
A. Abraham et al. (Eds.): Foundations of Comput. Intel. Vol. 3, SCI 203, pp. 101–128.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Particle Swarm Optimization: Performance
Tuning and Empirical Analysis

Millie Pant, Radha Thangaraj, and Ajith Abraham*

Abstract. This chapter presents some of the recent modified variants of Particle
Swarm Optimization (PSO). The main focus is on the design and implementation
of the modified PSO based on diversity, Mutation, Crossover and efficient
Initialization using different distributions and Low-discrepancy sequences. These
algorithms are applied to various benchmark problems including unimodal,
multimodal, noisy functions and real life applications in engineering fields. The
effectiveness of the algorithms is discussed.

1 Introduction

The concept of PSO was first suggested by Kennedy and Eberhart [1]. Since its
development is 1995, PSO has emerged as one of the most promising optimizing
technique for solving global optimization problems. Its mechanism is inspired by
the social and cooperative behavior displayed by various species like birds, fish etc
including human beings. The PSO system consists of a population (swarm) of
potential solutions called particles. These particles move through the search domain
with a specified velocity in search of optimal solution. Each particle maintains a
memory which helps it in keeping the track of its previous best position. The
positions of the particles are distinguished as personal best and global best. PSO
has been applied to solve a variety of optimization problems and its performance is
compared with other popular stochastic search techniques like Genetic algorithms,
Differential Evolution, Simulated Annealing etc. [2], [3], [4]. Although PSO has
shown a very good performance in solving many test as well as real life
optimization problems, it suffers from the problem of premature convergence like
most of the stochastic search techniques, particularly in case of multimodal
optimization problems. The curse of premature convergence greatly affects the
performance of algorithm and many times lead to a sub optimal solution [5].
Aiming at this shortcoming of PSO algorithms, many variations have been

Millie Pant and Radha Thangaraj
Department of Paper Technology, IIT Roorkee, India
email: millifpt@iitr.ernet.in, t.radha@ieee.org

Ajith Abraham
Q2S, Norwegian University of Science and Technology, Norway
email: ajith.abraham@ieee.org

102 M. Pant et al.

developed to improve its performance. Some of the interesting modifications that
helped in improving the performance of PSO include introduction of inertia weight
and its adjustment for better control of exploration and exploitation capacities of
the swarm [6] [7], introduction of constriction factor to control the magnitudes of
velocities [8], impacts of various neighborhood topologies on the swarm [9],
extension of PSO via genetic programming [10], use of various mutation operators
into PSO [11] – [13]. In the present study ten recent versions of PSO are
considered. Out of the ten chosen versions, five versions are based on the efficient
initialization of swam, three versions are diversity guided and the remaining
versions makes use of cross-over operator to improve the performance of PSO.

The present article has seven sections including the introduction. In the next
section, a brief description of the basic PSO is given. Section 3 is divided into
three subsections; in 3.1, PSO versions with different initialization schemes are
described; in section 3.2 three diversity guided PSO are given and in Section 3.3
PSO with crossover operator is described. Section 4 is devoted to numerical
problems consisting of ten popular bench mark problems and two real life
problems. In Section 5 and Section 6, describe the experimental settings and
numerical results respectively. The chapter finally concludes with Section 7.

2 Particle Swarm Optimization

The working of the Basic Particle Swarm Optimization (BPSO) may be described
as: For a D-dimensional search space the position of the ith particle is represented
as Xi = (xi1, xi2, … xiD). Each particle maintains a memory of its previous best
position Pbesti = (pi1, pi2… piD). The best one among all the particles in the
population is represented as Pgbest = (pg1, pg2… pgD). The velocity of each particle
is represented as Vi = (vi1, vi2, … viD). In each iteration, the P vector of the particle
with best fitness in the local neighborhood, designated g, and the P vector of the
current particle are combined to adjust the velocity along each dimension and a
new position of the particle is determined using that velocity. The two basic
equations which govern the working of PSO are that of velocity vector and
position vector given by:

)()(2211 idgdidididid xprcxprcwvv −+−+= (1)

 ididid vxx += (2)

The first part of equation (1) represents the inertia of the previous velocity, the
second part is the cognition part and it tells us about the personal experience of the
particle, the third part represents the cooperation among particles and is therefore
named as the social component. Acceleration constants c1, c2 and inertia weight w
are the predefined by the user and r1, r2 are the uniformly generated random
numbers in the range of [0, 1].

3 Modified Version of Particle Swarm Optimization

Empirical studies have shown that the basic PSO has a tendency of premature
convergence [518], [559], [602], [606], [649] and the main reason for this

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 103

behavior is due to the loss of diversity in successive iterations. It has been
observed that the presence of a suitable operator may help in improving the
performance of PSO quite significantly. This chapter concentrates on two things;
first is on the efficient generation of population using different initialization
schemes and second is the use of diversity to guide the swarm using different
operations like repulsion, mutation and crossover.

3.1 Efficient Initialization Particle Swarm Optimization

PSO (and other search techniques, which depend on the generation of random
numbers) works very well for problems having a small search area (i.e. a search
area having low dimension), but as the dimension of search space is increased, the
performance deteriorates and many times converge prematurely giving a
suboptimal result [5]. This problem becomes more persistent in case of multimodal
functions having several local and global optima. One of the reasons for the poor
performance of a PSO may be attributed to the dispersion of initial population
points in the search space i.e. to say, if the swarm population does not cover the
search area efficiently, it may not be able to locate the potent solution points,
thereby missing the global optimum [14]. This difficulty may be minimized to a
great extent by selecting a well-organized distribution of random numbers.

This section analyzes the behavior of some simple variations of PSO where
only the initial distribution of random numbers is changed. Initially in the
algorithms the initial uniform distribution is replaced by other probability
distributions like exponential, lognormal and Gaussian distributions. It is
interesting to see that even a small change in the initial distribution produces a
visible change in the numerical results. After that more specialized algorithms are
designed which use low discrepancy sequences for the generation of random
numbers. A brief description of the algorithms is given in the subsequent sections.

The most common practice of generating random numbers is the one using an
inbuilt subroutine (available in most of the programming languages), which uses a
uniform probability distribution to generate random numbers. It has been shown
that uniformly distributed particles may not always be good for empirical studies
of different algorithms. The uniform distribution sometimes gives a wrong
impression of the relative performance of algorithms as shown by Gehlhaar and
Fogel [15].

3.1.1 Initializing the Swarm Using Different Probability Distributions [16]

Different Probability Distributions like Exponential and Gaussian have already
been used for the fine tuning of PSO parameters [17], [18]. But for initializing the
swarm most of the approaches use uniformly distributed random numbers. Pant et
al. [16] investigated the possibility of having a different probability distribution
(Gaussian, Exponential, Lognormal) for the generation of random number other
than the uniform distribution. Empirical results showed that distributions other
than uniform distribution are equally competent and in most of the cases are better
than uniform distribution. The algorithms GPSO, EPSO and LNPSO use

104 M. Pant et al.

Gaussian, exponential and lognormal distributions respectively. The algorithms
follow the steps of BPSO given in Section 2 except for the fact that they use
mentioned distributions in place of uniform distributions.

3.1.2 Initializing the Swarm Using Low-Discrepancy Sequences [19]

Theoretically, it has been proved that low discrepancy sequences are much better
than the pseudo random sequences because they are able to cover the search space
more evenly in comparison to pseudo random sequences (please see Figures 1(a)
and 1(b)). Some previous instances where low discrepancy sequences have been
used to improve the performance of optimization algorithms include [20] – [24].
In [22] – [24] authors have made use of Sobol and Faure sequences. Similarly,
Nguyen et al. [21] have shown a detailed comparison of Halton Faure and Sobol
sequences for initializing the swarm. In the previous studies, it has already been
shown that the performance of Sobol sequence dominates the performance of
Halton and Faure sequences. The performance of PSO using Van der Corput
sequence called VCPSO along with PSO with Sobol sequence called SOPSO
(which is said be superior than other low discrepancy sequences according to the
previous studies) for swarm initialization is scrutinized and tested them for solving
global optimization problems in large dimension search spaces by Pant et al. [19].

 (a) (b)

Fig. 1(a) Sample points generated using a pseudo random sequence. 1(b) Sample points
generated using a quasi random sequence

Brief description of the sequences used in VCPSO and SOPSO:

Van der Corput Sequence
A Van der Corput sequence is a low-discrepancy sequence over the unit interval
first published in 1935 by the Dutch mathematician J. G. Van der Corput. It is a
digital (0, 1)-sequence, which exists for all bases b ≥ 2. It is defined by the radical
inverse function φb : N0→[0, 1). If n ∈ N0 has the b-adic expansion

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 105

 ∑
=

−=
T

j

j
jban

0

1 (3)

with aj ∈ {0,…, b – 1}, and ⎣ ⎦nT blog= then φb is defined as

 ∑
=

=
T

j
j

j
b

b

a
n

0
)(ϕ (4)

In other words, the jth b-adic digit of n becomes the jth b-adic digit of φb(n)
behind the decimal point. The Van der Corput sequence in base b is then defined
as (φb(n))n ≥ 0.

The elements of the Van der Corput sequence (in any base) form a dense set in
the unit interval: for any real number in [0, 1] there exists a sub sequence of the
Van der Corput sequence that converges towards that number. They are also
uniformly distributed over the unit interval.

Sobol Sequence
The construction of the Sobol sequence [25] uses linear recurrence relations over
the finite field, F2, where F2 = {0, 1}. Let the binary expansion of the non-

negative integer n be given by 11
2

0
1 2.....22 −+++= w

wnnnn . Then the nth

element of the jth dimension of the Sobol Sequence,)(j
nX , can be generated by:

)()(
22

)(
11

)(...... j
ww

jjj
n vnvnvnX ⊕⊕⊕=

where)(j
iv is a binary fraction called the ith direction number in the jth dimension.

These direction numbers are generated by the following q-term recurrence
relation:

)2/(...)()()(
1

)(
22

)(
11

)(qj
qi

j
qi

j
qiq

j
i

j
i

j
i vvvavavav −−+−−− ⊕⊕⊕⊕⊕= i > q, and the bit, ia ,

comes from the coefficients of a degree-q primitive polynomial over F2.

VC-PSO and SO-PSO Algorithm
It has been shown that uniformly distributed particles may not always be good for
empirical studies of different algorithms. The uniform distribution sometimes
gives a wrong impression of the relative performance of algorithms as shown by
Gehlhaar and Fogel [15].

The quasi random sequences on the other hand generates a different set of
random numbers in each iteration, thus providing a better diversified population of
solutions and thereby increasing the probability of getting a better solution.

Keeping this fact in mind we decided to use the Vander Corput sequence and
Sobol sequence for generating the swarm. The swarm population follows equation
(1) and (2) for updating the velocity and position of the swarm. However for the
generation of the initial swarm Van der Corput Sequence and Sobol Sequences
have been used for VC-PSO and SO-PSO respectively.

106 M. Pant et al.

3.2 Diversity Guided Particle Swarm Optimization

Diversity may be defined as the dispersion of potential candidate solutions in the
search space. Interested readers may please refer to [26] for different formulae
used for calculating diversity. One of the drawbacks of most of the population
based search techniques is that they work on the principle of contracting the
search domain towards the global optima. Due to this reason after a certain
number of iterations all the points get accumulated to a region which may not even
be a region of local optima, thereby giving suboptimal solutions [5]. Thus without
a suitable diversity enhancing mechanism it is very difficult for an optimization
algorithm to reach towards the true solution. The problem of premature
convergence becomes more persistent in case of highly multimodal functions like
Rastringin and Griewank having several local minima. This section presents three
algorithms Attraction Repulsion PSO (ATREPSO), Gaussian Mutation PSO
(GMPSO) and Quadratic Interpolation PSO (QIPSO) which use different diversity
enhancing mechanisms to improve the performance of the swarm. All the
algorithms described in the given sub sections use diversity threshold values dlow

and dhigh to guide the movement of the swarm. The threshold values are predefined
by the user. In ATREPSO, the swarm particles follow the mechanism of repulsion
so that instead of converging towards a particular location the particles are
diverged from that location. In case of GMPSO and QIPSO evolutionary operators
like mutation and crossover are induced in the swarm to perturb the population.
These algorithms are described in the following subsections.

3.2.1 Attraction Repulsion Particle Swarm Optimization Algorithm [27]

The Attraction Repulsion Particle Swarm Optimization Algorithm (ATREPSO) of
Pant et al. [27] is a simple extension of the Attractive and Repulsive PSO
(ARPSO) proposed by Vesterstorm [28], where a third phase called in between
phase or the phase of positive conflict is added In ATREPSO, the swarm particles
switches alternately between the three phases of attraction, repulsion and an ‘in
between’ phase which consists of a combination of attraction and repulsion. The
three phases are defined as:

Attraction phase (when the particles are attracted towards the global optimal)

)()(2211 idgdidididid xprcxprcwvv −+−+= (5)

Repulsion phase (particles are repelled from the optimal position)

)()(2211 idgdidididid xprcxprcwvv −−−−= (6)

In-between phase (neither total attraction nor total repulsion)

)()(2211 idgdidididid xprcxprcwvv −−−+= (7)

In the in-between phase, the individual particle is attracted by its own previous
best position pid and is repelled by the best known particle position pgd. In this way
there is neither total attraction nor total repulsion but a balance between the two.

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 107

The swarm particles are guided by the following rule

⎪⎩

⎪
⎨
⎧

<−−−−
<<−−−+

>−+−+
=

lowidgdididid

highlowidgdididid

highidgdididid

id

ddivxprcxprcwv
ddivdxprcxprcwv

ddivxprcxprcwv
v

),()(
),()(
),()(

2211

2211

2211
 (8)

3.2.2 Gaussian Mutation Particle Swarm Optimization Algorithm [29]

The concept of mutation is quite common to Evolutionary Programming and
Genetic Algorithms. The idea behind mutation is to increase of diversity of the
population. There are several instances in PSO also where mutation is introduced
in the swarm. Some mutation operators that have been applied to PSO include
Gaussian [244], Cauchy [655], [656], Nonlinear [589], Linear [589] etc. The
Gaussian Mutation Particle Swarm Optimization (GMPSO) algorithm given in
this section is different from the above mentioned algorithms as it uses the
threshold values to decide the activation of mutation operator. The concept is
similar to that of ATREPSO i.e. to use diversity to decide the movement of the
swarm. The algorithm uses the general equations (1) and (2) for updating the
velocity and position vectors. At the same time a track of diversity is also kept
which starts decreasing slowly and gradually after a few iterations because of the
fast information flow between the swam particles leading to clustering of particles.
It is at this stage that the Gaussian mutation operator given as Xt+1[i] = Xt[i] + η*
Rand(), where Rand is a random number generated by Gaussian distribution, is
activated with the hope to increase the diversity of the swarm population. Here η
is a scaling parameter.

3.2.3 Quadratic Interpolation Particle Swarm Optimization Algorithm [30]

As mentioned in the previous section, there are several instances available in
literature on the use of mutation operator however there are not much references on
the use of reproduction operator. One of the earlier references on the use of
reproduction operator can be found in Clerc [101]. The Quadratic Interpolation
Particle Swarm Optimization (QIPSO) algorithm described in this chapter uses
concept of reproduction. It uses diversity as a measure to guide the swarm. When
the diversity becomes less than dlow, then the quadratic crossover operator is
activated to generate a new potential candidate solution. The process is repeated
iteratively till the diversity reaches the specified threshold dhigh. The quadratic
crossover operator used in this paper is a nonlinear crossover operator which makes
use of three particles of the swarm to produce a particle which lies at the point of
minima of the quadratic curve passing through the three selected particles.

It uses a = Xmin, (best particle with minimum function value) and two other
randomly selected particles {b, c} (a, b and c are different particles) from the

swarm to determine the coordinates of the new particle)~,.......,~,~(~ 21 ni xxxx = , where

)(*)()(*)()(*)(

)(*)()(*)()(*)(

2

1~
222222

cfbabfacafcb

cfbabfacafcb
x

iiiiii

iiiiii
i

−+−+−
−+−+−

= (9)

108 M. Pant et al.

The nonlinear nature of the quadratic crossover operator used in this work helps in
finding a better solution in the search space.

3.3 Crossover Based Particle Swarm Optimization

In this section two more modifications applied to the QIPSO given in Section 3.2
are described.

3.3.1 QIPSO-1 [31] and QIPSO-2 [32] Algorithms

The basic idea of QIPSO-1 and QIPSO-2 are modified versions of QIPSO
algorithm given in section 3.2, which differ from each other in selection criterion
of the individual. In QIPSO-1, the new point generated by the quadratic
interpolation given by equation (9) is accepted in the swarm only if it is better than
the worst particle of the swarm, where as in QIPSO-2, the particle is accepted if it
is better than the global best particle.

4 Numerical Problems

One of the shortcomings of population based search techniques is that there are
not many concrete proofs available to establish their authority for solving a wide
range of problems. Therefore the researchers often depend on empirical studies to
scrutinize the behavior of an algorithm. The numerical problems may be divided
into two classes; benchmark problems and real life problems. For the present
article ten standard benchmark functions and two real life problems described in
the following subsections are taken.

4.1 Benchmark Problems

A collection of ten benchmark problems given in Table 1 is taken for the present
study to analyze the behavior of algorithms taken in this study. These problems may
not be called exhaustive but they provide a good launch pad for testing the
credibility of an optimization algorithm. The first eight problems are scalable i.e. the
problems can be tested for any number of variables. However for the present study
medium sized problems of dimension 20 are taken. The three dimensional graphs of
the test functions are depicted in Figures 2(a) to (i).

The special properties of the benchmark functions taken in this study may be
described as:

 The first function f1, commonly known as Rastringin function, is a highly
multimodal function where the degree of multimodality increases with
the increase in the dimension of the problem.

 The second function f2, also known as spherical function is a continuous,
strictly convex and unimodal function and usually do not pose much
difficulty for an optimization algorithm.

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 109

 Griewank function is the third function. It is highly multimodal function
having several local minima.

 The search space of the fourth function is dominated by a large gradual
slope. Despite the apparent simplicity of the problem it is considered
difficult for search algorithms because of its extremely large search space
combined with relatively small global optima.

 f5 is a noisy function where a uniformly distributed random noise is
added to the objective function. Due to the presence of noise the
objective function keeps changing from time to time and it becomes a
challenge for an optimization algorithm to locate the optimum.

 Functions f6 to f8 are again multimodal functions having several optima.
Such functions provide a suitable platform for testing the credibility of an
optimization algorithm.

 Function f9 and f10 are two dimensional functions. Function f10 is
although simple in appearance but it an interesting and challenging
function having 786 local minima and 18 global minima.

Table 1 Numerical Benchmark Problems [3]

Name of
function Function Definition Range Minimu

m Value
Rastrigin
Function)10)2cos(10()(

1

2
1 +∑ −=

=
i

n

i
i xxxf π [-

5.12,5.12]
0

Spherical
Function

∑=
=

n

i
ixxf

1

2
2)([-

5.12,5.12]
0

Griewank
Function

1)
1

cos(
4000

1
)(

1

0

1

0

2
3 +∑

+
+∑=

−

=

−

=

n

i

i
n

i
i

i

x
xxf [-600,600] 0

Rosenbrock
Function

21

0

22
14)1()(100)(−+∑ −=

−

=
+ i

n

i
ii xxxxf [-30,30] 0

Noisy
Function ∑ ++=

−

=

1

0

4
5]1,0[))1(()(

n

i
i randxixf [-

1.28,1.28]
0

Schewefel
Function)||sin()(

1
6 ∑−=

=

n

i
ii xxxf [-500,500] -8329.658

Ackley
Function)

1
2.0exp(2020)(

1

2
7 ∑−−+=

=

n

i
ix

n
exf

∑−
=

n

i
ix

n 1
))2cos(

1
exp(π

[-32,32] 0

Sine
Function

mi
n

i
i

x
ixxf 2

2

1
8)))(sin(sin()(

π
∑
=

−= , 10=m
[-π,π] ---

Himmelblau
Function 1

22
21

22
129)7()11()(xxxxxxf +−++−+= [-5,5] -3.78396

Shubert
Function

∑∑
==

++++=
5

1
2

5

1
110))1cos(())1cos(()(

jj
jxjjjxjjxf

[-10,10] -186.7309

110 M. Pant et al.

 (a) Function f1 (b) Function f2

 (c) Function f3 (d) Function f4

 (e) Function f6 (f) Function f7

Fig. 2 Three Dimensional graphs of benchmark problems

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 111

 (g) Function f8 (h) Function f9

 (i) Function f10

Fig. 2 (continued)

4.2 Real Life Problems

Two real life engineering design problems are considered to depict the
effectiveness of the algorithms discussed in the present article. These are nonlinear
problems and both the problems are common in the field of electrical engineering.
Mathematical model of the problems are given as:

4.2.1 Design of a Gear Train [33]

The first problem is to optimize the gear ratio for the compound gear train. This
problem shown in Figure 3 was introduced by Sandgren [34]. It is to be designed
such that the gear ratio is as close as possible to 1/6.931. For each gear the number
of teeth must be between 12 and 60. Since the number of teeth is to be an integer,
the variables must be integers. The mathematical model of gear train design is
given by,

Min
2

43

21

2

931.6

1

931.6

1

⎭
⎬
⎫

⎩
⎨
⎧

−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=
xx

xx

TT

TT
f

fa

bd

112 M. Pant et al.

Subject to: 6012 ≤≤ ix 4,3,2,1=i

],,,[],,,[4321 fabd TTTTxxxx = , xi’s should be integers. Ta, Tb, Td, and Tf are the

number of teeth on gears A, B, D and F respectively.

Fig. 3 Compound Gear Train

4.2.2 Transistor Modeling [35]

The second problem is a transistor modeling problem. The mathematical model of
the transistor design is given by,

Minimize ∑
=

++=
4

1

222)()(
k

kkxf βαγ

Where
3

7315321 10({exp[)1(−×−−= xggxxxx kkkα 245
3

85 }1)]10 xggxg kkk +−×− −
3

73216421 10({exp[)1(−×−−−= xgggxxxx kkkkβ

kkk gxgxg 415
3

94 }1)]10 +−×+ − .

4231 xxxx −=γ

Subject to: 0≥ix

The numerical constants ikg are given by the matrix

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

4823.2113884.1348467.1115132.28

267.191461.111779.1013037.23

2153.209274.220677.102095.5

455.1703.0254.1369.0

982.0869.0752.0485.0

This objective function provides a least-sum-of-squares approach to the solution
of a set of nine simultaneous nonlinear equations, which arise in the context of
transistor modeling.

5 Experimental Settings

Like all Evolutionary Algorithms, PSO has a set of parameters which is to be
defined by the user. These parameters are population size, inertia weight,
acceleration constants etc. these parameters may be varied as per the complexity

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 113

of the problem. For example the population size in PSO related literature has been
suggested as 2n to 5n, where n is the number of decision variables or a fixed
population size. In the present study a fixed population size of thirty is taken for
all the problems, which gave reasonably good results. Similarly various examples
are available on the variations done in inertia weight and acceleration constants.
For the present study, which consist of small moderate size problems of dimension
2 and 20, the list parameters which gave sufficiently good results is summarized
below.

Common Parameters:
Population Size (NP): Number of variables 30
Inertia weight: Linearly decreasing (0.9 – 0.4)
Acceleration Constants: c1 = c2 = 2.0
Stopping Criterion: Maximum number of generations = 10000

Probability Distributions for initializing the swarm:
Gaussian distribution:

 2

2

2

1
)(

x

exf
−

=
π

 (10)

with mean 0 and standard deviation 1, i.e. N (0,1).
Exponential distribution:

 ,)/exp(
2

1
)(bax

b
xf −−= ,∞<≤∞− x (11)

with a, b > 0.It is evident that one can control the variance by changing the
parameters a and b.
Log-normal distribution:

π2

)(
2/)(ln 2

x

e
xf

x−

= (12)

with mean 0 and standard deviation 1.

Diversity Measurement

∑ ∑ −=
= =

s xn

i

n

j
jij

s

txtx
n

tSDiversity
1 1

2))()((
1

))((

Threshold values: dhigh = 0.25, dlow = 5.0*10-6

Repair method for points violating the boundary conditions

Hardware Settings
All algorithms are executed on a P-IV PC. Programming language used is DEV
C++

114 M. Pant et al.

Table 2 Comparison results of PSO, GPSO, EPSO, and LNPSO (Mean/diversity/standard
deviation)

Function PSO GPSO EPSO LNPSO

1f 22.339158
0.000115
15.932042

9.750543
0.364310
5.433786

12.173973
5.380822e-05
9.274301

23.507127
0.264117
15.304573

2f 1.167749e-45
2.426825e-23
5.222331e-46

1.114459e-45
3.168112e-23
4.763499e-46

1.167749e-45
3.909771e-23
5.222331e-46

1.114459e-45
2.778935e-23
4.763499e-46

3f 0.031646
0.000710
0.025322

0.004748
1.631303e-08
0.012666

0.011611
0.001509
0.019728

0.011009
0.000877
0.019186

4f 22.191725
2.551408
1.615544e+04

9.992837
2.527997
3.168912

8.995165
1.8737
3.959364

4.405738
2.904427
4.121244

5f 8.681602
0.340871
9.001534

0.636016
0.210458
0.296579

0.380297
0.237913
0.281234

0.537461
0.254176
0.285361

6f -6178.559896
0.072325
489.3329

-6354.119792
0.059937
483.654032

-6306.353646
0.026106
575.876696

-6341.4000
0.034486
568.655436

7f 3.483903e-18
3.651635e-18
8.359535e-19

3.136958e-18
5.736429e-13
8.596173e-19

3.368255e-18
3.903653e-18
8.596173e-19

3.368255e-18
3.846865e-18
8.596173e-19

8f -18.1594
1.17699
1.05105

-18.5162
0.603652
0.907089

-18.675
2.63785
1.06468

-18.3944
0.221685
1.02706

9f -3.331488
2.747822e-05
1.24329

-3.63828
1.71916e-009
0.346782

-3.63828
1.65462e-009
0.346782

-3.49261
1.4056e-009
0.445052

10f -186.730941
0.362224
1.424154e-05

-186.731
1.0056
3.3629e-014

-186.731
0.19356
3.11344e-014

-186.731
0.82143
2.00972e-014

6 Numerical Results

A comparative analysis of the algorithms described is given Tables 2 to 9. Each
algorithm was executed 100 times and the average fitness function value, diversity
and standard deviation are reported. Tables 2 to 5 give the numerical results for
benchmark problems whereas, the numerical results of real life problems are given
in Tables 6 to 9.

Table 2, gives the numerical results of PSO versions initialized with Gaussian,
exponential and lognormal probability distributions. From the numerical results
it can be seen that the PSO using Gaussian mutation, GPSO, gave the best

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 115

Table 3 Comparison results of PSO, VC-PSO and SO-PSO (Mean/diversity/standard
deviation)

Fun
ction

PSO VC-PSO SO-PSO Fun
ction

PSO VC-PSO SO-PSO

1f 22.3391
0.00011
15.9320

9.99929
1.00441
4.08386

8.95459
0.319194
2.65114

6f -6178.559
0.072325
4.893e+02

-6503.05
3.469e-06
477.252

-6252.51
2.478e-06
472.683

2f 1.16e-45
2.42e-23
5.22e-46

1.17e-108
7.15e-054
4.36e-108

1.51e-108
6.36e-055
4.46e-108

7f 3.483e-18
3.651e-18
8.359e-19

5.473e-19
5.039e-19
1.776e-18

4.585e-19
6.506e-17
1.538e-18

3f 0.03164
0.00071
0.02532

0.00147
1.233e-08
0.00469

0.001847
9.940e-09
0.004855

8f -18.1594
1.17699
1.05105

-18.2979
0.0306
0.8902

-18.70665
0.0316574
1.028749

4f 22.1917
2.55140
1.61e+04

6.30326
2.01591
3.99428

6.81079
2.61624
3.76973

9f -3.331488
2.747e-05
1.24329

-3.58972
1.439e-09
0.388473

-3.78396
3.946e-09
1.47699

5f 8.68160
0.34087
9.00153

0.410042
0.230096
0.294763

0.806175
0.191133
0.868211

10f -186.730
0.36222
1.424e-05

-186.731
1.10502
2.770e-14

-186.731
0.32435
3.595e-14

performance in comparison to other versions, followed by EPSO and LNPSO. For
the first function, f1, GPSO gave the best function value of approximately 10.00
which is much better than the values obtained by the other algorithms. For f2,
which is a simple spherical function all the algorithms gave more or less similar
results. However GPSO and LNPSO gave a slightly better performance. For f3,
once again the average fitness function value obtained by GMPSO is much better
than the average fitness function value obtained by EPSO and LNPSO. For f6 and
f7 once again GMPSO outperformed the other algorithms given in Table 2. For f9,
both GMPSO and EPSO gave same result, which is better than the other two
algorithms. Whereas for f10, GMPSO, EPSO and LNPSO gave same result which
is marginally better than the result obtained by basic PSO. In all, out of the 10 test
functions GPSO outperformed others in 7 test cases. EPSO gave better results in 4
cases and LNPSO performed better in 3 cases. In all the cases the results were
better than Basic PSO using uniform distribution.

Table 3, gives the comparison of PSO versions initialized with low discrepancy
sequences with the basic PSO. It can be observed that PSO initialized with Sobol
sequence (SOPSO) gave slightly better results than PSO initialized with Van der
corput sequence. But a notable thing is that although SOPSO outperformed
VCPSO in most of the test cases, the percentage of improvement is only marginal.
Whereas, if we compare these results with basic PSO then the quality of solutions
obtained by SOPSO and VCPSO is significantly better than the solutions obtained
by basic PSO. For example, in f1, which is a highly multimodal function the
optimum function value obtained by VCPSO and SOPSO is approximately 10.00
and 9.00 respectively where as the optimum function value obtained by basic PSO
is approximately 22.00. Likewise, there is a significant improvement in the

116 M. Pant et al.

Table 4 Comparison results of PSO, QIPSO, ATREPSO and GMPSO (Mean/diversity/
standard deviation)

Function PSO QIPSO ATREPSO GMPSO

1f 22.339158
0.000115
15.932042

11.946888
0.015744
9.161526

19.425979
7.353246
14.349046

20.079185
7.143211e-05
13.700202

2f 1.167749e-45
2.426825e-23
5.222331e-46

0.000000
0.000000
0.000000

4.000289 e-17
8.51205
0.000246

7.263579e-17
0.00026
6.188854e-17

3f 0.031646
0.000710
0.025322

0.01158
3.391647e-05
0.01285

0.025158
0.000563
0.02814

0.024462
0.000843
0.039304

4f 22.191725
2.551408
1.615544e+04

8.939011
1.983866
3.106359

19.49082
1.586547
3.964335e+04

14.159547
6.099418e-05
4.335439e+04

5f 8.681602
0.340871
9.001534

0.451109
0.0509
0.328623

8.046617
2.809409
8.862385

7.160675
0.29157
7.665802

6f -6178.559896
0.072325
489.3329

-6355.58664
0.00881
477.532584

-6183.6776
199.95052
469.611104

-6047.670898
0.062176
482.926738

7f 3.483903e-18
3.651635e-18
8.359535e-19

2.461811e-24
0.000127
0.014425

0.018493
42.596802
0.014747

1.474933e-18
0.061308
1.153709e-08

8f -18.1594
1.17699
1.05105

-18.4696
1.2345
0.092966

-18.9829
0.39057
0.272579

-18.3998
1.63242
0.403722

9f -3.331488
2.747822e-05
1.24329

-3.783961
0.637823
0.190394

-3.751458
3.214462
0.174460

-3.460233
9.066805e-06
0.45782

10f -186.730941
0.362224
1.424154e-05

-186.730942
2.169003
3.480934e-14

-186.730941
5.410105
1.424154e-05

-186.730942
0.239789
1.525879e-05

function value for functions f4 and f5. For f4, VCPSO and SOPSO gave function
values as 6.00 and 7.00 approximately and basic PSO gave an average fitness
function value of 22.00. In f5, VCPSO and SOPSO converged to 0.4 and 0.8
respectively while basic PSO converged to an optimum function value of 8.00.

In Table 4, the results of diversity guided PSO algorithms are given. From the
numerical results it is evident that the PSO assisted with quadratic crossover
operator, QIPSO is a clear winner. QIPSO gave significantly better performance
than ATREPSO, GMPSO and basic PSO in 9 out of 10 test cases taken for the
present study. Second place goes to ATREPSO and third to GMPSO.

Table 5, gives the comparison of modified versions of QIPSO with basic PSO.
If a comparison is done between QIPSO1 and QIPSO2, than from the numerical

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 117

Table 5 Comparison results of PSO, QIPSO-1 and QIPSO-2 (Mean best fitness)

BPSO QIPSO-1 QIPSO-2 Fun-
ction Mean Best Fitness Mean Best Fitness Mean Best Fitness
f1 22.339158 0.994954 5.97167e-01
f2 1.167749e-45 2.523604e-45 8.517991e-43

f3 0.031646 0.015979 2.940000e-02
f4 22.191725 77.916591 51.0779
f5 8.681602 0.454374 4.540630e-01
f6 -6178.559896 -9185.074692 -9.185054e+03

f7 3.483903e-18 5.89622e-10 6.300262e-09

f8 -18.1594 -27.546 -27.546

f9 -3.331488 -3.58972 -3.78396
f10 -186.730941 -186.731 -186.731

results it can be seen that QIPSO-2, in which the new particle is accepted in the
swarm only if it is better than the global best particle is better than QIPSO-1 in
terms of average fitness function value. However once again it can be observed
that the improvement of QISPO-2 over QIPSO-1 is only marginal whereas both
the algorithms performed much better than the basic PSO. Empirical results are
graphically illustrated in Figures 4-7.

 (a) Function f1 (b) Function f2

 (c) Function f3 (d) Function f4

Fig. 4 Performance for BPSO, GPSO, EPSO and LNPSO

118 M. Pant et al.

 (e) Function f5 (f) Function f6

 (g) Function f7 (h) Function f8

 (i) Function f9 (j) Function f10

Fig. 4 (continued)

 (a) Function f1 (b) Function f2

Fig. 5 Performance curves for BPSO, VC-PSO and SO-PSO

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 119

 (c) Function f3 (d) Function f4

 (e) Function f5 (f) Function f6

 (g) Function f7 (h) Function f8

 (i) Function f9 (j) Function f10

Fig. 5 (continued)

120 M. Pant et al.

 (a) Function f1 (b) Function f2

 (c) Function f3 (d) Function f4

 (e) Function f5 (f) Function f6

 (g) Function f7 (h) Function f8

Fig. 6 Performance curves for BPSO, QIPSO, ATREPSO and GMPSO

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 121

 (i) Function f9 (j) Function f10

Fig. 6 (continued)

 (a) Function f1 (b) Function f2

 (c) Function f3 (d) Function f4

 (e) Function f5 (f) Function f6

Fig. 7 Performance curves for BPSO, QIPSO-1and QIPSO-2

122 M. Pant et al.

 (g) Function f7 (h) Function f8

 (i) Function f9 (j) Function f10

Fig. 7 (continued)

Table 6 Comparison results of real life problems (BPSO, GPSO, EPSO and LNPSO)

Gear Train Design
Item BPSO GPSO EPSO LNPSO
x1 13 20 20 20
x2 31 13 13 13
x3 57 53 53 53
x4 49 34 34 34

f (x) 9.989333e-11 2.331679e-11 2.331679e-11 2.33168e-011
Gear Ratio 0.14429 0.14428 0.14428 0.14428
Error (%) 0.007398 0.000467 0.000467 0.000467

Transistor Modeling
Item BPSO GPSO EPSO LNPSO
x1 0.901019 0.901241 0.901279 0.90097
x2 0.88419 0.883919 0.888237 0.880522
x3 4.038604 3.756517 3.854668 3.94582
x4 4.148831 3.861717 3.986954 4.081
x5 5.243638 5.387461 5.338548 5.28292
x6 9.932639 10.551659 10.410919 9.95503
x7 0.100944 0.26037 0.091619 0.221577
x8 1.05991 1.077294 1.083181 1.05418
x9 0.80668 0.764622 0.752615 0.825799
f(x) 0.069569 0.058406 0.05974 0.06292

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 123

Table 7 Comparison results of real life problems (BPSO, VC-PSO and SO-PSO)

Gear Train Design
Item BPSO VC-PSO SO-PSO
x1 13 16 16
x2 31 19 19
x3 57 49 49
x4 49 43 43
f (x) 9.989333e-11 2.782895e-12 2.7829e-012
Gear Ratio 0.14429 0.14428 0.14428
Error (%) 0.007398 0.000467 0.000467

Transistor Modeling
Item BPSO VC-PSO SO-PSO
x1 0.901019 0.900433 0.901031
x2 0.88419 0.52244 0.885679
x3 4.038604 1.07644 4.05936
x4 4.148831 1.949464 4.17284
x5 5.243638 7.853698 5.23002
x6 9.932639 8.836444 9.88428
x7 0.100944 4.771224 0.025906
x8 1.05991 1.007446 1.06251
x9 0.80668 1.854541 0.802467
f(x) 0.069569 0.011314 0.067349

Table 8 Comparison results of real life problems (BPSO, QIPSO, ATREPSO and GMPSO)

Gear Train Design
Item BPSO QIPSO ATREPSO GMPSO
x1 13 15 19 19
x2 31 26 16 16
x3 57 51 43 43
x4 49 53 49 49
f (x) 9.98e-11 2.33e-11 2.78e-12 2.78e-12
Gear Ratio 0.14429 0.14428 0.14428 0.14428
Error (%) 0.007398 0.000467 0.000467 0.000467

Transistor Modeling
Item BPSO QIPSO ATREPSO GMPSO
x1 0.901019 0.90104 0.900984 0.90167
x2 0.88419 0.884447 0.886509 0.877089
x3 4.038604 4.004119 4.09284 3.532352
x4 4.148831 4.123703 4.201832 3.672409
x5 5.243638 5.257661 5.214615 5.512315
x6 9.932639 9.997876 9.981726 10.80285
x7 0.100944 0.096078 5.69e-06 0.56264
x8 1.05991 1.062317 1.061709 1.074696
x9 0.80668 0.796956 0.772014 0.796591
f(x) 0.069569 0.066326 0.066282 0.065762

124 M. Pant et al.

Table 9 Comparison results of real life problems (BPSO, QIPSO-1 and QIPSO-2)

Gear Train Design

Item BPSO QIPSO-1 QIPSO-2

x1 13 19 13

x2 31 16 20

x3 57 43 34

x4 49 49 53

f (x) 9.989333e-11 2.7829e-012 2.33168e-011

Gear Ratio 0.14429 0.14428 0.14428

Error (%) 0.007398 0.000467 0.000467
Transistor Modeling

Item BPSO QIPSO-1 QIPSO-2

x1 0.901019 0.901952 0.90107

x2 0.88419 0.895188 0.653572

x3 4.038604 3.66753 1.42074

x4 4.148831 3.67355 2.0913

x5 5.243638 5.44219 7.29961

x6 9.932639 11.2697 10.00

x7 0.100944 0.097903 4.09852

x8 1.05991 1.10537 1.00974

x9 0.80668 0.679967 1.59885

f(x) 0.069569 0.061881 0.0514062

Numerical results of real life problems are given in Tables 6 – 9. From these
Tables, it is very difficult to claim the superiority of a particular algorithm over
the others because the optimum function value obtained by all the algorithms is
more or less similar. Although in some cases modified algorithms gave slightly
better results than the basic PSO. This is probably due to the fact that both the real
life problems, though nonlinear in nature, are small in size and do not pose any
severe challenge for an optimization algorithm.

7 Conclusions

This article presents some recent simple and modified versions PSO. The
algorithms considered may be divided into two classes; (1) algorithms without
having any special operator but simply changing the initial configuration of the
swarm and (2) algorithms having some special operator .

In all nine modified versions of PSO are presented in this chapter. These are:

 Gaussian Particle Swarm Optimization (GPSO)
 Exponential Particle Swarm Optimization (EPSO)

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 125

 Lognormal Particle Swarm Optimization (LNPSO)
 Sobol Particle Swarm Optimization (SOPSO)
 Van der Corput Particle Swarm Optimization (VCPSO)
 Attraction and Repulsion Particle Swarm Optimization (ATREPSO)
 Gaussian Mutation Particle Swarm Optimization (GMPSO)
 Quadratic Interpolation Particle Swarm Optimization (QIPSO)

The first five algorithms namely GPSO, EPSO, LNPSO, SOPSO and VCPSO
described in the chapter use different initialization schemes for generating the
swarm population. These schemes include Gaussian, exponential and lognormal
probability distributions and quasi random sequences Sobol and Vander Corput to
initialize the swarm. As expected, PSO algorithms initialized with quasi random
sequences performed much better than the PSO initiated with the usual computer
generated random numbers having uniform distribution (Please also see Table 3).
However the interesting part of the study is that PSO initiated with Gaussian,
exponential and lognormal distribution improved its performance quite
significantly (Please also see Table 2).

The second part of the research consisted of modified PSO versions assisted
with special operators like repulsion, mutation and crossover. In this part three
algorithms called ATREPSO, GMPSO and QIPSO are given. The QIPSO is
further modified into two versions QIPSO1 and QIPSO2. The common feature of
these operator assisted PSO algorithms is that they all use diversity as guide to
implement the operators. All the nine algorithms are applied on ten standard
benchmark problems and two real life problems. The results obtained by these
algorithms on the ten benchmark problems and two real life problems were either
superior or at par with the basic PSO having uniform probability distribution to
initialize the swarm. We did not compare the algorithms without any special
operator with the ones having special operator because it will not be a fair
comparison. However, among other algorithms PSO assisted with crossover
operator QIPSO and its versions gave the best results. The present study may
further be extended to solve the constrained optimization problems. Another
interesting thing will be to combine PSO algorithms having different initialization
scheme with PSO assisted with some special operator.

References

1. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International
Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway,
NJ, pg. IV, pp. 1942–1948 (1995)

2. Angeline, P.J.: Evolutionary Optimization versus Particle Swarm Optimization:
Philosophy and Performance Difference. In: The 7th Annual Conference on
Evolutionary Programming, San Diego, USA (1998)

3. Vesterstrom, J., Thomsen, R.: A Comparative study of Differential Evolution, Particle
Swarm optimization, and Evolutionary Algorithms on Numerical Benchmark
Problems. In: Proc. IEEE Congr. Evolutionary Computation, Portland, OR, June 20-
23, pp. 1980–1987 (2004)

126 M. Pant et al.

4. Vesterstrøm, J.S., Riget, J., Krink, T.: Division of Labor in Particle Swarm
Optimisation. In: Proceedings of the Fourth Congress on Evolutionary Computation
(CEC 2002), vol. 2, pp. 1570–1575 (2002)

5. Liu, H., Abraham, A., Zhang, W.: A Fuzzy Adaptive Turbulent Particle Swarm
Optimization. International Journal of Innovative Computing and Applications 1(1),
39–47 (2007)

6. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proc. IEEE Congr.
Evolutionary Computation, pp. 69–73 (1998)

7. Eberhart, R.C., Shi, Y.: Particle Swarm Optimization: Developments, Applications and
Resources. In: Proc. IEEE Congr. Evolutionary Computation, vol. 1, pp. 27–30 (2001)

8. Clerc, M.: The Swarm and the Queen: Towards a Deterministic and adaptive Particle
Swarm Optimization. In: Proc. of the IEEE Congress on Evolutionary Computation,
vol. 3, pp. 1951–1957 (1999)

9. Kennedy, J.: Small Worlds and Mega-Minds: Effects of Neighborhood Topology on
Particle Swarm Performance. In: Proc. of the IEEE Congress on Evolutionary
Computation, vol. 3, pp. 1931–1938 (1999)

10. Poli, R., Langdon, W.B., Holland, O.: Extending Particle Swarm Optimization via
Genetic Programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.,
Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 291–300. Springer,
Heidelberg (2005)

11. Ting, T.-O., Rao, M.V.C., Loo, C.K., Ngu, S.-S.: A New Class of Operators to
Accelerate Particle Swarm Optimization. In: Proceedings of the IEEE Congress on
Evolutionary Computation, vol. (4), pp. 2406–2410 (2003)

12. Paquet, U., Engelbrecht, A.P.: A New Particle Swarm Optimizer for Linearly
Constrained Optimization. In: Proceedings of the IEEE Congress on Evolutionary
Computation, vol. (1), pp. 227–233 (2003)

13. Parsopoulos, K.E., Plagianakos, V.P., Magoulus, G.D., Vrahatis, M.N.: Objective
Function “Strectching” to Alleviate Convergence to Local Minima. Nonlinear
Analysis, Theory, Methods and Applications 47(5), 3419–3424 (2001)

14. Grosan, C., Abraham, A., Nicoara, M.: Search Optimization Using Hybrid Particle
Sub-Swarms and Evolutionary Algorithms. International Journal of Simulation
Systems, Science & Technology, UK 6(10&11), 60–79 (2005)

15. Gehlhaar, Fogel: Tuning Evolutionary programming for conformationally flexible
molecular docking. In: Proceedings of the fifth Annual Conference on Evolutionary
Programming, pp. 419–429 (1996)

16. Pant, M., Radha, T., Singh, V.P.: Particle Swarm Optimization: Experimenting the
Distributions of Random Numbers. In: 3rd Indian Int. Conf. on Artificial Intelligence
(IICAI 2007), India, pp. 412–420 (2007)

17. Krohling, R.A., Coelho, L.S.: PSO-E: Particle Swarm with Exponential Distribution.
In: IEEE Congress on Evolutionary Computation, Canada, pp. 1428–1433 (2006)

18. Krohling, R.A., Swarm, G.: A Novel Particle Swarm Optimization Algorithm. In:
Proc. of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore,
pp. 372–376 (2004)

19. Pant, M., Thangaraj, R., Abraham, A.: Improved Particle Swarm Optimization with
Low-discrepancy Sequences. In: IEEE Cong. on Evolutionary Computation (CEC
2008), Hong Kong (accepted, 2008)

20. Kimura, S., Matsumura, K.: Genetic Algorithms using low discrepancy sequences. In:
Proc of GEECO 2005, pp. 1341–1346 (2005)

Particle Swarm Optimization: Performance Tuning and Empirical Analysis 127

21. Nguyen, X.H., Nguyen, Q.U., Mckay, R.I., Tuan, P.M.: Initializing PSO with
Randomized Low-Discrepancy Sequences: The Comparative Results. In: Proc. of
IEEE Congress on Evolutionary Algorithms, pp. 1985–1992 (2007)

22. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization in noisy and
continuously changing environments. In: Proceedings of International Conference on
Artificial Intelligence and soft computing, pp. 289–294 (2002)

23. Brits, R., Engelbrecht, A.P., van den Bergh, F.: A niching Particle Swarm Optimizater.
In: Proceedings of the fourth Asia Pacific Conference on Simulated Evolution and
learning, pp. 692–696 (2002)

24. Brits, R., Engelbrecht, A.P., van den Bergh, F.: Solving systems of unconstrained
Equations using Particle Swarm Optimization. In: Proceedings of the IEEE Conference
on Systems, Man and Cybernetics, vol. 3, pp. 102–107 (2002)

25. Chi, H.M., Beerli, P., Evans, D.W., Mascagni, M.: On the Scrambled Sobol Sequence.
In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005.
LNCS, vol. 3516, pp. 775–782. Springer, Heidelberg (2005)

26. Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. John Wiley &
Sons Ltd., Chichester (2005)

27. Pant, M., Radha, T., Singh, V.P.: A Simple Diversity Guided Particle Swarm
Optimization. In: IEEE Cong. on Evolutionary Computation (CEC 2007), Singapore,
pp. 3294–3299 (2007)

28. Riget, J., Vesterstrom, J.S.: A diversity-guided particle swarm optimizer – the arPSO.
Technical report, EVAlife, Dept. of Computer Science, University of Aarhus,
Denmark (2002)

29. Pant, M., Radha, T., Singh, V.P.: A New Diversity Based Particle Swarm Optimization
using Gaussian Mutation. Int. J. of Mathematical Modeling, Simulation and
Applications (accepted)

30. Pant, M., Thangaraj, R.: A New Particle Swarm Optimization with Quadratic
Crossover. In: Int. Conf. on Advanced Computing and Communications (ADCOM
2007), India, pp. 81–86. IEEE Computer Society Press, Los Alamitos (2007)

31. Pant, M., Thangaraj, R., Abraham, A.: A New Particle Swarm Optimization Algorithm
Incorporating Reproduction Operator for Solving Global Optimization Problems. In:
7th International Conference on Hybrid Intelligent Systems, Kaiserslautern, Germany,
pp. 144–149. IEEE Computer Society press, USA (2007)

32. Millie Pant, T., Pant, M., Radha, T., Singh, V.P.: A New Particle Swarm Optimization
with Quadratic Interpolation. In: Int. Conf. on Computational Intelligence and
Multimedia Applications (ICCIMA 2007), India, vol. 1, pp. 55–60. IEEE Computer
Society Press, Los Alamitos (2007)

33. Kannan, B.K., Kramer, S.N.: An Augmented Lagrange Multiplier Based Method for
Mixed Integer Discrete Continuous Optimization and its Applications to Mechanical
Design. J. of Mechanical Design, 116/405 (1994)

34. Sandgren, E.: Nonlinear Integer and Discrete Programming in Mechanical Design. In:
Proc. of the ASME Design Technology Conference, Kissimme, Fl, pp. 95–105 (1988)

35. Price, W.L.: A Controlled Random Search Procedure for Global Optimization. In:
Dixon, L.C.W., Szego, G.P. (eds.) Towards Global Optimization 2, vol. X, pp. 71–84.
North Holland Publishing Company, Amsterdam (1978)

36. Secrest, B.R., lamont, G.B.: Visualizing Particle Swarm Optimization – Gaussian
Particle Swarm Optimization. In: Proc. of IEEE Swarm Intelligence Symposium, pp.
198–204 (2003)

128 M. Pant et al.

37. Stacey, A., Jancic, M., Grundy, I.: Particle Swarm Optimization with Mutation. In:
Proc. of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1425–1430
(2003)

38. van der Bergh, F.: An Analysis of Particle Swarm Optimizers. PhD thesis, Department
of Computer Science, University of Pretoria, Pretoria, South Africa (2002)

39. van der Bergh, F., Engelbrecht, A.P.: A New Locally Convergent Particle Swarm
Optimizer. In: Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 96–
101 (2002)

40. Xie, X., Zhang, W., Yang, Z.: A Dissipative Particle Swarm Optimization. In: Proc. of
the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1456–1461 (2002)

41. Higashi, H., Iba, H.: Particle Swarm Optimization with Gaussian Mutation. In: Proc. of
IEEE Swarm Intelligence Symposium, pp. 72–79 (2003)

42. Yao, X., Liu, Y.: Fast Evolutionary Programming. In: Fogel, L.J., Angeline, P.J.,
Back, T.B. (eds.) Proc. of the 5th Annual Conf. Evolutionary Programming, pp. 451–
460 (1996)

43. Yao, X., Liu, Y., Lin, G.: Evolutionary Programming made faster. IEEE Trans. On
Evolutionary Computation 3(2), 82–102 (1999)

44. Ting, T.-O., Rao, M.V.C., Loo, C.K., Ngu, S.-S.: A new Class of Operators to
accelerate Particle Swarm optimization. In: Proceedings of IEEE Congress on
Evolutionary Computation, vol. 4(656), pp. 2406–2410 (2003)

45. Clerc, M.: Think Locally, Act Locally: The way of Life of Cheap-PSO, an Adaptive
PSO. Technical report (2001), http://clerc.maurice.free.fr/PSO/

46. Rigit, J., Vesterstorm, J.S.: Controlling Diversity in Particle Swarm Optimization.
Master’s thesis, University of Aahrus, Denmark (487) (2002)

47. Rigit, J., Vesterstorm, J.S.: Particle Swarms: Extensions for improved local, multi
modal, and dynamic search in Numerical optimization. Masters thesis, department of
Computer Science, University of Aahrus (620) (2002)

48. Brits, R.: Niching Strategies for Particle swarm optimization. Masters thesis,
Department of Computer Science, university of Pretoria (67) (2002)

49. Brits, R.E., Van den Bergh, F.: Solving unconstrained equations using Particle Swarm
Optimization. In: Proceedings of the IEEE congress on systems, man and cybernetics,
vol. 3(70), pp. 102–107 (2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

