we observe that for the most structured affiliation model, the two criteria
always estimate correctly the true number of classes except when QTrue = 5. In this case,
the Bayesian criterion performs better. Indeed, it has a percentage of accuracy of 95%
against 87% for ICL.

Table 2 Confusion matrices for ICL and Bayesian (based on Variational Bayes) criteria.
λ = 0.9, ǫ = 0.1 and QTrue ∈ {2, . . . , 5}

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 0 100 0 0
5 0 0 0 13 87 0

(a) QTrue\QICL

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 0 100 0 0
5 0 0 0 4 95 1

(b) QTrue\QV B

These differences increase when considering less structured networks. For instance, in
Table 3 and 4, when QTrue = 5, we notice that the percentage of accuracy of ICL falls down
(respectively 29% and 3%) whereas the Bayesian criterion remains more stable (respectively
65% and 29%). Very similar remarks can be pointed out by looking at Table 5. Thus, when
considering weaker and weaker modular structures, both criteria tend to underestimate the
number of classes although the Bayesian criterion appears to be much more robust.

Table 3 Confusion matrices for ICL and Bayesian (based on Variational Bayes) criteria.
λ = 0.85, ǫ = 0.15 and QTrue ∈ {2, . . . , 5}

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 1 98 1 0
5 0 0 10 61 29 0

(a) QTrue\QICL

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 0 98 2 0
5 0 0 1 29 65 5

(b) QTrue\QV B
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Table 4 Confusion matrices for ICL and Bayesian (based on Variational Bayes) criteria.
λ = 0.8, ǫ = 0.2 and QTrue ∈ {2, . . . , 5}

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 14 86 0 0
5 0 17 36 44 3 0

(a) QTrue\QICL

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 5 94 1 0
5 0 4 18 43 29 6

(b) QTrue\QV B

Table 5 Confusion matrices for ICL and Bayesian (based on Variational Bayes) criteria.
λ = 0.75, ǫ = 0.25 and QTrue ∈ {2, . . . , 5}

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 1 99 0 0 0
4 1 28 50 21 0 0
5 30 51 19 0 0 0

(a) QTrue\QICL

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 1 99 0 0 0
4 0 13 45 31 11 0
5 9 42 38 8 3 0

(b) QTrue\QV B

In Tables 6, 7, and 8, we consider sparser graphs (ADC smaller than 3.5). In general,
for both criteria, we obtain less accurate predictions of the number of classes. However, as
we saw for dense graphs, the Bayesian criterion remains more stable. This can be easily
seen by looking, for example, at Table 8. Indeed, the Bayesian criteria has a percentage of
accuracy of 39% against 14% for ICL.

Table 6 Confusion matrices for ICL and Bayesian (based on Variational Bayes) criteria.
λ = 0.49, ǫ = 0.01 and QTrue ∈ {2, . . . , 5}

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 20 80 0 0
5 0 1 22 58 19 0

(a) QTrue\QICL

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 0 15 84 1 0
5 0 0 15 52 31 2

(b) QTrue\QV B

We also used the Adjusted Rand Index (Hubert and Arabie (1985)) to evaluate the
agreement between the true and estimated partitions. The computation of this index is
based on a ratio between the number of node pairs belonging to the same and to different
classes when considering the true par- tition and the estimated partition. Two identical
partitions have an adjusted Rand index equal to 1. In the experiments we carried out,
when the variational EM method and our algorithm were run on networks with the true
number of latent classes, we obtained almost non-distinguishable Adjusted Rand Indices.
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Table 7 Confusion matrices for ICL and Bayesian (based on Variational Bayes) criteria.
λ = 0.47, ǫ = 0.03 and QTrue ∈ {2, . . . , 5}

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 4 46 50 0 0
5 1 18 59 19 3 0

(a) QTrue\QICL

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 0 100 0 0 0
4 0 2 34 63 1 0
5 0 8 51 36 4 1

(b) QTrue\QV B

Table 8 Confusion matrices for ICL and Bayesian (based on Variational Bayes) criteria.
λ = 0.45, ǫ = 0.05 and QTrue ∈ {2, . . . , 5}

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 3 97 0 0 0
4 2 24 60 14 0 0
5 12 56 30 2 0 0

(a) QTrue\QICL

1 2 3 4 5 6

2 0 100 0 0 0 0
3 0 1 99 0 0 0
4 0 10 51 39 0 0
5 7 37 45 9 2 0

(b) QTrue\QV B

Finally, we point out that we obtained almost the same results in this set of experiments
by choosing uniform distributions (n0

q = 1, ∀q ∈ {1, . . . , Q}) or Jeffreys distributions (n0
q =

1
2 , ∀q ∈ {1, . . . , Q}) for the prior over the mixing coefficients.

5.2 The metabolic network of Escherichia coli

We apply the methodology described in this paper to the metabolic network of bacteria
Escherichia coli. It is available at http://pbil.univ-lyon1.fr/software/motus/. In
this network, there are 605 vertices which represent chemical reactions and a total number
of 1782 edges. Two reactions are connected if a compound produced by the first one is a
part of the second one (or vice-versa). We emphasize that, to the best of our knowledge,
our inference method is currently the only Bayesian approach that can handle efficiently
such large network. As in the previous Section, we considered uniform priors: we fixed
n0
q = 1, ∀q ∈ {1, . . . , Q} for the Dirichlet prior and η0

ql = ζ0
ql = 1, ∀(q, l) ∈ {1, . . . , Q}2 for

the Beta priors. We compared our results with the work of Daudin et al (2008) on the same
data set. They used ICL to estimate the number of latent classes and Variational EM to
estimate MixNet parameters.

For the initialization and in order to obtain comparable results, we applied the same
hierarchical clustering method they used in their experiments. Thus, for Q ∈ {1, . . . , 40},
after having initialized τ , we ran our Bayesian algorithm and we computed the criterion
proposed in Section 3.3. We repeated such procedure 60 times. The results are presented
as boxplots in Figure 3. The criterion finds its maximum for QV B = 22 classes. Thus, for
this particular real network, both criteria lead to almost the same estimates of the number
of latent classes. Indeed, Daudin et al (2008) obtained QICL = 21.
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We also compared the learnt partitions in the Bayesian and in the frequentist approach.
Figure 4 is a dot plot representation of the metabolic network after having applied the
Bayesian algorithm for QV B = 22. Each vertex i was classified into the class for which
τiq was maximal (Maximum A Posteriori estimate). We observe very similar patterns as
in Daudin et al (2008). For instance, class 1 and 17 both have an expected probability of
intra-connection equals to 1: E[π1−1] = E[π17−17] = 1 and so they correspond to cliques.
Moreover, the expected probability of connection between class 1 and class 17 is also 1:
E[π1−17] = E[π17−1] = 1. In other words, these two classes constitute in fact a single clique.
However, that clique is split into two sub-cliques because of their different connectivities
with vertices of classes 7 and 10.

1 3 5 7 9 12 15 18 21 24 27 30 33 36 39
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10

00
0

−
95

00
−

90
00
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00
−

80
00

−
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Figure 3 Boxplot representation (over 60 experiments) of the Bayesian criterion for Q ∈
{1, . . . , 40}. The maximum is reached at QV B = 22
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Figure 4 Dot plot representation of the metabolic network after classification of the
vertices into QV B = 22 classes

6. Conclusion

In this paper, we showed how the MixNet model, also called the Block-Clustering model,
could be described in a full Bayesian framework. Thus, we introduced priors over the model
parameters and we developed a procedure, based on Variational Bayes, to approximate
the posterior distribution of all the hidden variables given the observed edges. In this
framework, we derived a new non-asymptotic Bayesian criterion to select the number of
classes in latent structures. We found that our criterion was more robust than the criterion
we denoted ICL in this paper and which is based on an asymptotic approximation of the
Integrated Classification Likelihood. Indeed, by considering small networks and complex
modular structures, we found that the percentage of accuracy of our criterion was always
higher. Finally, using the metabolic network of Escherichia coli, we noticed that, contrary to
the Bayesian methods that had been developed, our Bayesian strategy was able to handle
large networks. For this particular network, we obtained almost the same results as the
frequentist and ICL strategies. Overall, our Bayesian approach seems very promising for
the investigation of rather small networks and/or based on complex structures.
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Appendix

The lower bound is given by

L
(

q(.)
)

=
∑

Z

∫ ∫

q(Z,α,π) ln{
p(X,Z,α,π)

q(Z,α,π)
}dαdπ

= EZ,α,π[ln p(X,Z,α,π)]− EZ,α,π[ln q(Z,α,π)]

= EZ,π[ln p(X|Z,π)] + EZ,α[ln p(Z|α)] + Eα[ln p(α)] + Eπ[ln p(π)]

−
N
∑

i=1

EZi
[ln q(Zi)]− Eα[ln q(α)]− Eπ[ln q(π)]

=

N
∑

i<j

Q
∑

q,l

τiqτjl

(

Xij

(

ψ(ηql)− ψ(ζql)
)

+ ψ(ζql)− ψ(ηql + ζql)

)

+
N
∑

i=1

Q
∑

q=1

τiq

(

ψ(nq)− ψ(

Q
∑

l=1

nl)
)

+ lnΓ(

Q
∑

q=1

n0
q)−

Q
∑

q=1

ln Γ(n0
q)

+

Q
∑

q=1

(

n0
q − 1

)(

ψ(nq)− ψ(

Q
∑

l=1

nl)
)

+

Q
∑

q≤l

(

ln Γ(η0
ql + ζ0

ql)

− ln Γ(η0
ql)− ln Γ(ζ0

ql) + (η0
ql − 1)

(

ψ(ηql)− ψ(ηql + ζql)
)

+ (ζ0
ql − 1)

(

ψ(ζql)− ψ(ηql + ζql)
)

)

−
N
∑

i=1

Q
∑

q=1

τiq ln τiq

− ln Γ(

Q
∑

q=1

nq) +

Q
∑

q=1

ln Γ(nq)−

Q
∑

q=1

(

nq − 1
)(

ψ(nq)− ψ(

Q
∑

l=1

nl)
)

−

Q
∑

q≤l

(

ln Γ(ηql + ζql)− ln Γ(ηql)− ln Γ(ζql)

+ (ηql − 1)
(

ψ(ηql)− ψ(ηql + ζql)
)

+ (ζql − 1)
(

ψ(ζql)− ψ(ηql + ζql)
)

)

=

Q
∑

q<l

(

(

η0
ql − ηql +

N
∑

i6=j

τiqτjlXij

)(

ψ(ηql)− ψ(ηql + ζql)
)

+
(

ζ0
ql − ζql +

N
∑

i6=j

τiqτjl(1−Xij)
)(

ψ(ζql)− ψ(ηql + ζql)
)

)

+

Q
∑

q=1

(

(

η0
qq − ηqq +

N
∑

i<j

τiqτjqXij

)(

ψ(ηqq)− ψ(ηqq + ζqq)
)

+
(

ζ0
qq − ζqq +

N
∑

i<j

τiqτjq(1−Xij)
)(

ψ(ζqq)− ψ(ηqq + ζqq)
)

)

+

Q
∑

q=1

(

n0
q − nq +

N
∑

i=1

τiq

)(

ψ(nq)− ψ(

Q
∑

l=1

nl)
)

+ ln{
Γ(
∑Q

q=1 n
0
q)
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q=1 Γ(nq)

Γ(
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q)
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Q
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ln{
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N
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τiq ln τiq.

(22)

21


