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Abstract In clustering we often face the situation that only a subset of the
available attributes is relevant for forming clusters, even though this may not
be known beforehand. In such cases it is desirable to have a clustering algo-
rithm that automatically weights attributes or even selects a proper subset.
In this paper I study such an approach for fuzzy clustering, which is based on
the idea to transfer an alternative to the fuzzifier [15] to attribute weighting
fuzzy clustering [14]. In addition, by reformulating Gustafson–Kessel fuzzy
clustering, a scheme for weighting and selecting principal axes can be ob-
tained. While in [5] I already presented such an approach for a global selec-
tion of attributes and principal axes, this paper extends it to a cluster-specific
selection, thus arriving at a fuzzy subspace clustering algorithm.

Key words: fuzzy clustering, fuzzifier alternative, feature weighting, feature
selection, subspace clustering

1 Introduction

A serious problem in distance-based clustering is that the more dimensions
(attributes) a datasets has, the more the distances between data points—and
thus also the distances between data points and constructed cluster centers—
tend to become uniform. This, of course, impedes the effectiveness of clus-
tering, as distance-based clustering exploits that these distances differ. In
addition, in practice often only a subset of the available attributes is relevant
for forming clusters, even though this may not be known beforehand. In such
cases it is desirable to have a clustering algorithm that automatically weights
the attributes or even selects a proper subset.
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In general, there are three principles to do feature selection for cluster-
ing. The first is a filter approach (e.g. [8, 13]), which tries to assess and
select features without any explicit reference to the clustering algorithm to
be employed. The second is a wrapper approach (e.g. [7, 9, 6]), which uses a
clustering algorithm as an evaluator for chosen feature subsets and may em-
ploy different search strategies for choosing the subsets to evaluate. The final
approach tries to combine clustering and feature selection by pushing the fea-
ture selection method into the clustering algorithm (e.g. [19, 17]). It should
also be noted that any feature weighting scheme (which may, in itself, employ
any of these three principles) can be turned into a feature selection method
by simply applying a weight threshold to the computed feature weights.

In this paper I study weighting and selecting features in fuzzy clustering
[1, 2, 12, 4]. The core principle is to transfer the idea of an alternative to the
fuzzifier [15] to attribute weighting fuzzy clustering [14]. By reformulating
Gustafson–Kessel fuzzy clustering [11] this can even be extended to a scheme
for weighting and selecting principal axes. While the basics of this approach
were already introduced in [5] for global attribute weighting and selection,
this paper extends this approach to a cluster-specific operation. By carrying
out experiments on artificial as well as real-world data, I show that this
approach works fairly well and may actually be very useful in practice, even
though the fact that it needs a normal fuzzy clustering run for initialization
(otherwise it is not sufficiently robust) still leaves room for improvement.

2 Preliminaries and Notation

Throughout this paper I assume that as input we are given an m-dimensional
data set X that consists of n data points xj = (xj1, . . . , xjm), 1 ≤ j ≤ n.
This data set may also be seen as a data matrix X = (xjk)1≤j≤n,1≤k≤m,
the rows of which are the data points. The objective is to group the data
points into c clusters, which are described by m-dimensional cluster centers
µi = (µi1, . . . , µim), 1 ≤ i ≤ c. These cluster centers as well as the feature
weights that will be derived (as they can be interpreted as cluster shape and
size parameters) are jointly denoted by the parameter set C. The (fuzzy)
assignment of the data points to the cluster centers is described by a (fuzzy)
membership matrix U = (uij)1≤i≤c,1≤j≤n.

3 Attribute Weighting

This section reviews two basic methods to compute attribute weights in fuzzy
clustering. Its main purpose is to contrast these closely related methods and
to set the stage for the attribute selection approach developed in this paper.
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3.1 Axes-parallel Gustafson–Kessel Fuzzy Clustering

A very direct way to determine attribute weights is to apply axes-parallel
Gustafson–Kessel fuzzy clustering [16]. In this case we have to minimize the
objective function

J(X,C,U) =
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

σ−2
i,k (xjk − µik)2

subject to ∀i, 1 ≤ i ≤ c :
∏m
k=1 σ

−2
i,k = 1 and the standard constraints

∀j, 1 ≤ j ≤ n :
∑c
i=1 uij = 1 and ∀i, 1 ≤ i ≤ c :

∑n
j=1 uij > 0. The inverse

variances σ−2
i,k are the desired cluster-specific attribute weights, which have to

be found by optimizing the objective function. The membership transforma-
tion function h is a convex function on the unit interval. Usually h(uij) = uαij
with a user-specified fuzzifier α (most often α = 2) is chosen, but there are
also other suggestions (for example [15]). As the methods discussed in this
paper work with any choice of the function h, its exact form will be left
unspecified in the following. The resulting update rules are

∀i; 1 ≤ i ≤ c : ∀j; 1 ≤ j ≤ n : uij =
d

2
1−α
ij∑c

k=1 d
2

1−α
kj

if h(uij) = uαij ,

where d2
ij =

m∑
k=1

σ−2
i,k (xjk − µik)2

∀i; 1 ≤ i ≤ c : µi =

∑n
j=1 h(uij) xj∑n
j=1 h(uij)

and

∀i; 1 ≤ i ≤ c : ∀k; 1 ≤ k ≤ m : σ2
i,k = s2i,k

( m∏
r=1

s2i,r

)− 1
m

,

where s2i,k =
n∑
j=1

h(uij)(xjk − µik)2.

3.2 Attribute Weighting Fuzzy Clustering

An alternative, but equally simple scheme to obtain attribute weights was
suggested in [14]. The objective function to minimize is

J(X,C,U) =
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

wvik(xjk − µik)2.
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The constraints on the membership degrees uij are the same as for Gustafson–
Kessel fuzzy clustering, but the attribute weight constraint now reads
∀i; 1 ≤ i ≤ c :

∑m
k=1 wik = 1. The additional parameter v controls the

influence of the attribute weights in a similar way as the fuzzifier α (as in
h(uij) = uαij) controls the influence of the membership degrees. The up-
date rules for membership degrees and cluster centers coincide with those of
Gustafson–Kessel fuzzy clustering. The weights are updated according to

∀i; 1 ≤ i ≤ c : ∀k; 1 ≤ k ≤ m : wik =
s

2
1−v
i,k∑m

r=1 s
2

1−v
i,r

with s2i,k defined as in the preceding section. By rewriting the update rule of
Gustafson–Kessel fuzzy clustering (see Section 3.1) as

∀i; 1 ≤ i ≤ c : ∀k; 1 ≤ k ≤ m : σ−2
i,k =

s−2
i,k

(
∏m
r=1 s

−2
i,r )−

1
m

,

the similarities and differences become very obvious: they consist in a different
normalization (sum instead of product) and the additional parameter v.

4 Attribute Selection

The methods reviewed above yield attribute weights either as inverse vari-
ances σ−2

i,k or directly as weights wik, 1 ≤ i ≤ c, 1 ≤ k ≤ m. It is important
to note that in both cases it is impossible that any attribute weight vanishes.
Therefore a modification of the approach is necessary in order to select at-
tributes (which may be achieved by allowing attribute weights to become 0).

The core idea of the proposed attribute selection method is to transfer the
analysis of the effect of the fuzzifier α (as in h(uij) = uαij) and its possible
alternatives, as it was carried out in [15], to attribute weights. As [15] showed,
it is necessary to apply a convex function h(·) to the membership degrees in
order to achieve a fuzzy assignment. Raising the membership degrees uij to a
user-specified power (namely the fuzzifier α) is, of course, such a convex func-
tion, but has the disadvantage that it forces all assignments to be fuzzy (that
is, to differ from 0 and 1). The reason is that the derivative of this function
vanishes at 0. If we want to maintain the possibility of crisp assignments, we
rather have to choose a function h with h′(0) > 0.

With the approach of attribute weighting fuzzy clustering it becomes pos-
sible to transfer this idea to the transformation of the attribute weights. That
is, instead of raising them to the power v as in [14], we may transform them by

g(x) = αx2 + (1− α)x with α ∈ (0, 1].
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The same function was suggested as an alternative transformation of the
membership degrees in [15], and a fuzzy clustering algorithm was derived
that allowed for crisp (and thus in particular: vanishing) memberships in case
the distances of a data point to different clusters differed considerably. Here
the idea is that the same method applied to attribute weights should allow
us to derive a fuzzy clustering algorithm that assigns zero weights to some
attributes, thus effectively selecting attributes during the clustering process.

However, as was also discussed in [15], the above function has the dis-
advantage that its parameter α is difficult to interpret and thus difficult to
choose adequately. Fortunately, [15] also provided a better parameterization:

g(x) =
1− β
1 + β

x2 +
2β

1 + β
x with β ∈ [0, 1).

Generally, we now have to minimize the objective function

J(X,C,U) =
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

g(wik)(xjk − µik)2

subject to ∀i :
∑m
k=1 wik = 1 with g(x) = 1−β

1+β x
2 + 2β

1+β x where β ∈ [0, 1).
The constraints on the membership degrees (see Section 3.1), of course, also
apply. This leads to the update rule

∀i; 1 ≤ i ≤ c : ∀k; 1 ≤ k ≤ m : wik =
1

1− β

(
1 + β(mi⊕ − 1)∑m
r=1;wir>0 s

−2
i,r

s−2
i,k − β

)

where mi⊕ = max

{
k

∣∣∣∣∣ s−2
i,ς(k) >

β

1 + β(k − 1)

k∑
r=1

s−2
i,ς(r)

}
.

Here ς(·) is a function that describes the permutation of the indices that sorts
the s−2

i,k into descending order (that is, s−2
i,ς(1) ≥ s

−2
i,ς(2) ≥ . . .).

5 Principal Axes Weighting

A standard problem of attribute weighting and selection approaches is that
correlated attributes will receive very similar weights or will both be selected,
even though they are obviously redundant. In order to cope with this problem,
an approach in the spirit of principal component analysis may be used: instead
of weighting and selecting attributes, one may try to find (and weight) linear
combinations of the attributes, and thus (principal) axes of the data set. This
section shows how the methods of Section 3 can be extended to principal
axes weighting by reformulating Gustafson–Kessel fuzzy clustering so that
the specification of the (principal) axes and their weights is separated.
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5.1 Gustafson–Kessel Fuzzy Clustering

Standard Gustafson-Kessel fuzzy clustering uses a (cluster-specific) Maha-
lanobis distance, which is based on cluster-specific covariance matrices Σi,
i = 1, . . . , c. The objective function is

J(X,C,U) =
c∑
i=1

n∑
j=1

h(uij)(xj − µi)>Σ−1
i (xj − µi),

which is to be minimized subject to the constraints ∀i; 1 ≤ i ≤ c : |Σ−1
i | = 1

(intuitive interpretation: fixed cluster volume) and the standard constraints
∀j, 1 ≤ j ≤ n :

∑c
i=1 uij = 1 and ∀i, 1 ≤ i ≤ c :

∑n
j=1 uij > 0. The resulting

update rule for the covariance matrices Σi is

∀i; 1 ≤ i ≤ c : Σi = Si|Si|
− 1
m

where S =
n∑
j=1

h(uij)(xj − µi)(xj − µi)>.

In order to obtain explicit weights for (principal) axes, we observe that, since
the Σi are symmetric and positive definite matrices, they possess an eigen-
value decomposition Σi = RiD2

iR
>
i with Di = diag(σi,1, . . . , σi,m) (i.e.,

eigenvalues σ2
i,1 to σ2

i,m) and orthogonal matrices Ri, the columns of which
are the corresponding eigenvectors.1 This enables us to write the inverse of a
covariance matrix Σi as Σ−1

i = TiT>i with Ti = RiD−1
i . As a consequence,

we can rewrite the objective function as

J(X,C,U) =
c∑
i=1

n∑
j=1

h(uij)(xj − µi)>TiT>i (xj − µi)

=
c∑
i=1

n∑
j=1

h(uij)((xj − µi)>RiD−1
i )((xj − µi)>RiD−1

i )>

=
c∑
i=1

n∑
j=1

h(uij)
m∑
k=1

σ−2
i,k

( m∑
l=1

(xjl − µil)ri,lk
)2

.

In this form the scaling and the rotation of the data space that are encoded
in the covariance matrices Σi are nicely separated: the former is represented
by the variances σ2

i,k, k = 1, . . . ,m (or their inverses σ−2
i,k ), the latter by

the orthogonal matrices Ri. In other words: the inverse variances σ−2
i,k (the

eigenvalues of Σ−1
i ) provide the desired axes weights, while the corresponding

eigenvectors (the columns of Ri) indicate the (principal) axes.

1 Note that the eigenvalues of a symmetric and positive definite matrix are all positive and
thus it is possible to write them as squares.
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5.2 Reformulation of
Gustafson–Kessel Fuzzy Clustering

In order to transfer the approach of [14] and the one developed in Section 4,
we start from the rewritten objective function, in which the scaling and the
rotation of the data space are separated and thus can be treated indepen-
dently. Deriving the update rule for the scaling factors σ−2

i,k is trivial, since
basically the same result is obtained as for axes-parallel Gustafson–Kessel
fuzzy clustering (see Section 3.1), namely

σ2
i,k = s2i,k

( m∏
r=1

s2i,r

)− 1
m

,

with the only difference that now we have

s2i,k =
n∑
j=1

h(uij)
( m∑
l=1

(xjl − µil)ri,lk
)2

.

Note that this update rule reduces to the update rule for axes-parallel
Gustafson–Kessel clustering derived in Section 3.1 if Ri = 1 (where 1 is
an m×m unit matrix), which provides a simple sanity check of this rule.

In order to derive an update rule for the orthogonal matrix Ri, we have to
take into account that in contrast to how the covariance matrix Σi is treated
in normal Gustafson–Kessel fuzzy clustering, there is an additional constraint,
namely that Ri must be orthogonal, that is, R>i = R−1

i . This constraint
can conveniently be expressed by requiring RiR>i = 1. Incorporating this
constraint2 into the objective function yields the Lagrange functional

L(X,C,U,L) =
c∑
i=1

n∑
j=1

h(uij)((xj − µi)>RD−1)((xj − µi)>RD−1)>

+
c∑
i=1

trace
(
Λi(1−RiR>i )

)
,

where L = {Λ1, . . . ,Λc} is a set of symmetric m ×m matrices of Lagrange
multipliers and trace(·) is the trace operator, which for an m×m matrix M is
defined as trace(M) =

∑m
k=1mkk. The resulting update rule3 for the rotation

matrices is Ri = Oi, where Oi is derived from the eigenvalue decomposition
of Si =

∑n
j=1 h(uij)(xj − µi)(xj − µi)>, that is, from Si = OiE

2
iO
>
i where

Ei = diag(ei,1, . . . , ei,m) is a diagonal matrix containing the eigenvalues.

2 Note that, in principle, the orthogonality constraint alone is not enough as it is compatible
with |Ri| = −1, while we need |Ri| = 1. However, the unit determinant constraint is
automatically satisfied by the solution and thus we can avoid incorporating it.
3 Note that this rule satisfies |R| = 1 as claimed in the preceding footnote.
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β = 0.3 X Y Z U1 U2 U3

w1,k 0.63 0.37 — — — —

w2,k 0.13 — 0.87 — — —

w3,k — 0.29 0.71 — — —

β = 0.4 X Y Z U1 U2 U3

w1,k 1.00 — — — — —
w2,k — — 1.00 — — —

w3,k — 0.28 0.72 — — —

Fig. 1 Artificial data set with three Gaussian clusters and 300 data points.

6 Principal Axes Selection

In analogy to the transition from attribute weighting (Section 3) to attribute
selection (Section 4), it is possible to make the transition from (principal) axes
weighting (Section 5) to (principal) axes selection (this section): we simply
replace the update rule for the weights (which are now separate from the
axes) with the one obtained in Section 4. This leads to the update rule

∀i; 1 ≤ i ≤ c : ∀k; 1 ≤ k ≤ m : wik =
1

1− β

(
1 + β(mi⊕ − 1)∑m
r=1;wir>0 s

−2
i,r

s−2
i,k − β

)
.

with si,k defined as in Section 5.2 and mi⊕ as defined in Section 4.

7 Experiments

Of all experiments I conducted with the described method on various data
sets, I report only a few here, due to limitations of space. Since experimental
results for a global weighting and selection of attributes can be found in [5],
I confine myself here to cluster-specific attribute weighting and selection.

Figures 1, 2 and 3 show two artificial and one real-world data set and
the clustering results obtained on them. In all three cases the algorithm
was initialized by axes-parallel Gustafson–Kessel fuzzy clustering (see Sec-
tion 3.1), which was run until convergence. (Without such an initialization
the results were not quite stable.) As can be seen from these results, the
method is promising and may actually be very useful in practice. In all three
cases uninformative attributes were nicely removed (received weights of zero
or coefficients close to zero), while the informative attributes received high
weights, which nicely reflect the structure of the data set.
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β = 0.5 X Y U1 U2 U3

r1 −0.66 0.76 0.02 −0.02 0.00
r2 0.67 0.74 0.00 −0.02 0.01

Fig. 2 Artificial data set with two Gaussian clusters and 200 data points.

• β = 0.5 selects attributes 2, 10, and

13 (one attribute per cluster).
• β = 0.3 selects the attribute sets

{7, 10, 12}, {6, 7, 12, 13}, and {2}.
• Clustering the subspace spanned by

attributes 7, 10 and 13 yields:

β = 0.3 att7 att10 att13

w1,k — — 1.00

w2,k — 1.00 —
w3,k 0.77 0.23 —

Fig. 3 The wine data set, a real-world data set with three classes and 178 data points.

The diagram shows attributes 7, 10 and 13.

8 Summary

In this paper I introduced a method for selecting attributes in fuzzy clustering
that is based on the idea to transfer an alternative to the fuzzifier, which
controls the influence of the membership degrees, to attribute weights. This
allows the attribute weights to vanish and thus effectively selects and weights
attributes at the same time. In addition, a reformulation of Gustafson–Kessel
fuzzy clustering separates the weights and the directions of the principal axes,
thus making it possible to extend the scheme to a weighting and selection
of principal axes, which helps in dealing with correlated attributes. Using
this scheme in a cluster-specific fashion yields a fuzzy subspace clustering
approach, in which each cluster is formed in its own particular subspace.

Software

The program used for the experiments as well as its source code can be
retrieved free of charge under the GNU Lesser (Library) Public License at

http://www.borgelt.net/cluster.html
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