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Abstract. Particle Swarm Optimization (PSO) algorithm is a stochastic
search technique, which has exhibited good performance across a wide range
of applications. However, very often for multi-modal problems involving high
dimensions the algorithm tends to suffer from premature convergence. Pre-
mature convergence could make the PSO algorithm very difficult to arrive at
the global optimum or even a local optimum. Analysis of the behavior of the
particle swarm model reveals that such premature convergence is mainly due
to the decrease of velocity of particles in the search space that leads to a total
implosion and ultimately fitness stagnation of the swarm. This paper intro-
duces Turbulence in the Particle Swarm Optimization (TPSO) algorithm to
overcome the problem of stagnation. The algorithm uses a minimum velocity
threshold to control the velocity of particles. TPSO mechanism is similar to a
turbulence pump, which supplies some power to the swarm system to explore
new neighborhoods for better solutions. The algorithm also avoids clustering
of particles and at the same time attempts to maintain diversity of popula-
tion. We attempt to theoretically analyze that the algorithm converges with a
probability of 1 towards the global optimal. The parameter, the minimum ve-
locity threshold of the particles is tuned adaptively by a fuzzy logic controller
embedded in the TPSO algorithm, which is further called as Fuzzy Adaptive
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TPSO (FATPSO). We evaluated the performance of FATPSO and compared
it with the Standard PSO (SPSO), Genetic Algorithm (GA) and Simulated
Annealing (SA). The comparison was performed on a suite of 20 widely used
benchmark problems. Empirical results illustrate that the FATPSO could
prevent premature convergence very effectively. It clearly outperforms the
considered methods, especially for high dimension multi-modal optimization
problems.

1 Introduction

Particle Swarm Optimization (PSO) algorithm is mainly inspired by social
behaviour patterns of organisms that live and interact within large groups.
In particular, PSO incorporates swarming behaviours observed in flocks of
birds, schools of fish, or swarms of bees, and even human social behavior, from
which the idea of swarm intelligence is emerged ([14]). It could be applied
to solve various function optimization problems, or the problems that can be
transformed to function optimization problems. PSO has exhibited good per-
formance across a wide range of applications ([19, 15, 25, 26, 1, 21, 5, 22]).
However, its performance deteriorates as the dimensionality of the search
space increases, especially for multi-modal optimization problems ([13, 20]).
PSO algorithm often demonstrates faster convergence speed in the first phase
of the search, and then slows down or even stops as the number of genera-
tions is increased. Once the algorithm slows down, it is difficult to achieve
better fitness values. This state is called as stagnation or premature conver-
gence. The trajectory of particles was given a lot of importance rather than
their velocities. In this paper, we attempt to discuss the relation between
the algorithm convergence and the velocities of the particles. It is found that
the stagnation state is mainly due to a decrease of velocity of particles in
the search space which leads to a total implosion and ultimately fitness stag-
nation of the swarm. We introduce Turbulent Particle Swarm Optimization
(TPSO) algorithm to improve the optimization performance and overcome
the premature convergence problem. The basic idea is to drive those lazy
particles and get them to explore new search spaces. TPSO uses a minimum
velocity threshold to control the velocity of particles and also avoids clus-
tering of particles and maintains diversity of population in the search space.
The minimum velocity threshold of the particles is tuned adaptively by us-
ing a fuzzy logic controller in the algorithm, which is further called as Fuzzy
Adaptive TPSO (FATPSO).

The Chapter is organized as follows. Particle swarm optimization is re-
viewed briefly and the effects on the change of the velocities of particles are
analyzed in Section 2. In Section 3, we describe the TPSO model and the
fuzzy adaptive processing method. Experiment settings, results and discus-
sions are given in Section 4 followed by some conclusions in the last Section.
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2 Particle Swarm Optimization

Particle swarm optimization refers to a relatively new family of algorithms
that may be used to find optimal (or near optimal) solutions to numerical
and qualitative problems. Some researchers have done much work on its study
and development during the recent years ([29, 20, 16, 12]). We review briefly
the standard particle swarm model, and then analyze the various effects in
the change in the velocities of particles.

2.1 Standard Particle Swarm Model

The particle swarm model consists of a swarm of particles, which are initial-
ized with a population of random candidate solutions. They move iteratively
through the d-dimension problem space to search the new solutions, where
the fitness f can be calculated as the certain qualities measure. Each parti-
cle has a position represented by a position-vector pi (i is the index of the
particle), and a velocity represented by a velocity-vector vi. Each particle re-
members its own best position so far in a vector p#

i , and its j-th dimensional
value is p#

ij . The best position-vector among the swarm so far is then stored
in a vector p∗, and its j-th dimensional value is p∗j . During the iteration time
t, the update of the velocity from the previous velocity to the new velocity
is determined by Eq.(1). The new position is then determined by the sum of
the previous position and the new velocity by Eq.(2).

vij(t) = wvij(t − 1) + c1r1(p
#
ij(t − 1) − pij(t − 1))

+ c2r2(p∗j (t − 1) − pij(t − 1))
(1)

pij(t) = pij(t − 1) + vij(t) (2)

where r1 and r2 are the random numbers, uniformly distributed within the
interval [0,1] for the j-th dimension of i-th particle. c1 is a positive constant,
called as coefficient of the self-recognition component, c2 is a positive con-
stant, called as coefficient of the social component. The variable w is called
as the inertia factor, which value is typically setup to vary linearly from 1 to
near 0 during the iterated processing. From Eq.(1), a particle decides where
to move next, considering its own experience, which is the memory of its best
past position, and the experience of its most successful particle in the swarm.

In the particle swarm model, the particle searches the solutions in the
problem space within a range [−s, s] (If the range is not symmetrical, it can
be translated to the corresponding symmetrical range). In order to guide the
particles effectively in the search space, the maximum moving distance during
one iteration is clamped in between the maximum velocity [−vmax, vmax]
given in Eq.(3), and similarly for its moving range given in Eq.(4):
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vi,j = sign(vi,j)min(|vi,j | , vmax) (3)

pi,j = sign(pi,j)min(|pi,j | , pmax) (4)

The value of vmax is α× s, with 0.1 ≤ α ≤ 1.0 and is usually chosen to be
s, i.e. α = 1.

2.2 Velocities Analysis in Particle Swarm

Some previous studies have discussed the trajectory of particles and the con-
vergence of the algorithm ([3, 29, 27]). It has been shown that the trajectories
of the particles oscillate as different sinusoidal waves and converge quickly,
sometimes prematurely. We analyze the effects of the change in the velocities
of particles.

The gradual change of the particle’s velocity can be explained geometri-
cally. During each iteration, the particle is attracted towards the location of
the best fitness achieved so far by the particle itself and by the location of
the best fitness achieved so far across the whole swarm. From Eq.(1), vi,j can
attain a smaller value, but if the second term and the third term in RHS
of Eq.(1) are both small, it cannot resume a larger value and could eventu-
ally loose the exploration capabilities in the future iterations. Such situations
could occur even in the early stages of the search. When the second term and
the third term in RHS of Eq.(1) are zero, vi,j will be damped quickly with
the ratio of w. In other words, if a particle’s current position coincides with
the global best position/particle, the particle will only move away from this
point if its previous velocity and w are non-zero. If their previous velocities
are very close to zero, then all the particles will stop moving once they catch
up with the global best particle, which many lead to premature convergence.
In fact, this does not even guarantee that the algorithm has converged to a
local minimum and it merely means that all the particles have converged to
the best position discovered so far by the swarm. This state owes to the sec-
ond term and the third term in the RHS of Eq.(1), the cognitive components
of the PSO. But if the cognitive components of the PSO algorithm are in-
validated, all particles always search the solutions using the initial velocities.
Then the algorithm is merely a degenerative stochastic search without the
characteristics of PSO.

3 Turbulent Swarm Optimization

We introduce a new velocity update approach for the particles in PSO, and
analyze its effect on the particle’s behavior. We also illustrate a Fuzzy Logic
Controller (FLC) scheme to adaptively control the parameters ([11, 30, 17]).
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3.1 Velocity Update of the Particles

As discussed in the previous Section, one of the main reason for premature
convergence of PSO is due to the stagnation of the particles exploration of
a new search space. We introduce a strategy to drive those lazy particles
and let them explore better solutions. If a particle’s velocity decreases to a
threshold vc, a new velocity is assigned using Eq.(6). Thus, we present the
turbulent particle swarm optimization using new velocity update equations:

vij(t) = wv̂ + c1r1(x
#
ij(t − 1) − xij(t − 1))

+ c2r2(x∗
j (t − 1) − xij(t − 1))

(5)

v̂ =

{
vij if |vij | ≥ vc

u(−1, 1)vmax/ρ if |vij | < vc

(6)

where u(−1, 1) is the random number, uniformly distributed with the inter-
val [-1,1], and ρ is the scaling factor to control the domain of the particle’s
oscillation according to vmax. vc is the minimum velocity threshold, a tunable
threshold parameter to limit the minimum of the particles’ velocity. Fig. 1 illus-
trates the trajectory of a single particle in standard particle swarm optimiza-
tion (SPSO) and turbulent particle swarm optimization (TPSO) respectively.

The change of the particle’s situation is directly correlated to two parame-
ter values, vc and ρ. A large vc shortens the oscillation period, and it provides
a great probability for the particles to leap over local minima using the same
number of iterations. But a large vc compels particles in the quick “flying”
state, which leads them not to search the solution and forcing them not to
refine the search. In other words, a large vc facilitates a global search while a
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Fig. 1 Trajectory of a single particle



296 A. Abraham and H. Liu

smaller value facilitates a local search. By changing it dynamically, the search
ability is dynamically adjusted. The value of ρ changes directly the particle
oscillation domain. It is possible for particles not to jump over the local min-
ima if there would be a large local minimum available in the objective search
space. But the particle trajectory would more prone to oscillate because of
a smaller value of ρ. For the desired exploration-exploitation trade-off, we
divide the particle search into three stages. In the first stage the values for vc

and ρ are set at large and small values respectively. In the second stage, vc

and ρ are set at medium values and in the last stage, vc is set at a small value
and ρ is set at a large value. This enable the particles to take very large steps
to explore solutions in the early stages, by scanning the whole solution space
for good local minima and then in the final stages particles perform a fine
grain search. The use of fuzzy logic would be suitable for dynamically tun-
ing the velocity threshold, since it starts a run with an initial value which is
changed during the run. By using the fuzzy control approach, the parameters
can be adaptively regulated according to the problem environment.

3.2 Fuzzy Parameter Control

A Fuzzy Logic Controller (FLC) is composed of a knowledge base, that in-
cludes the information given by the expert in the form of linguistic control
rules, a fuzzification interface, which has the effect of transforming crisp data
into fuzzy sets, an inference system, that uses them together with the knowl-
edge base to make inference by means of a reasoning method, and a defuzzi-
fication interface, that translates the fuzzy control action thus obtained to a
real control action using a defuzzification method [4]. The generic structure
of an FLC is shown in Figure 2.

Fuzzification
Interface

Defuzzification
Interface

Inference
System

Knowledge
Base

Controlled
System

Control VariablesState Variables

Fig. 2 Generic structure of an FLC

In the proposed algorithm, two variables are selected as inputs to the
fuzzy system: the Current Best Performance Evaluation (CBPE) ([24]) and
the Current Velocity (CV ) of the particle. For adapting to a wide range of
optimization problems, CBPE is normalized as Eq.(7):
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NCBPE =
CBPE − CBPEmin

CBPEmax − CBPEmin
(7)

where CBPEmin is the estimated (or real) minimum, CBPEmax is the worst
solution to the minimization problem, which usually is the CBPE at half
the number of iterations. If we do not have any prior information about the
objective function and if it is difficult to estimate CBPEmin and CBPEmax,
we can do some preliminary experiments by decreasing linearly from 1 to 0
during the run. One of the output variables is ρ, the scaling factor to control
the domain of the particle’s oscillation. Another is V ck, which controls the
change of the velocity threshold according to Eq.(8):

vc = e − [10(1 + V ck)] (8)

The fuzzy inference system is listed briefly as follows:
[System]
Name=‘FATPSO’

[Input1] Name=‘NCBPE’
Range=[0 1]
NumMFs=3
MF1=‘Low’:‘gaussmf’, [0.005 0]
MF2=‘Medium’:‘gaussmf’, [0.03 0.1]
MF3=‘High’:‘gaussmf’, [0.25 1]

[Input2]
Name=‘CV ’
Range=[0 1e-006]
NumMFs=2
MF1=‘Low’:‘trapmf’, [0 0 1e-030 1e-020]
MF2=‘High’:‘trapmf’, [1e-010 1e-008 1e-006 1e-006]

[Output1]
Name=‘V ck’
Range=[-1 2.2]
NumMFs=3
MF1=‘Low’:‘trimf’, [-1 -0.8 -0.5]
MF2=‘Medium’:‘trimf’, [-0.6 0 0.2]
MF3=‘High’:‘trimf’, [0.1 1.1 2.2]

[Output2]
Name=‘ρ’
Range=[1 120]
NumMFs=3
MF1=‘Small’:‘trimf’, [1 1 4]
MF2=‘Medium’:‘trimf’, [2.214 10.71 59.29]
MF3=‘Large’:‘trimf’, [47.15 120 120]
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[Rules]
1 1, 3 0 (1) : 1
2 0, 2 0 (1) : 1
3 2, 1 0 (1) : 1
1 1, 0 3 (1) : 2
2 0, 0 2 (1) : 2
3 2, 0 1 (1) : 2

In the above mentioned list, there are three parts: the first part is the
configuration of the fuzzy system, the second one is the definition of the
membership functions, and the third one is the rule base. There are two inputs
and two outputs based on six rules. In the rule base, the first two columns
correspond to the input variables, the second two columns correspond to the
output variables, the fifth column displays the weight applied to each rule,
and the sixth column is short form that indicates whether this is an AND
(1) rule or an OR (2) rule. The numbers in the first four columns refer to the
index number of the membership function, in which the number 1 encodes
fuzzy set ‘Low’, 2 encodes ‘Medium’, and 3 encodes ‘High’. For example,
the first rule is “If (NCBPE is Low) and (CV is Low) then (V ck is High)
with the weight 1”. The general structure of the FATPSO is illustrated in
Algorithm 1.

Algorithm 1. FATPSO
01. Initialize parameters and the particles
02. While (the end criterion is not met) do
03. t = t + 1
04. Calculate the fitness value of each particle
05. x∗ = argminn

i=1(f(x∗(t − 1)), f(x1(t)),
06. f(x2(t)), · · · , f(xi(t)), · · · , f(xn(t)))
07. For i= 1 to n
08. x#

i (t) = argminn
i=1(f(x#

i (t − 1)), f(xi(t))
09. For j = 1 to d
10. If abs(vij) < 1e − 6
11. Obtain the velocity threshold
12. {
13. fismat = readfis(‘FATPSO.fis’)
14. FO = evalfis([NCBPE CV ], fismat)
15. }
16. Endif
17. Update the j-th dimension value of xi

18. and vi according to Eqs. (1), (2) and (3)
19. Next j
20. Next i
21. End While



Turbulent PSO Using Fuzzy Parameter Tuning 299

4 Convergence Analysis of TPSO

For analyzing the convergence of the proposed algorithm, we first introduce
the definitions and lemmas [8, 9, 10], and then theoretically prove that the
proposed variable neighborhood particle swarm algorithm converges with a
probability 1 or strongly towards the global optimal.

Consider the problem (P ) as

(P ) =

{
minf(x)
x ∈ Ω = [−s, s]n

(9)

where x = (x1, x2, · · · , xn)T . x∗ is the global optimal solution to the problem
(P ), let f∗ = f(x∗). Let

D0 = {x ∈ Ω|f(x) − f∗ < ε} (10)
D1 = Ω \ D0

for every ε > 0.
Assume that the i-th dimensional value of the particle’s velocity decreases

to a threshold vc, then the shaking strategy is activated, and a turbulent
velocity is generated by Eq.(6). In u(−1, 1)vmax/ρ, u(−1, 1) is a normal dis-
tributed random number within the interval [-1,1], and the scaling factor ρ
is a positive constant to control the domain of the particle’s oscillation ac-
cording to vmax. Therefore the turbulent velocity v̂ belongs to the normal
distribution. If vmax = s, then v̂ ∼ [− s

ρ , s
ρ ]. During the iterated procedure

from the time t to t + 1, let qij denote that x(t) ∈ Di and x(t + 1) ∈ Dj .
Accordingly the particles’ positions in the swarm could be classified into four
states: q00, q01, q10 and q01. Obviously q00 + q01 = 1, q10 + q11 = 1.

Definition 1 (Convergence in terms of probability). Let ξn a sequence
of random variables, and ξ a random variable, and all of them are defined
on the same probability space. The sequence ξn converges with a probability
of ξ if

lim
n→∞P (|ξn − ξ| < ε) = 1 (11)

for every ε > 0.

Definition 2 (Convergence with a probability of 1). Let ξn a sequence
of random variables, and ξ a random variable, and all of them are defined
on the same probability space. The sequence ξn converges almost surely or
almost everywhere or with probability of 1 or strongly towards ξ if

P

(
lim

n→∞ ξn = ξ

)
= 1; (12)

or
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P

( ∞⋂
n=1

⋃
k≥n

[|ξn − ξ| ≥ ε]
)

= 0 (13)

for every ε > 0.

Lemma 1 (Borel-Cantelli Lemma). Let {Ak}∞k=1 be a sequence of events
occurring with a certain probability distribution, and let A be the event con-
sisting of the occurrences of a finite number of events Ak for k = 1, 2, · · · .
Then

P

( ∞⋂
n=1

⋃
k≥n

Ak

)
= 0 (14)

if
∞∑

n=1

P (An) < ∞; (15)

P

( ∞⋂
n=1

⋃
k≥n

Ak

)
= 1 (16)

if the events are totally independent and

∞∑
n=1

P (An) = ∞. (17)

Lemma 2 (Particle State Transference). q01 = 0; q00 = 1; q11 ≤ c ∈
(0, 1) and q10 ≥ 1 − c ∈ (0, 1).

Proof. In the proposed algorithm, the best solution is updated and saved
during the whole iterated procedure. So q01 = 0 and q00 = 1.

Let x̂ is the position with the best fitness among the swarm so far as the
time t, i.e. x̂ = p∗. As the definition in Eq. (10), ∃r > 0, when ‖x− x̂‖∞ ≤ r,
we have |f(x)− f∗| < ε. Denote Qx̂,r = {x ∈ Ω|‖x− x̂‖∞ ≤ r}. Accordingly

Qx̂,r ⊂ D0 (18)

Then,

P{(x + Δx) ∈ Qx̂,r} =
n∏

i=1

P{|xi + Δxi − x̂i| ≤ r} (19)

=
n∏

i=1

P{x̂i − xi − r ≤ Δxi ≤ x̂i − xi + r}

where xi, Δxi and x̂i are the i-th dimensional values of x, Δx and x̂, respec-
tively. Moreover, v̂ ∼ [− s

ρ , s
ρ ], so that
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P ((x + Δx) ∈ Qx̂,r) =
n∏

i=1

∫ x̂i−xi+r

x̂i−xi−r

ρ

2
√

2πs
e−

ρ2y2

2s2 dy (20)

Denote P1(x) = P{(x + Δx) ∈ Qx̂,r} and C is the convex closure of level set
for the initial particle swarm. According to Eq. (20), 0 < P1(x) < 1 (x ∈ C).
Again, since C is a bounded closed set, so ∃ŷ ∈ C,

P1(ŷ) = min
x∈C

P1(x), 0 < P1(ŷ) < 1. (21)

Considering synthetically Eqs. (18) and (21), so that

q10 ≥ P1(x) ≥ P1(ŷ) (22)

Let c = 1 − P1(ŷ), thus,

q11 = 1 − q10 ≤ 1 − P1(ŷ) = c (0 < c < 1) (23)

and
q10 ≥ 1 − c ∈ (0, 1) (24)

�

Theorem 1. Assume that the TPSO algorithm provides position series
pi(t)(i = 1, 2, · · · , n) at time t by the iterated procedure. p∗ is the best position
among the swarm explored so far, i.e.

p∗(t) = arg min
1≤i≤n

(f(p∗(t − 1)), f(pi(t))) (25)

Then,

P

(
lim

t→∞ f(p∗(t)) = f∗
)

= 1 (26)

Proof. For ∀ε > 0, let pk = P{|f(p∗(k)) − f∗| ≥ ε}, then

pk =

{
0 if ∃T ∈ {1, 2, · · · , k}, p∗(T ) ∈ D0

p̄k if p∗(t) /∈ D0, t = 1, 2, · · · , k
(27)

According to Lemma 2,

p̄k = P{p∗(t) /∈ D0, t = 1, 2, · · · , k} = qk
11 ≤ ck. (28)

Hence,
∞∑

k=1

pk ≤
∞∑

k=1

ck =
c

1 − c
< ∞. (29)

According to Lemma 1,
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P

( ∞⋂
t=1

⋃
k≥t

|f(p∗(k)) − f∗| ≥ ε

)
= 0 (30)

As defined in Definition 2, the sequence f(p∗(t)) converges almost surely or
almost everywhere or with probability 1 or strongly towards f∗. The theorem
is proven. �

5 Experiments and Discussions

In our experiments the algorithms used for comparison were mainly SPSO
(standard PSO) ([6]), FATPSO (fuzzy adaptive turbulent PSO), Genetic Al-
gorithm(GA) ([2]) and Simulated Annealing (SA) ([18, 28]). The four algo-
rithms share many similarities. GA and SA are powerful stochastic global
search and optimization methods, which are also inspired from the nature
like the PSO.

Genetic algorithms mimic an evolutionary natural selection process. Gen-
erations of solutions are evaluated according to a fitness value and only those
candidates with high fitness values are used to create further solutions via
crossover and mutation procedures.

Simulated annealing is based on the manner in which liquids freeze or
metals re-crystalize in the process of annealing. In an annealing process, a

Table 1 Parameter settings for the algorithms

SPSO
Swarm size 20
Self-recognition coefficient c1 1.49
Social coefficient c2 1.49
Inertia weight w 0.9 → 0.1

FATPSO
Swarm size 20
Self-recognition coefficient c1 1.49
Social coefficient c2 1.49
Inertia weight w 0.7

GA
Size of the population 20
Probability of crossover 0.8
Probability of mutation 0.02

SA
Number operations before

temperature adjustment 20
Number of cycles 10
Temperature reduction factor 0.85
Vector for control step

of length adjustment 2
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Table 2 Numerical benchmark functions

Rosenbrock (f1):
f1 =

∑n
i=1(100(xi+1 − x2

i )
2 + (xi − 1)2);

x ∈ [−2.048, 2.048]n ,
min(f1(x

∗)) = f1(1) = 0.
Quadric (f2):

f2 =
∑n

i=1(
∑i

j=1 xj)
2;

x ∈ [−100, 100]n,
min(f2(x

∗)) = f2(0) = 0.
Schwefel 2.22 (f3):

f3 =
∑n

i=1 |xi| + ∏n
i=1 |xi|;

x ∈ [−10, 10]n,
min(f3(x

∗)) = f3(0) = 0.
Schwefel 2.26 (f4):

f4 = 418.9829n − ∑n
i=1(xisin(

√|xi|));
x ∈ [−500, 500]n,
min(f4(x

∗)) = f4(420.9687) ≈ 0.
Levy (f5):

f5(x) = π
n

(
ksin2(πy1) +

∑n−1
i=1 ((yi − a)2

(1 + ksin2(πyi+1))) + (yn − a)2
)
,

yi = 1 + 1
4
(xi − 1), k = 10, a = 1;

x ∈ [−10, 10]n,
min(f5(x

∗)) = f5(1) = 0.
Generalized Shubert (f6):

f6 =
∏n

i=1

∑5
j=1(jcos((j + 1)xi + j));

x ∈ [−10, 10]n,
min(f6(x

∗)) is unknown.
Rastrigin (f7):

f7 =
∑n

i=1(x
2
i − 10cos(2πxi) + 10)

x ∈ [−5.12, 5.12]n,
min(f7(x

∗)) = f7(0) = 0.
Griewank (f8):

f8 = 1
4000

∑n
i=1 x2

i − ∏n
i=1 cos( xi√

i
) + 1;

x ∈ [−300, 300]n,
min(f8(x

∗)) = f8(0) = 0.
Ackley (f9):

f9 = −20exp(−0.2
√

1
n

∑n
i x2

i )

−exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e;

x ∈ [−32, 32]n,
min(f9(x

∗)) = f9(0) = 0.
Zakharov (f10):

f10 =
∑n

i x2
i + (

∑n
i

1
2
ixi)

2 + (
∑n

i
1
2
ixi)

4;
x ∈ [−10, 10]n,
min(f10(x

∗)) = f10(0) = 0.
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Fig. 3 30-D Quadric (f2) function performance
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Fig. 4 100-D Quadric (f2) function performance

melt, initially at high temperature and disordered, is slowly cooled so that
the system at any time is approximately in thermodynamic equilibrium. In
terms of computational simulation, a global minimum would correspond to
such a “frozen”(steady) ground state at the temperature T = 0.

Both methods are valid and efficient methods in numeric programming
and have been employed in various fields due to their strong convergence
properties. In the experiments, the specific parameter settings for each of the
considered algorithms are described in Table 1. Each algorithm was tested
with all the numerical functions shown in Table 2. The first two functions,
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Fig. 5 30-D Schwefel 2.26 (f4) function performance
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Fig. 6 100-D Schwefel 2.26 (f4) function performance

namely Rosenbrock’s and Quadric function, have a single minimum, while
the other functions are highly multimodal with multiple local minima. A new
function, Generalized Shubert was constructed temporarily for which global
minimum function is unknown for us. It is also useful for us to validate the
algorithms without knowing the optimal value. Some of the functions have
the sum of their variables, some of them have the product (multiplying),
some of them have dimensional effect (ixi). We tested the algorithms on the
different functions in 30 and 100 dimensions, yielding a total of 20 numerical
benchmarks. For each of these functions, the goal was to find the global
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Fig. 7 30-D Levy (f5) function performance
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Fig. 8 100-D Levy (f5) function performance

minima. Each algorithm (for each benchmark) was repeated 10 times with
different random seeds. Each trial used a fixed number of 18,000 iterations.
The objective functions were evaluated 360,000 times in each trial. Since the
swarm size in all PSOs was 20, the size of the population in GA was 20 and
the number operations before temperature adjustment (SA) were 20. The
average fitness values of the best solutions throughout the optimization run
were recorded and the averages and the standard deviations were calculated
from the 10 different trials. The standard deviation indicates the differences
in the results during the 10 different trials.
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Fig. 9 30-D Griewank (f8) function performance
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Fig. 10 100-D Griewank (f8) function performance

Figures 3 to 12 illustrate the mean best function values for the ten functions
with two different dimensions (i.e. 30-D and 100-D) using the four algorithms.
Each algorithm for different dimensions of the same objective function has
similar performance. But in general, the higher the dimension is, the higher
the fitness values are. It is observed that for almost all algorithms, the solu-
tions get trapped in a local minimum within the first 2000 iterations except
for FATPSO. For the low dimensional problems, SA is usually a cost-efficient
choice. For example, SA for 30-D f8 has a good performance than that in
other situations. It is interesting that even if other algorithms are very close
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Fig. 11 30-D Zakharov (f10) function performance
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Fig. 12 100-D Zakharov (f10) function performance

to or better than FATPSO in 30-D benchmarks, but a very large difference
emerges in the case of 100-D benchmark problems. FATPSO becomes much
better than other algorithms in general besides for f4. The averages and the
standard deviations for 10 trials are showed in Table 3. The larger the av-
erages are, wider the standard deviations are usually. There is not too large
difference of the standard deviations between the different algorithms for
the same benchmark functions. Referring to the empirical results depicted
in Table 3, for most of considered functions, FATPSO demonstrated a con-
sistent performance pattern among all the considered algorithms. FATPSO
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Table 3 Performance comparison for the function optimization problems

f D SPSO FAPSO GA SA

25.4594 1.1048e-004 222.9510 29.0552
30 ±16.5424 ±0.0017 ±26.4874 ±4.8291

f1 228.6963 6.9026e-004 7.2730e+003 138.3233
100 ±675.7348 ±0.0080 ±459.1044 ±38.1029

1.1927e+005 2.9699 3.7843e+004 382.7578
30 ±41.3785 ±24.9744 ±4.4308e+003 ±103.9384

f2 9.6398e+005 54.0376 4.0615e+005 9.5252e+003
100 ±3.7652e+004 ±482.4480 ±2.2613e+004 ±4.8500+003

2.3732e-008 5.9520e-006 20.2291 0.4991
30 ±0.3763 ±1.3009e-005 ±1.4324 ±1.8212

f3 55.5606 9.2702e-004 1.2391e+013 23.4349
100 ±2.3719e-007 ±2.6465 ±1.2269e+017 ±5.0520

0.0501 0.0279 4.5094e+003 4.9754e+003
30 ±0.2215 ±0.1086 ±294.7204 ±4.2394

f4 0.0481 0.0220 2.7101e+004 1.6131e+004
100 ±0.7209 ±0.6902 ±528.3332 ±51.7519

1.4685e-031 1.5535e-030 1.0734 0.1617
30 ±0.0021 ±2.6040e-012 ±0.1996 ±0.4583

f5 0.2806 2.6011e-011 11.4534 2.8817
100 ±2.1761 ±0.1219 ±0.4760 ±0.4526

-7.4305e+033 -4.0465e+034 -5.1931e+020 -1.5457e+032
30 ±2.3497e+033 ±1.2176e+034 ±6.9217e+020 ±1.2010e+016

f6 -2.9776e+096 -3.2111e+114 -1.5347e+055 -3.0040e+104
100 ±1.2330e+096 ±2.4430e+114 ±9.4580e+054 ±4.2442e+101

33.7291 8.4007e-010 204.0560 32.7997
30 ±17.7719 ±9.3676 ±6.8450 ±6.9936

f7 391.0421 19.9035 1.2070e+003 177.8810
100 ±176.3618 ±115.9034 ±23.8156 ±37.7808

0.0177 0.0102 6.8463 0.3193
30 ±0.3157 ±0.0149 ±0.6060 ±1.7880

f8 0.4400 0.0720 179.5966 31.4270
100 ±14.4633 ±0.6945 ±7.3908 ±11.4656

0.6206 5.4819e-004 1.7437 0.6606
30 ±0.2996 ±0.0086 ±0.0427 ±0.0657

f9 1.0666 0.0011 2.3570 1.0167
100 ±0.3921 ±0.0059 ±0.0079 ±0.0532

2.0098e-007 5.911e-011 659.0997 62.2253
30 ±52.8218 ±0.0626 ±12.0276 ±46.5389

f10 1.3223e+003 90.1373 2.8632e+003 1.5625e+003
100 ±1.4259e+003 ±1.7697e+004 ±4.7935e-013 ±294.7468

performed extremely well with the exception of 30-D f4, 100-D f4, 30-D
f5, 30-D f10, in which the results have little difference between the consid-
ered algorithms. It is to be noted that FATPSO could be an ideal choice for
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solving complex problems (example f2) when all other algorithms failed to
give a better solution.

6 Conclusions

We introduced the Turbulent Particle Swarm Optimization (TPSO) as an al-
ternative method to overcome the problem of premature convergence in the
conventional PSO algorithm. TPSO uses a minimum velocity threshold to con-
trol the velocity of particles. TPSO mechanism is similar to a turbulence pump,
which supply some power to the swarm system. The basic idea is to control the
velocity the particles to get out of possible local optima and continue explor-
ing optimal search spaces. The minimum velocity threshold can make the par-
ticle continue moving and maintain the diversity of the population until the
algorithm converges. We proposed a fuzzy logic based system to tune adap-
tively the velocity threshold, which is further called as Fuzzy adaptive TPSO
(FATPSO). We evaluated and compared the performance of SPSO, FATPSO,
GA and SA algorithms on a suite of 20 widely used benchmark problems. The
results from our research demonstrated that FATPSO generally outperforms
most of the other considered algorithms, especially for high dimensional, multi-
modal functions.
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