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Summary. Frequently the predictor space of a multivariate regression problem
of the type y = m(x1, . . . , xp) + ǫ is intrinsically one-dimensional, or at least of
far lower dimension than p. Usual modeling attempts such as the additive model
y = m1(x1) + . . . + mp(xp) + ǫ, which try to reduce the complexity of the regression
problem by making additional structural assumptions, are then inefficient as they
ignore the inherent structure of the predictor space and involve complicated model
and variable selection stages. In a fundamentally different approach, one may con-
sider first approximating the predictor space by a (usually nonlinear) curve passing
through it, and then regressing the response only against the one-dimensional pro-
jections onto this curve. This entails the reduction from a p− to a one-dimensional
regression problem.

As a tool for the compression of the predictor space we apply local principal

curves. Taking things on from the results presented in [6], we show how local princi-
pal curves can be parametrized and how the projections are obtained. The regression
step can then be carried out using any nonparametric smoother. We illustrate the
technique using data from the physical sciences.

Key words: Dimension reduction, smoothing, principal curves, principal
component regression.

1 Introduction

Principal curves are “smooth one-dimensional curves passing through the mid-

dle of a p−dimensional data set, providing a nonlinear summary of the data”
[8]. Since Hastie & Stuetzle’s pioneering work, principal curves have been
further investigated, applied, and developed by quite a few researchers, and
today exist at least half a dozen of algorithms for estimating them. These
differ essentially in (i) what is understood of the “middle” of the data cloud;
(ii) the algorithmic family (“top-down” or “bottom-up”); (iii) the criterion
used for minimizing the error (if used at all).
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Among the various principal curve concepts proposed are bias-corrected
versions of the HS algorithm [1, 3], the polygonal line algorithm [10], the
“principal curves of orientated points” (PCOPs, [7]), and the “local principal
curves” (LPCs, [5]). PCOPs and LPCs are bottom-up algorithms, i.e., they
proceed through the data cloud step by step and do not minimize a global er-
ror criterion. All other existing methods correspond to top-down algorithms,
meaning that they start with some initial line which is then iteratively dwelled
out until it fits satisfactorily through the data cloud and some global error
criterion is minimized. Apart from the LPCs, which aim to approximate the
density ridge, all concepts assume the existence of some theoretical “true”
principal curve. Implementations of all algorithms mentioned above are pub-
licly available and have been applied to a wide range of problems, including
the recognition of hand-written characters [11], the reconstruction of river
outlines or coastlines [5, 6], and path estimation from GPS tracks [2].

Surprisingly, the existing literature seems to be happy with knowing that
principal curves can be estimated and that the resulting curve can be visual-
ized, but has not proceeded with exploiting its benefits once it is there (with
the notable exception of [3], who make use of HS principal curves for further
pairwise compression of principal component scores). The value of their para-
metric counterpart, principal components, also brings to bear only when they
are used for data compression or regression (e.g. [9], p. 66).

In Section 2, we consider a simple example taken from traffic engineering,
illustrating how principal curves may be used for data compression and de-
compression. To motivate the necessity and value of nonparametric dimension
reduction techniques, we proceed in Section 3 to a more complex applica-
tion involving high-dimensional data from the future Galactic survey mission
GAIA, and show how principal curves can be used for dimension reduction in
multiple regression problems. In both cases, the technique used is that of local
principal curves. We finish with a brief outlook on the extension to principal
manifolds in Section 4.

2 Data compression with local principal curves

2.1 Local principal curves

Assume we are given a data set X1, . . . , Xn, with Xi ∈ R
p, the intrinsic

structure of which is to be described. Local principal curves [5, 6] are based
on the idea that, at each point x ∈ R

p along a principal curve, the localized
first principal component line forms approximately a tangent to the curve.
They can be seen as a simple and fast approximation to the mathematically
and computationally more demanding PCOPs [7]. Beginning at some starting
point x = x0, LPCs work successively through the data cloud, alternating
between the following two steps:
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(i) Calculate a localized center of mass µx =
∑n

i=1 wiXi, where
wi = KH(Xi − x)Xi/

∑n
i=1 KH(Xi − x).

(ii) Compute the 1st local eigenvector γx of Σx = (σx
jk)(1≤j,k≤p), where σx

jk =
∑n

i=1 wi(Xij − µx
j )(Xik − µx

k) and µx
j denotes the j−th component of µx.

Using a predetermined step size t0, step from µx to x := µx + t0γ
x.

The sequence of the local centers of mass µx makes up the local principal
curve. Here, KH(·) = |H |−1/2K(H−1/2·), with a multivariate kernel K and a
positive definite bandwidth matrix H = diag(h2

1, . . . , h
2
p). Extensions to dis-

connected and branched curves were considered in [5] and [6], respectively,
and are easily implemented by using suitable multiple starting points. Cross-
ings can be handled conveniently using an angle penalization [5]. As in each
iteration only points in the local neighborhood are considered, the algorithm
is quite flexible, and, at the same time, robust to outlying data patterns.

2.2 Simple example: Speed-flow data

Fig. 1 displays data recorded on the Californian freeway FR57-N on 9th of July
2007. Each dot corresponds to the average of speed and flow values aggregated
over 5-minute intervals. A LPC is fitted, using parameters h1 = h2 = t0 = 4,
and a starting point selected at random from the original data. The resulting
points µx are symbolized by black squares in Fig. 1.

How does one go about connecting the points? For descriptive purposes a
linear interpolation is sufficient, as it was handled in the original references
[5, 6]. However, if the curve is to be used for further processing, it would need
to be fully parametrized. One way of achieving this is to use a cubic spline
(a piecewise polynomial function constructed from third order polynomials),
yielding a continuous and differentiable smooth curve, as outlined below.

2.3 Parametrizations and Projections

For a fitted LPC consisting of L local centers of mass µxℓ ≡ µℓ = (µℓ
1, . . . , µ

ℓ
p)

T ,
ℓ = 1, . . . , L, we seek a parametrization t such that the curve can be written
as a function

f : R −→ R
p, t 7→ (f1(t), . . . , fp(t))

T
,

attaining the L points µℓ as outputs for certain parameter values t. Firstly,
one end point is chosen to be the origin corresponding to t = 0. This is an
arbitrary choice and we use the convention that t increases in the direction of
γx0 . Technically, the curve is parametrized in three steps:

(i) Compute a discrete, preliminary parametrization (sℓ)(1≤ℓ≤L), with the
same origin as t, by adding up Euclidean distances between subsequent
µℓ, ℓ = 1, . . . , L.

(ii) For each j = 1, . . . , p, lay a cubic spline through the set of points
(sℓ, µ

ℓ
j)1≤ℓ≤L, yielding graphs (s, µj(s)). Putting them together, one ob-

tains a continuous and differentiable spline function (µ1, . . . , µp)
T (s).
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Fig. 1. Speed-flow data (+) and principal curve (solid curve) with local centers of
mass (filled squares).

(iii)Recalculate the parameter through the arc length of this spline function:

t =
∫ s

0

√

(µ′
1(u))2 + . . . + (µ′

p(u))2 du.

It should be noted that no smoothing is involved in (ii) — this is a purely
mechanical step interpolating the µℓ through a string of cubic polynomials.

Once that this parametrization is established, each data point Xi, i =
1, . . . , n, can be projected on the point of the curve nearest to it (in terms
of Euclidean distances), yielding the projection index ti. Data can be de-
compressed by evaluating the principal curve f , represented through the
p−dimensional spline function, at ti.

An illustration is given in Fig. 2. Note that, though the parametrization is
unit-speed (i.e., distances in parameter space correspond to distances in data
space along the principal curve), the projections are not topology-preserving:
data points which are neighboring in data space are not necessarily neighbor-
ing in parameter space. This is a general property of data compression through
principal curves, which distinguishes such methods from topology-preserving,
but less interpretable mappings [12].

3 Regression with principal curves

3.1 GAIA data

GAIA is an astrophysics mission of the European Space Agency (ESA). A
satellite is to be launched in 2011 which will undertake a detailed survey of
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Fig. 2. Speed-flow data with principal curve (solid) and projections (dashed lines).

over 109 stars in our Galaxy and extragalactic objects. The aims of the mission
are, among others, to classify objects into stars, galaxies, quasars, etc., and to
determine astrophysical parameters (“APs”: temperature, metallicity, gravity)
from spectroscopic data (photon counts at certain wavelengths) [4]. Yet, one
has to work with simulated data generated through complex computer models.
Fig. 3 gives an example for a set of n = 8286 sixteen-dimensional photon
counts simulated from APs through computer models.

spec1
0.78
0.790.780.79

0.76
0.77

0.760.77

spec20.005
0.0100.0050.010

0.000
0.005

0.0000.005

spec30.010
0.015
0.0200.0100.0150.020

0.000
0.005
0.010

0.0000.0050.010

spec40.0150.0200.0250.0150.0200.025

0.0050.0100.015
0.0050.0100.015

spec50.04
0.060.040.06

0.00
0.020.000.02

spec6
0.06
0.08
0.100.060.080.10

0.00
0.02
0.04

0.000.020.04

spec70.02
0.03
0.040.020.030.04

0.00
0.01
0.02

0.000.010.02

spec80.010
0.0150.0100.015

0.000
0.0050.0000.005

spec90.010
0.015
0.0200.0100.0150.020

0.000
0.005
0.010

0.0000.0050.010

spec10
0.015
0.020
0.0250.0150.0200.025

0.000
0.005
0.010

0.0000.0050.010

spec11
0.006
0.0080.0060.008

0.002
0.004

0.0020.004

spec12
0.03
0.040.030.04

0.01
0.02

0.010.02

spec130.0150.0200.0250.0150.0200.025

0.0050.0100.015
0.0050.0100.015

spec140.015
0.020
0.0250.0150.0200.025

0.005
0.010
0.015

0.0050.0100.015

spec150.030.040.050.030.040.05

0.000.010.020.000.010.02

spec160.04
0.06
0.080.040.060.08

0.00
0.02
0.04

0.000.020.04

Fig. 3. GAIA data. Pairwise plots of 16-dim. photon counts.
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Note that, for the actual estimation problem, the photon counts form the
predictor space and the APs form the response space, this is opposite to the
direction of simulation. As a consequence, the regression problem may be
degenerate (i.e. one set of photon counts may be associated to two different
APs). In the following, we will focus on the temperature, which features the
least amount of degeneracy. We use a sample of size n′ = 1000 from the
original data for all following calculations. Fitting a multiple linear regression
model for temperature against the sixteen individual photon counts leads to
a residual standard error of 1978 on 983 degrees of freedom, with t−values
for all variables around 0.65 and corresponding p−values around 0.51. We
conclude that this does not constitute a useful model for the data.
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Fig. 4. Scree plot for GAIA data.

3.2 Principal component regression

The usual remedies in this case are model/variable selection procedures or di-
mension reduction techniques. The second one is obviously the most promising
here. A common starting point for the application of the latter is the scree plot
(Fig. 4), indicating that at most three components (these explain 98.9% of the
total variance) appear to be sufficient to capture the information provided by
these data. The usual way to continue is then to regress y = temperature
against the scores associated with the largest three principal components, i.e.

y = β0 + β1score1 + β2score2 + β3score3 + ǫ (1)

Fitting this trivariate linear regression problem leads to a residual standard
error of 2060 on 996 degrees of freedom, with p−values < 2e − 16 for all four
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regression parameters. The residual standard error of this model is naturally
larger than the previous one, being just an approximation of the full linear
model based on 98.9% of the available information. Nevertheless, this model
is the more appropriate one. It remains the question whether the first three
PC scores still feature some inner structure which we could exploit.

3.3 Dimension reduction with local principal curves

To investigate this, we produce a three-dimensional scatterplot of the PC
scores, and shade lower temperatures with darker grey tones (Fig. 5 left).
Clearly there is some curvilinear inner structure, which is informative for the
target variable, temperature. Hence, the following is to do:

(1) Fit a principal curve through the 3-dim. data cloud of PC scores.
(2) Parametrize the principal curve and project all data points onto it.
(3) Fit temperature (or other APs) against the (1-dimensional) projections.

For task (1), a LPC is straightforwardly fitted3 (Fig. 5 left). Alternatively,
any other principal curve algorithm which provides access to the parametriza-
tion and allows for continuous projections could be used. This would include
the HS algorithm, as far as it copes with the complexity of the data in itself.
Algorithms based on piecewise line segments as in [10] are rather problematic
for this purpose as projections tend to be clustered around the knots, unless
the procedure outlined in Subsection 2.3 is additionally applied to them.

We perform task (2) as described in Subsection 2.3 and plot temperature
against the projection indices. In (3), we are left with a simple one-dimensional
nonparametric regression problem yi = m(ti)+εi. We used penalized smooth-
ing splines to fit this model but any nonparametric smoother could be used.
The smooth fit is shown in Fig. 5 (right).

3.4 Direct local principal curve regression

One may be wondering if there is a shortcut to this. Instead of the 2-stage
strategy “PC+LPC” used so far, one could consider to fit the local principal
curve directly through the n′×16 dimensional photon counts, as shown in Fig.
6. Comparing this result cursorily with Fig. 3, it appears that the data are
reasonably represented (For a more quantitative evaluation of the accuracy of
a principal curve, a coverage measure is available [5], and for the assessment
of its precision bootstrap methods may be applied [2]). Indeed, the one-stage
strategy is feasible in principle, and the results for both strategies are quite
similar. However, as data gets sparse in high dimensions, the LPC may miss
remote parts of the predictor space (the previously mentioned robustness may
backfire here), which then get inadequately projected. The consequence of

3 using the default settings of R function lpc for the parameters; these are: hj =
1/10 × {range of variable j}, and t0 = (1/d)

P

j
hj
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Fig. 5. Left: Scatterplot of first three principal component scores with local prin-
cipal curve (—). The less intense the grey tone, the larger is the temperature; right:
Temperatures fitted versus projection indices.

this is an increased sensitivity of the 16-dimensional LPC to the choice of the
starting point compared to the 3-dimensional one. When approximating data
through PCA in a first step, data are far less sparse in the second. Principal
components cannot miss isolated data points as PC lines can be thought of
as being infinitely long.
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Fig. 6. Pairwise plot of LPC fitted through 16-dim. photon counts.
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3.5 Prediction and Comparison

For a new observation xnew (i.e., here, a new set of spectra), prediction pro-
ceeds as follows: (i) Project xnew onto the LPC (either in one or two steps),
giving tnew. (ii) Compute ŷnew = m̂(tnew) from the fitted nonparametric
smoother (hereafter: NS).

Table 1 shows prediction errors for each 200 observations sampled from the
training data set and the remaining n − n′ = 7286 data points, respectively.
Beside the methods discussed so far, we include an additive model using PC
scores (a model just as in (1), but with all linear terms replaced by smooth
functions; hereafter: AM).

Table 1. Prediction errors (/103) in comparison. ε̂i is the difference between
true and predicted temperature (LM= Linear Model, PC=Principal components,
AM=Additive model, NS=Nonparametric Smoother)

LM PC+LM PC+AM PC+LPC+NS LPC+ NS

Training average (ε̂2

i ) 4’119 4’395 1’318 2’633 2’215
data median (ε̂2

i ) 1’035 1’300 123 51 66

Test average (ε̂2

i ) 6’393 6’743 2’054 5’695 4’667
data median (ε̂2

i ) 723 808 147 45 46

As expected, and mentioned earlier, PC+LM is slightly worse than LM,
and obviously PC+AM is better than PC+LM. The three nonparametric
approaches clearly beat the parametric ones. The best median of squared
residuals is taken by PC+LPC+NS, which is of a similar magnitude as that
for LPC+NS and PC+AM. The mean of the squared residuals falls behind
for the LPC-based methods compared to PC+AM. This can be explained as
points close to the “end” of the data cloud are all projected onto the endpoint
of the LPC, which leads to a degeneracy at either t = 0 or t = tmax (or
both). This is visible in Fig’s 2 and 5 (right). So, though the LPC-based
methods work very well for the large bulk of the data, they do not handle the
few points close to the endpoints of the principal curve very well. Artificially
extrapolating the fitted LPC beyond its natural endpoints may help to solve
this problem.

4 Outlook

Local principal curves are well suited to compress complex high-dimensional
data structures, as long as the intrinsic dimensionality of the data cloud is
close to one. When the intrinsic dimensionality is two or larger, the extension
to local principal manifolds should be considered. In particular, the GAIA
data may be better approximated by a two-dimensional principal surface.
This would be particular helpful for the prediction of other APs as gravity or
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metallicity, information on which tends to be orthogonal to the principal curve
approximating the predictor space. The work on extending LPC methodol-
ogy to higher-dimensional structures is currently ongoing, based on the idea
of replacing the building block “localized principal component” by suitably
orientated triangles or tetrahedrons.
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