Skip to main content

The Precise and Efficient Identification of Medical Order Forms Using Shape Trees

  • Conference paper
  • First Online:
  • 2891 Accesses

Abstract

A powerful and flexible technique to identify, classify and process documents using images from a scanning process is presented. The types of documents can be described to the system as a set of differentiating features in a case base using shape trees. The features are filtered and abstracted from an extremely reduced scanner image of the document. Classification rules are stored with the cases to enable precise recognition and further mark reading and Optical Character Recognition (OCR) process. The method is implemented in a system which actually processes the majority of requests for medical lab procedures in Germany. A large practical experiment with data from practitioners was performed. An average of 97% of the forms were correctly identified; none were identified incorrectly. This meets the quality requirements for most medical applications. The modular description of the recognition process allows for a flexible adaptation of future changes to the form and content of the document’s structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abmayr, W. (1994). Einführung in die digitale Bildverarbeitung. Stuttgart: Teubner.

    Google Scholar 

  • Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 603–619.

    Article  Google Scholar 

  • Epshtein, B., & Ullman, S. (2005). Feature hierarchies for object classification. In Proc. Inter- national Conference on Computer Vision, 30(1), pp. 220–227.

    Google Scholar 

  • Ferrari, V., Fevrier, L., Jurie, F., & Schmid, C. (2008). Groups of adjacent contour segments for object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1), 36–51.

    Article  Google Scholar 

  • Huang, M., DeMenthon, D., Doermann, D., Golebiowski, L., & Hamilton, B.A. (2005). Document ranking by layout relevance. In Eighth International Conference on Document Analysis and Recognition.

    Google Scholar 

  • Leibe, B. (2004). Interleaved object categorization and segmentation. PhD thesis, ETH Zürich.

    Google Scholar 

  • Leibe, B., & Schiele, B. (2003). Interleaved object categorization and segmentation. In Proc. British Machine Vision Conference (pp. 759–768).

    Google Scholar 

  • Lowe, D. (1999). Object recognition from local scale invariant features. In Proc. International Conference on Computer Vision (ICCV).

    Google Scholar 

  • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints.International Journal of Computer Vision, 60(2), 91–110.

    Google Scholar 

  • Lunze, T. (2005). Entwurf und Implementierung von Komponenten für Case Base Reasoning zum iSuite Wissensbanksystem. Dresden: Diplomarbeit TU.

    Google Scholar 

  • Nistér, D., & Stewénius, H. (2006). Scalable recognition with a vocabulary tree. In Proc. IEEE Int. Conference on Computer Vision and Pattern Recognition (CVPR).

    Google Scholar 

  • Persoon, E., & Fu, K. (1977). Shape discrimination using Fourier descriptors.IEEE Transactions on Systems, Man, and Cybernetics, SMC-7(3), 1119–1122.

    Google Scholar 

  • Rosenfeld, A. (2006). Digital picture processing, computer science and applied mathematics (Vol. 2). New York: Academic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Henker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henker, U., Petersohn, U., Ultsch, A. (2009). The Precise and Efficient Identification of Medical Order Forms Using Shape Trees. In: Fink, A., Lausen, B., Seidel, W., Ultsch, A. (eds) Advances in Data Analysis, Data Handling and Business Intelligence. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01044-6_60

Download citation

Publish with us

Policies and ethics