Skip to main content

Synthesis of Spatio-temporal Models by the Evolution of Non-uniform Cellular Automata

  • Chapter
Foundations of Computational Intelligence Volume 4

Part of the book series: Studies in Computational Intelligence ((SCI,volume 204))

  • 720 Accesses

Abstract

Non-uniform or inhomogeneous cellular automata (NunCA) [28] are spatio-temporal models for dynamical systems in which space and time are discrete, and there is a distinct transition rule for each cell, with a finite number of states. The cells are in a regular lattice and the transition from one state to another is performed synchronously. The next state of a given cell will then be provided by a local and fixed transition rule that associates its current state and the current state of the neighbouring cells with the next state. The neighbourhood could also be specific for each cell, but will be considered the same, except for the cells at the frontiers of the regular lattice. So, the only distinct feature between NunCA and the traditional uniform cellular automata (CA) [29,34] is the adoption of a specific transition rule for each cell instead of a single transition rule for all the cells in the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäck, T., Hoffmeister, F., Schwefel, H.-P.: Survey of Evolution Strategies. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 2–9 (1991)

    Google Scholar 

  2. Basanta, D., Miodownik, M.A., Bentley, P.J., Holm, E.A.: Investigating the Evolvability of Biologically Inspired CA. In: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, ALIFE9 (2004)

    Google Scholar 

  3. Beyer, H., Schwefel, H.: Evolution strategies: A comprehensive introduction. Natural Computing (2002)

    Google Scholar 

  4. Camazine, S., Deneubourg, J.-L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  5. Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Transactions on Circuits and Systems 35(10), 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chopard, B.: Cellular automata modeling of physical systems. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  7. Collasanti, R.L., Grime, J.P.: Resource dynamics and vegetation process: a deterministic model using two-dimensional cellular automata. Functional Ecology 7, 169–176 (1993)

    Article  Google Scholar 

  8. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Physical Review Letters 56, 1505–1508 (1986)

    Article  Google Scholar 

  9. Golberg, D.E.: Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  10. Gregorio, S.D., Serra, R.: An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation Computer Systems 16, 259–271 (1999)

    Article  Google Scholar 

  11. Gutowitz, H., Langton, C.: Methods for Designing ‘Interesting’ Cellular Automata. CNLS News Letter (1988)

    Google Scholar 

  12. Hillman, D.: Combinatorial Spacetimes, Ph.D. Thesis, University of Pittsburgh (1995)

    Google Scholar 

  13. Ilachinski, Halpern, P.: Structurally dynamic cellular automata. Complex Systems 1, 503–527 (1987)

    MATH  MathSciNet  Google Scholar 

  14. Jai, A.E.: Nouvelle approche pour la modélisation des systèmes en expansion spatiale: Dynamique de végétation, Tendences nouvelles en modélisation pour l’environnement, pp. 439–445. Elsevier, Amsterdam (1999)

    Google Scholar 

  15. Kagaris, D., Tragoudas, S.: Von Neumann Hybrid Cellular Automata for Generating Deterministic Test Sequences. ACM Trans. On Design Automation of Electronic Systems 6(3), 308–321 (2001)

    Article  Google Scholar 

  16. Kaneko, K. (ed.): Theory and Applications of Coupled Map Lattices. Wiley, Chichester (1993)

    MATH  Google Scholar 

  17. Li, W.: Phenomenology of Non-Local Cellular Automata, Santa Fe Institute Working Paper 91-01-001 (1991)

    Google Scholar 

  18. Maji, P., Ganguly, N., Saha, S., Roy, A.K., Chaudhuri, P.P.: Cellular Automata Machine for Pattern Recognition. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 270–281. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Mitchell, M., Hraber, P., Crutchfiled, J.: Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems 7, 89–130 (1993)

    MATH  Google Scholar 

  20. Mitchell, M., Crutchfield, J.P., Das, R.: Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work. In: Proceedings of the First International Conference on Evolutionary Computation and Its Applications (1996)

    Google Scholar 

  21. Nagel, K., Herrmann, H.J.: Deterministic models for traffic jams. Physica A 199, 254–269 (1993)

    Article  MATH  Google Scholar 

  22. Nicolis, G., Prigogine, I.: Self-organization in non-equilibrium systems. Wiley, Chichester (1977)

    Google Scholar 

  23. Oliveira, G.M.B., de Oliveira, P.P.B., Omar, N.: Definition and Application of a Five-Parameter Characterization of Unidimensional Cellular Automata Rule Space. Artificial Life 7, 277–301 (2001)

    Article  Google Scholar 

  24. Rabino, G.A., Laghi, A.: Urban Cellular Automata: The Inverse Problem. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 349–356. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Romano, A.L.T., Gomes, L., Gomes, G., Puma-Villanueva, W., Zanetti, M., Von Zuben, C.J., Von Zuben, F.J.: Evolutionary Modeling of Larval Dispersal in Blowflies Using Non-Uniform Cellular Automata. In: IEEE Congress on Evolutionary Computation, pp. 3872–3879 (2006)

    Google Scholar 

  26. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular automata. Biosystems 51(3), 123–143 (1999)

    Article  Google Scholar 

  27. Schwefel, H.-P.: Numerical Optimization of Computer Models. Wiley, Chichester (1981)

    MATH  Google Scholar 

  28. Sipper, M.: Non-Uniform Cellular Automata: Evolution in Rule Space and Formation of Complex Structures. In: Artificial Life IV, pp. 394–399. MIT Press, Cambridge (1994)

    Google Scholar 

  29. Toffoli, T., Margolus, N.: Cellular automata machines – A new environment for modeling. MIT Press, Cambridge (1987)

    Google Scholar 

  30. Tomassini, M., Perrenoud, M.: Cryptography with cellular automata. Applied Soft Computing 1(2), 151–160 (2001)

    Article  Google Scholar 

  31. Tomassini, M., Sipper, M., Zolla, M., Perrenould, M.: Generating high-quality random numbers in parallel by cellular automata. Future Generation Computer Systems 16, 291–305 (1999)

    Article  Google Scholar 

  32. Tsalides, P.: Cellular automata based build-in self test structures for VLSI systems. IEE-Electronics Letters 26(17), 1350–1352 (1990)

    Article  Google Scholar 

  33. Vassilev, V.K., Miller, J.F., Fogarty, T.C.: The Evolution of computation in co-evolving demes of non-uniform cellular automata for global synchronization. In: Proceedings of the 5th European Conference on Artificial Life, Berlin (1999)

    Google Scholar 

  34. Von Neumann, J.: The General and Logical Theory of Automata, John von Neumann: Collected Works. In: Taub, A.H. (ed.) Design of Computer, Theory of Automata and Numerical Analysis, vol. 5. Pergamon Press, Oxford (1961)

    Google Scholar 

  35. Wolfram, S.: Cellular Automata and Complexity – Collected Papers. Addison-Wesley Publishing Company, Reading (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Romano, A.L.T., Villanueva, W.J.P., Zanetti, M.S., Von Zuben, F.J. (2009). Synthesis of Spatio-temporal Models by the Evolution of Non-uniform Cellular Automata. In: Abraham, A., Hassanien, AE., de Carvalho, A.P.d.L.F. (eds) Foundations of Computational Intelligence Volume 4. Studies in Computational Intelligence, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01088-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01088-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01087-3

  • Online ISBN: 978-3-642-01088-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics