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Summary. In this chapter, a formalism for a specific temporal data mining task
(the discovery of rules, inferred from databases of events having a temporal dimen-
sion), is defined. The proposed theoretical framework, based on first-order temporal
logic, allows the definition of the main notions (event, temporal rule, confidence) in
a formal way. This formalism is then extended to include the notion of temporal
granularity and a detailed study is made to investigate the formal relationships be-
tween the support measures of the same event in linear time structures with different
granularities. Finally, based on the concept of consistency, a strong result concern-
ing the independence of the confidence measure for a temporal rule, over the worlds
with different granularities, is proved.

1 Introduction

The domain of temporal data mining focuses on the discovery of causal rela-
tionships among events that are ordered in time and may be causally related.
The contributions in this domain encompass the discovery of temporal rule,
of sequences and of patterns. However, in many respects this is just a termi-
nological heterogeneity among researchers that are, nevertheless, addressing
the same problem, albeit from different starting points and domains.

Although there is a rich bibliography concerning the formalism for tem-
poral databases, there are very few articles on this topic for temporal data
mining. In [1, 5, 21] general frameworks for temporal mining are proposed,
but usually the researches on causal and temporal rules are more concentrated
on the methodological/algorithmic aspect, and less on the theoretical aspect.
Based on a methodology for temporal rule extraction, described in [9], we
proposed in [10, 11] an innovative formalism based on first-order temporal
logic, which permits an abstract view on temporal rules. An important con-
cept defined in this formalism is the property of consistency, which guarantees
the preserving over time of the confidence/support of a temporal rule. The
formalism is developed around a time model for which the events are those
that describe system evolution (event-based temporal logic). Each formula
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expresses what the system does at each event, events are referring to other
events, and so on: this results in specifying relationships of precedence and
cause-effect among events. But the real systems are systems whose compo-
nents (events) have dynamic behavior regulated by very different – even by
orders of magnitude – time granularities. Analyzing such systems (hereinafter
granular systems) means to approach theories, methodologies, techniques and
tools that make use of granules (or groups, classes, clusters of a universe) in
the process of problem solving. Granular computing (the label which covers
this approach) is a way of thinking that relies on our ability to perceive the real
world under various grain sizes, to abstract and to consider only those things
that serve our present interest, and to switch among different granularities.
By focusing on different levels of granularities, one can obtain various levels
of knowledge, as well as inherent knowledge structure. Granular computing is
essential to human problem solving, and hence has a very significant impact
on the design and implementation of intelligent systems [28, 27, 29, 20].

2 State of Art

The notions of granularity and abstraction are used in many subfields of artifi-
cial intelligence. The granulation of time and space leads naturally to temporal
and spatial granularities. They play an important role in temporal and spatial
reasoning [13, 18, 26]. Based on granularity and abstraction, many authors
studied some fundamental topics of artificial intelligence, such as knowledge
representation [30], theorem proving [15], search [31], planning [19], natural
language understanding [22], intelligent tutoring systems [23], machine learn-
ing [25], and data mining [16].

Despite the widespread recognition of its relevance in the fields of formal
specifications, knowledge representation and temporal databases, there is a
lack of a systematic framework for time granularity. Hobbs [17] proposed
a formal characterization of the general notion of granularity, but gives no
special attention to time granularity. Clifford et al. [8] provide a set-theoretic
formalization of time granularity, but they do not attempt to relate the truth
value of assertions to time granularity. Extensions to existing languages for
formal specifications, knowledge representation and temporal databases that
support a limited concept of time granularity are proposed in [24, 14, 7].
Finally, Bettini et al. [2, 4] provide a formal framework for expressing data
mining tasks involving time granularities, investigate the formal relationships
among event structures that have temporal constraints, define the pattern-
discovery problem with these structures and study effective algorithms to
solve it.

The purpose of this chapter is to extend our formalism to include the
concept of time granularity. We define the process by which a given structure
of time granules µ (called temporal type) induces a first-order linear time
structure Mµ (called granular world) on the basic (or absolute) linear time
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structure M . The major change for the temporal logic based on Mµ is at the
semantic level: for a formula p, the interpretation does not assign a meaning
of truth (one of the values {true, false}), but a degree of truth (a real value
from [0, 1]). Consequently, we can give an answer to the following question: if
the temporal type µ is finer than temporal type ν, what is the relationship
between the support of the same temporal rule Tp in the linear time structures
Mµ andMν . We also study the variation process for the set of satisfiable events
(degree of truth equal one) during the transition between two time structures
with different granularity. By an extension at the syntactic and semantic level
we are able to define an aggregation mechanism for events, reflecting the
following intuitive phenomenon: in a coarser world, not all events inherited
from a finer world are satisfied, but in exchange there are new events which
become satisfiable. Finally, using an extension of the concept of consistency
for a granular time structure Mµ, we prove a strong result concerning the
invariance of the confidence measure for a temporal rule during the process
of information transfer between worlds with different granularities.

The rest of the chapter is structured as follows. In the next section, the
first-order temporal logic formalism is extensively described (the main terms
and concepts). The definitions and theorems concerning the extension of the
formalism towards a temporal granular logic are presented in Sect. 4. Finally,
the last section summarizes our work, followed by an appendix containing the
proofs of the theorems in the chapter.

3 Formalism of Temporal Rules

Time is ubiquitous in information systems, but the mode of representa-
tion/perception varies in function of the purpose of the analysis [6, 12]. Firstly,
there is a choice of a temporal ontology, which can be based either on time
points (instants) or on intervals (periods). Secondly, time may have a discrete
or a continuous structure. Finally, there is a choice of linear vs. nonlinear time
(e.g. acyclic graph). Our selection, imposed by the discrete representation of
all databases, is a temporal domain represented by linearly ordered discrete
instants.

Databases being first-order structures, the first-order logic represents a
natural formalism for their description. Consequently, the first-order tempo-
ral logic expresses the formalism of temporal databases. For the purpose of our
approach we consider a restricted first-order temporal language L which con-
tains only constant symbols {c, d, ..}, n-ary (n ≥ 1) function symbols {f, g, ..},
variable symbols {y1, y2, ...}, n-ary predicate symbols (n ≥ 1, so no proposition
symbols), the set of relational symbols {=, <,≤, >,≥}, the logical connective
∧ and a temporal connective of the form ∇k, k ∈ Z, where k strictly positive
means after k time instants, k strictly negative means before k time instant
and k = 0 means now.
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The syntax of L defines terms, atomic formulae and compound formulae.
The terms of L are defined inductively by the following rules:

T1. Each constant is a term.
T2. Each variable is a term.
T3. If t1, t2, . . . , tn are terms and f is an n-ary function symbol then f(t1, . . . , tn)

is a term.

The atomic formulae (or atoms) of L are defined by the following rules:

A1. If t1, . . . , tn are terms and P is an n-ary predicate symbol then P (t1, . . . , tn)
is an atom.

A2. If t1, t2 are terms and ρ is a relational symbol then t1ρ t2 is an atom (also
called relational atom).

Finally, the (compound) formulae of L are defined inductively as follow:

F1. Each atomic formula is a formula.
F2. If p, q are formulae then (p ∧ q), ∇kp are formulae.

A Horn clause is a formula of the form B1 ∧ · · · ∧ Bm → Bm+1 where
each Bi is a positive (non-negated) atom. The atoms Bi, i = 1, . . . ,m are
called implication clauses, whereas Bm+1 is known as the implicated clause.
Syntactically, we cannot express Horn clauses in our language L because the
logical connective→ is not included. However, to allow the description of rules,
which formally look like a Horn clause, we introduce a new logical connective,
7→, representing practically a rewrite of the connective ∧. Therefore, a formula
in L of the form p 7→ q is syntactically equivalent to the formula p ∧ q. When
and under what conditions we may use the new connective, is explained in
the next definitions.

Definition 1. An event (or temporal atom) is an atom formed by the predicate
symbol E followed by a bracketed n-tuple of terms (n ≥ 1) E(t1, t2, . . . , tn).
The first term of the tuple, t1, is a constant symbol representing the name
of the event and all others terms are expressed according to the rule ti =
f(ti1, . . . , tiki). A short temporal atom (or the event’s head) is the atom E(t1).

Definition 2. A constraint formula for the event E(t1, t2, . . . tn) is a con-
junctive compound formula, E(t1, t2, . . . tn) ∧ C1 ∧ C2 ∧ · · · ∧ Ck. Each Cj is
a relational atom tρ c, where the first term t is one of the terms ti, i = 1 . . . n
and the second term is a constant symbol.

For a short temporal atom E(t1), the only constraint formula that is permitted
is E(t1) ∧ (t1 = c). We denote such constraint formula as short constraint
formula.

Definition 3. A temporal rule is a formula of the form H1 ∧ · · · ∧ Hm 7→
Hm+1, where Hm+1 is a short constraint formula and Hi, i = 1..m are con-
straint formulae, prefixed by the temporal connectives ∇−k, k ≥ 0. The max-
imum value of the index k is called the time window of the temporal rule.
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Remark. The reason for which we did not permit the expression of the
implication connective in our language is related to the truth table for a
formula p→ q: even if p is false, the formula is still true, which is unacceptable
for a temporal rationing of the form cause→ effect.

If we change in Definition 1 the conditions imposed on the terms ti, i =
1 . . . n, into ”each term ti is a variable symbol”, we obtain the definition
of a temporal atom template. We denote such a template as E(y1, . . . , yn).
Following the same rationing, a constraint formula template for E(y1, . . . , yn)
is defined as a conjunctive compound formula, C1 ∧ C2 ∧ · · · ∧ Ck, where the
first term of each relational atom Cj is one of the variables yi, i = 1 . . . n.
Consequently, a short constraint formula template is the relational atom y1 =
c. Finally, by replacing in Definition 3 the notion “constraint formula” with
“constraint formula template” we obtain the definition of a temporal rule
template. Practically, the only formulae constructed in L are temporal atoms,
constraint formulae, temporal rules and the corresponding templates.

The semantics of L is provided by an interpretation I over a domain D
(in our formalism, D is always a linearly ordered domain). The interpretation
assigns an appropriate meaning over D to the (non-logical) symbols of L.
Usually, the domain D is imposed during the discretisation phase, which is a
pre-processing phase used in almost all knowledge extraction methodologies.
Based on Definition 1, an event can be seen as a labelled (constant symbol t1)
sequence of points extracted from raw data and characterized by a finite set of
features (terms t2, · · · , tn). Consequently, the domain D is the union De∪Df ,
where the set De contains all the strings used as event names and the set Df

represents the union of all domains corresponding to chosen features.

Example 1. Consider a database containing daily price variations of a given
stock. Suppose that a particular methodology for event detection was ap-
plied, which revealed three types of events (shape patterns in this case),
potentially useful for a final user. Each event is labelled with one of the
strings from the set {peak, flat, valley} and is characterized by two fea-
tures, f1 and f2, representing the output of the statistical functions mean
and standard error. These statistics are calculated using daily prices, sup-
posed to be subsequences of length w = 12. In the frame of our formalism
the language L will include a 3-ary predicate symbol E, three variable sym-
bols yi, i = 1..3, two 12-ary function symbols f and g, two sets of constant
symbols – {d1, . . . , d3} and {c1, . . . , cn} – and the usual set of relational sym-
bols and logical(temporal) connectives. Consequently, a temporal atom in
L is defined as E(di, f(cj1 , . . . , cj12), g(ck1 , . . . , ck12)), whereas an event tem-
plate is defined as E(y1, y2, y3). Finally, the domain D is the union of the set
De = {peak, flat, valley} and of the set Df = <+ (as the stock prices are
positives real numbers and the features are statistical functions).

To define a first-order linear temporal logic based on L, we need a structure
having a temporal dimension and capable to capture the relationship between
a time moment and the interpretation I at this moment.
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Definition 4. Given L and a domain D, a (first order) linear time structure
is a triple M = (S, x, I), where S is a set of states, x : N → S is an infinite
sequence of states (s1, s2, . . . , sn, . . .) and I is a function that associates with
each state s an interpretation Is of all symbols from L.

In the framework of linear temporal logic, the set of symbols is divided
into two classes, the class of global symbols and the class of local symbols.
Intuitively, a global symbol w has the same interpretation in each state, i.e.
Is(w) = Is′(w) = I(w), for all s, s′ ∈ S; the interpretation of a local symbol
may vary, depending on the state at which is evaluated. The formalism of
temporal rules assumes that all function symbols (including constants) and
all relational symbols are global, whereas the predicate symbols and variable
symbols are local. Consequently, as the temporal atoms, constraint formulae,
temporal rules and the corresponding templates are expressed using the pred-
icate symbol E or the variable symbols yi, the meaning of truth for these
formulae depend on the state at which they are evaluated. Given a first order
time structure M and a formula p, we denote the instant i (or equivalently, the
state si) for which Isi(p) = true by i |= p, i.e. at time instant i the formula
p is true. Therefore, i |= E(t1, . . . , tn) means that at time i an event with the
name I(t1) and characterized by the global features I(t2), . . . , I(tn) occurs.
Concerning the event template E(y1, . . . , yn), the interpretation of the vari-
able symbols yj at the state si, Isi(yj), is chosen such that i |= E(y1, . . . , yn)
for each time moment i. Because

• i |= p ∧ q if and only if i |= q and i |= q, and
• i |= ∇kp if and only if i+ k |= p,

a constraint formula (template) is true at time i if and only if all relational
atoms are true at time i and i |= E(t1, . . . , tn), whereas a temporal rule
(template) is true at time i if and only if i |= Hm+1 and i |= (H1 ∧ · · · ∧Hm).

Remark. The fact that the symbols of language L are divided into two
sets (local and global), according to the persistence of their interpretation
along the infinite sequence of states s1, s2, . . ., is the main reason for the
introduction of the notion of template. Consider, as example, the temporal
atom E(t1, t2, t3) and its corresponding template E(y1, y2, y3). In our vision,
the event template is a kind of event pattern and because there is a real
event which matches the pattern (an event with name I(t1) and features I(t2)
and I(t3)), the interpretation of the template must be true at each moment.
For this reason we imposed the condition that the interpretation of variable
symbols must be chosen such that i |= E(y1, y2, y3) for each time moment i.
On the other hand, we expect that in the real word, an event occurs only at
certain moments, i.e. the interpretation of the event is evaluated true only at
these moments. Because the terms ti, i = 1..3 are global symbols (as constant
symbols and function symbols) and I(E(t1, t2, t3)) = I(E)(I(t1), I(t2), I(t3)),
the only way to achieve the variability in time for the event interpretation is
to include the predicate symbol E in the set of local symbols.
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Example 2. The database of events, obtained after applying the specific method-
ology for event detection (see Example 1), contains tuples with three values,
(v1, v2, v3). For a tuple with a recording index i, the first value expresses the
name of the event – peak, flat, valley – which occurs at time moment i and the
two other values express the values of the two characterizing features. There-
fore, to define a linear time structure M = (S, x, I), we may consider a state s
as a triple (v1, v2, v3), the set S as the set of all tuples from the database and
the sequence x as the ordered sequence of tuples in database (see Table 1).

Table 1. The first eighteen states of the linear time structure M (example)

Index State Index State Index State

1 (peak, 11.2, 3.91) 7 (peak, 9.15, 4.03) 13 (flat, 7.14, 0.89)
2 (peak, 10.5, 4.87) 8 (peak, 11.52, 3.91) 14 (peak, 10.31, 4.42)
3 (peak, 14.03, 4.23) 9 (flat, 1.5, 1.81) 15 (peak, 12.8, 5.26)
4 (flat, 4.75, 1.42) 10 (valley, 3.08, 1.84) 16 (flat, 3.13, 1.44)
5 (peak, 9.49, 3.18) 11 (valley, 2.72, 1.58) 17 (flat, 5.08, 1.12)
6 (valley, 2.21, 1.12) 12 (valley, 4.42, 2.91) 18 (valley, 3.31, 3.20)

At this stage the interpretation of all symbols (global and local symbols) can
be defined. For the global symbols (function symbols and relational symbols),
the interpretation is quite intuitive. Therefore, the meaning I(dj) is an element
of De, the meaning I(cj), j = 1..n, is a positive real number, whereas the
meaning I(f), respectively I(g), is the function f : D12

f → Df , f(x) = x,
respectively the function g : D12

f → Df , g(x) = se(x) – we used the standard
notations in statistics for the mean and standard error estimators.

The interpretation of a local symbol (the variable symbols yi and the
predicate symbol E) depends on the state at which is evaluated. For this
example suppose that the function Isi(E) defined on D3 with values in B =
{true, false} is provided by a finite algorithm. This algorithm will receive at
input at least the state si and will provide at output one of the values from
B. Therefore, the interpretation of E(t1, t2, t3) evaluated at si is defined as:

Algorithm 1 Temporal atom evaluation

Consider the state si = (v1, v2, v3)
If (Isi(t1) = v1) and (Isi(t2) = v2) and (Isi(t3) = v3)

Then Isi(E(t1, t2, t3)) = true
Else Isi(E(t1, t2, t3)) = false

Finally, the interpretation of the variable symbol yj at the state si is
given by Isi(yj) = vj , j = 1..3, which satisfies the condition imposed to the
interpretation of temporal atom template, which is IsiE(y1, y2, y3) = true
for each state si. Having well-defined the language L, the syntax and the
semantics of L, as well as the linear time structure M , we can construct the
temporal atoms evaluated as true at time moment i (see Table 2).
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Table 2. The temporal atoms evaluated true at the states s2, s4 and s10 of M
(example)

State Temporal atom

2 E(peak, f(3, 5, 7, 9, 15, 18, 19, 14, 12, 9, 8, 7), g(3, 5, 7, 9, 15, 18, 19, 14, 12, 9, 8, 7))
4 E(flat, f(3, 3, 4, 4, 5, 6, 6, 7, 7, 5, 4, 3), g(3, 3, 4, 4, 5, 6, 6, 7, 7, 5, 4, 3))
10 E(valley, f(5, 4, 2, 1, 1, 2, 2, 1, 3, 4, 5, 7), g(5, 4, 2, 1, 1, 2, 2, 1, 3, 4, 5, 7))

3.1 Consistency

The connection between the restricted first-order temporal logic we defined
and the temporal data mining task this logic tries to formalize (temporal rules
extraction) is given by the following assumptions:

A. For each formula p in L, there is an algorithm that calculates the value of
the interpretation Is(p), for each state s, in a finite number of steps.

B. There are states (called incomplete states) that do not contain enough
information to calculate the interpretation for all formulae defined at these
states.

C. It is possible to establish a measure, (called general interpretation) about
the degree of truth of a compound formula along the entire sequence of
states (s0, s1, . . . , sn, . . .).

The first assumption express the calculability of the interpretation I (we
already considered this assumption in Example 2). The second assumption
express the situation when only the body of a temporal rule can be evaluated
at a time moment i, but not the head of the rule. Therefore, for the state
si, we cannot calculate the interpretation of the temporal rule and the only
solution is to estimate it using a general interpretation. This solution is ex-
pressed by the third assumption. (Remark: The second assumption violates
the condition about the existence of an interpretation in each state si, as de-
fined in Definition 4. But it is well known that in data mining sometimes data
is incomplete or is missing. Therefore, we must modify this condition as ”I is
a function that associates with almost each state s an interpretation Is of all
symbols from L”).

However, to ensure that this general interpretation is well defined, the
linear time structure must present some property of consistency. Practically,
this means that if we take any sufficiently large subset of time instants, the
conclusions we may infer from this subset are sufficiently close from those
inferred from the entire set of time instants. Therefore,

Definition 5. Given L and a linear time structure M, we say that M is a
consistent time structure for L if, for every formula p, the limit supp(p) =
lim
n→∞

n−1#A exists, where # means ”cardinality” and A = {i = 1..n | i |= p}.
The notation supp(p) denotes the support (of truth) of p.
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Now we define the general interpretation for an n-ary predicate symbol P as:

Definition 6. Given L and a consistent linear time structure M for L, the
general interpretation IG for an n-ary predicate P is a function Dn →
[0, 1], such that, for each n-tuple of terms {t1, . . . , tn}, IG(P (t1, . . . , tn)) =
supp(P (t1, . . . , tn)).

The general interpretation is naturally extended to constraint formulae, tem-
poral rules and the corresponding templates. There is another useful measure,
called confidence, but available only for temporal rules (templates). This mea-
sure is calculated as a limit ratio between the number of certain applications
(time instants where both the body and the head of the rule are true) and
the number of potential applications (time instants where only the body of
the rule is true).

Definition 7. The confidence of a temporal rule (template) H1 ∧ · · · ∧Hm 7→
Hm+1 is the limit lim

n→∞
(#B)−1#A, where A = {i = 1 . . . n | i |= H1 ∧ · · · ∧

Hm ∧Hm+1} and B = {i = 1 . . . n|i |= H1 ∧ · · · ∧Hm}.

The relation between the property of consistency and the existence of the
confidence for a temporal rule is expressed in the following lemma.

Lemma 1. If M is a consistent linear time structure for L then every temporal
rule (template) H1 ∧ · · · ∧Hm 7→ Hm+1 for which supp(H1 ∧ · · · ∧Hm) 6= 0
has a well-defined confidence.

For different reasons, (the user has not access to the entire sequence of
states, or the states he has access to are incomplete), the general interpretation
cannot be calculated. A solution is to estimate IG using a finite linear time
structure, i.e. a model.

Definition 8. Given L and a consistent time structure M = (S, x, I), a
model for M is a structure M̃ = (T̃ , x̃) where T̃ is a finite temporal domain
{i1, . . . , in}, x̃ is the subsequence of states {xi1 , . . . , xin} (the restriction of x
to the temporal domain T̃ ) and for each ij , j = 1, . . . , n, the state xij is a
complete state.

Now we may define the estimator for a general interpretation:

Definition 9. Given L and a model M̃ for M, an estimator of the general
interpretation for an n-ary predicate P, IG(M̃)(P ), is a function Dn → [0, 1],
assigning to each atomic formula p = P (t1, . . . , tn) the value defined as the

ratio
#A
#T̃

, where A = {i ∈ T̃ | i |= p}. The notation supp(p, M̃) will denote

the estimated support of p, given M̃.
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The extension of this definition to the other types of formulae in L demands a
deeper analysis. Consider, as example, the model M̃ induced by the sequence
of n > 1 states x̃ = x1, . . . , xn. The interpretation of a formula ∇1p at the
state xn can not be calculated, because n |= ∇1p if (n+1) |= p, but xn+1 6∈ x̃.
Therefore, the cardinality of the set A = {i ≤ n | i |= ∇1p} is strictly smaller
than n, which means that, for p a global formula having the meaning of truth
true, the estimated support is

supp(∇1p, M̃) = (n− 1)/n 6= 1 = supp(∇1p). (1)

The fact that the support estimator is biased seems at first glance without
importance, especially when, as in this case, the bias (n−1) tends to zero
for n ↑ ∞. But considering a formula of type ∇np, it is evidently that the
interpretation can not be calculated at none of the states from x̃, and so the
support estimator is not even defined. Before indicating how the expression
#A

#T̃
must be adjusted to avoid this kind of problem, we start by defining the

standard form of a formula in L.

Definition 10. A formula ∇k1p1 ∧∇k2p2 ∧ . . . ∧∇knpn, where n ≥ 1 and pi
are atoms of L, is in standard form if exists i0 ∈ {1, . . . , n} such that ki0 = 0
and for all i = 1..n, ki ≤ 0.

For an atomic formula p, it is clearly that its standard form is∇0p. Another
example of formula in standard form is a temporal rule (template), where
the head of the rule is prefixed by ∇0 and all other constraint formulae are
prefixed by ∇−k, k ≥ 0. It is obviously that, for M a consistent time structure,
the support of a formula does not change if it is prefixed with a temporal
connective ∇k, k ∈ Z. Therefore, to each formula p in L corresponds an
equivalent formula (under the measure supp) having a standard form (denoted
F(p)). Based on this concept, we can now give a non equivocal definition for
time windows:

Definition 11. Let be p a formula in L having the standard form ∇k1p1 ∧
∇k2p2 ∧ . . . ∧ ∇knpn. The time window of p – denoted w(p) – is defined as
max{ | ki | : i = 1..n}

In the following, a formula having a time window equal zero will be called
temporal free formula, whereas a formula with a strictly positive time window
will be called a temporal formula. The concept of time window allows us to
define a non biased estimator for the support measure.

Definition 12. Given L and a model M̃ for M, the estimator of the support
for a formula p in L and having w(p) < #T̃ = m, denoted supp(p, M̃), is the
ratio

#A
m− w(p)

, where A = {i ∈ T̃ | i |= F(p)}. (2)
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According to this definition, if w(p) ≥ m then the estimator supp(p, M̃)
is not defined. The use of the standard form of a formula, in the construction
of the set A, eliminates the interpretation problem for a formula of type ∇kp,
k ≥ m. Moreover, it is easy to see that supp(∇kp, M̃) = supp(p, M̃), for all
k ∈ Z.

Definition 13. Given L and a model M̃ for M, an estimate of the general
interpretation for a formula p is given by

IG(M̃)(p) =

{
supp(p, M̃), if w(p) < #T̃ ,
0 if w(p) ≥ #T̃

(3)

Once again, the estimation of the confidence for a temporal rule (template)
is defined as:

Definition 14. Given a model M̃ = (T̃ , x̃) for M, the estimation of the con-
fidence for the temporal rule (template) H1 ∧ · · · ∧Hm 7→ Hm+1 is the ratio
#A
#B

, where A = {i ∈ T̃ | i |= H1 ∧ · · · ∧ Hm ∧ Hm+1} and B = {i ∈ T̃ | i |=

H1∧· · ·∧Hm}. The notation conf(H, M̃) will denote the estimated confidence
of the temporal rule (template) H given M̃ .

According to the same arguments used in the definition of a correct support
estimator, the existence of a confidence estimator for a temporal rule H is
guaranteed only for models having a number of states greater than the time
window of the rule. Moreover, if ˜̃T is the set obtained from T̃ by deleting the
first w(H1 ∧ . . .∧Hm+1)−w(H1 ∧ . . .∧Hm) states, then we can obtain a non
biased confidence estimator if in the expression of the set B = {i ∈ T̃ | i |=
H1 ∧ · · · ∧Hm} the set T̃ is replaced with ˜̃T .

Example 3. Consider the following temporal rule template T (for the moment
we are not concerned on how it was discovered):

∇−2(y1 = peak)∧∇−2(y2 < 11)∧∇−1(y1 = peak)∧∇−1(y3 > 3) 7→ ∇0(y1 =
flat)

which may be ”translated” in a natural language as:

IF at time t− 2 an event ”peak” occurred with a mean less than 11 AND at
time t − 1 another event ”peak” occurred with a standard error greater than 3
THEN at time t an event type ”flat” occurs.

If M is a consistent linear time structure for the temporal language L
defined in Example 1, then the model M̃ given by the sequence of states
{s1, . . . , s18} (see Table 1) can be used to estimate the confidence of the tem-
poral rule T . If the local support for the rule is 0.125 (true at states 2 and 14,
among 17 states) and the local support for the body of the rule is 0.176 (true
at states 2, 7 and 14, among 16 states) then the estimated confidence for the
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rule, based on model M̃ , is 0.125/0.176 = 0.71. And, due to the consistency
property, this estimation is a reliable information about the success rate for
this rule when applied on future data.

4 The Granularity Model

We start with the concept of a temporal type to formalize the notion of time
granularities, as described in [3].

Definition 15. Let (T , <) (index) be a linearly ordered temporal domain iso-
morphic to a subset of integers with the usual order relation, and let (A, <)
(absolute time) be a linearly ordered set. Then, a temporal type on (T ,A) is
a mapping µ from T to 2A such that

1. µ(i) 6= ∅ and µ(j) 6= ∅, where i < j, imply that each element in µ(i) is
less than all the elements in µ(j), and

2. for all i < j, if µ(i) 6= ∅ and µ(j) 6= ∅, then ∀k , i < k < j implies
µ(k) 6= ∅.

Each set µ(i), if non-empty, is called a granule of µ. Property (1) says that
granules do not overlap and that the order on indexes follows the order on the
corresponding granules. Property (2) disallows an empty set to be the value
of a mapping for a certain index value if a lower index and a higher index are
mapped to non-empty sets.

When considering a particular application or formal context, we can spe-
cialize this very general model along the following dimensions:

• choice of the index set T ,
• choice of the absolute time set A,
• restrictions on the structure of granules,
• restrictions on the temporal types by using relationships.

We call the resulting formalization a temporal type system. Consider some
possibilities for each of the above four dimensions. Convenient choices for the
index set are natural numbers, integers, and any finite subset of them. The
choice for absolute time is typically between dense and discrete. In general, if
the application imposes a fixed basic granularity, then a discrete absolute time
in terms of the basic granularity is probably the appropriate choice. However,
if one is interested in being able to represent arbitrary finer temporal types,
a dense absolute time is required. In both cases, specific applications could
impose left/right boundedness on the absolute time set. The structure of ticks
could be restricted in several ways:

(1) disallow types with gaps in a granule,
(2) disallow types with non-contiguous granules,
(3) disallow types whose granules do not cover all the absolute time, or
(4) disallow types with nonuniform granules (only types with granules having

the same size are allowed).
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4.1 Relationships and formal properties

Following Bettini et al. [3], we define a number of interesting relationships
among temporal types.

Definition 16. Let be µ and ν be temporal types on (T ,A).

• Finer-than: µ is said to be finer than ν, denoted µ 4 ν, if for each i ∈ T ,
there exists j ∈ T such that µ(i) ⊆ ν(j).

• Groups-into: µ is said to group into ν, denoted µ E ν, if for each non-
empty granule ν(j), there is a subset S of T such that ν(j) =

⋃
i∈S µ(i).

• Subtype: µ is said to be a subtype of ν, denoted µ v ν, if for each i ∈ T ,
there exists j ∈ T such that µ(i) = ν(j).

• Shifting: µ and ν are said to be shifting equivalent, denoted µ1 
 µ2, if
µ v ν and ν v µ.

When a temporal type µ is finer than a temporal type ν, we also say that ν
is coarser than µ. The finer-than relationship formalizes the notion of finer
partitions of the absolute time. By definition, this relation is reflexive, i.e. µ 4
µ for each temporal type µ. Furthermore, the finer-than relation is obviously
transitive. However, if no restrictions are given, it is not antisymmetric, and
hence it is not a partial order. Indeed, µ 4 ν and ν 4 µ do not imply µ = ν,
but only µ 
 ν. Considering the groups-into relation, µ E ν ensures that
for each granule of µ there exists a set of granules of ν covering exactly the
same span of time. The relation is useful, for example, in applications where
attribute values are associated with time granules; sometimes it is possible
to obtain the value associated with a granule of ν from the values associated
with the granules of µ whose union covers the same time. The groups-into
relation has the same two properties as the finer-than relation, but generally
µ 4 ν does not imply µ E ν or viceversa. The subtype relation intuitively
identifies a type corresponding to subsets of granules of another type. Similar
to the two previous relations, subtype is reflexive and transitive, and satisfies
µ v ν ⇒ µ 4 ν. Finally, shifting is clearly an equivalence relation. Concerning
this last relation, an equivalent, more useful and practical definition, is:

Definition 17. Two temporal types µ1 and µ2 are said to be shifting equiv-
alent (denoted µ1 
 µ2) if there is a bijective function h : T → T such that
µ1(i) = µ2(h(i)), for all i ∈ T .

In the following we will consider only temporal type systems which satisfy
the restriction that no pair of different types can be shifting equivalent, i.e.

µ1 
 µ2 ⇒ µ1 = µ2. (4)

For this class of systems, the three relationships 4 ,E and v are reflexive,
transitive and antisymmetric and, hence, each relationship is a partial order.
Therefore, for the relation we are particulary interested in, finer-than, there
exists a unique least upper bound of the set of all temporal types, denoted by
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µ>, and a unique greatest lower bound, denoted by µ⊥. These top and bottom
elements are defined as follows: µ>(i) = A for some i ∈ T and µ>(j) = ∅
for each j 6= i, and µ⊥(i) = ∅ for each i ∈ T . Moreover, for each pair of
temporal types µ1, µ2, there exist a unique least upper bound (µ1, µ2) and a
unique greatest lower bound (µ1, µ2) of the two types, with respect to 4. We
formalize this result in the following theorem, proved by Bettini et al. [3]:

Theorem 1. Any temporal type system having an infinite index, and satisfy-
ing (4), is a lattice with respect to the finer-than relationship.

Let denote G0 the set of temporal types for which the index set and the
absolute time set are isomorphic with the set of positive natural numbers, i.e.
A = T = N. Consider now the following particular subsets of G0, represented
by temporal types with a) non-empty granules, b) with granules covering all
the absolute time and c) with constant size granules:

G1 = {µ ∈ G0 | ∀i ∈ N, 0 < #µ(i)} (5)

G2 = {µ ∈ G1 | ∀i ∈ N, µ(i)−1 6= 0} (6)
G3 = {µ ∈ G2 | ∀i ∈ N, µ(i) = cµ} (7)

The membership of a temporal type defined by one of these subsets implies
very useful properties, a first result being expressed in the following lemma.

Lemma 2. If µ1, µ2 are temporal types from G1, then µ1 
 µ2 ⇒ µ1 = µ2.

Therefore, the set G1 of temporal types is a lattice with respect to the finer-
than relationship. The temporal type system G1 is not closed, because (µ1, µ2)
is not always in G1. In exchange it can be shown that the temporal type
system G2 (given by (6), where µ−1(i) = {j ∈ N : i ∈ µ(j)}) is a closed system
having a unique greatest lower bound, µ⊥(i) = i, ∀i ∈ N, but no least upper
bound µ>. Furthermore, the membership of G2 is a sufficient condition for the
equivalence of the relationships finer-than and groups-into, according to the
following lemma:

Lemma 3. If µ and ν are temporal types from G2, then µ 4 ν ⇔ µ E ν.

4.2 Linear Granular Time Structure

If M = (S, x, I) is a first-order linear time structure, then let the absolute
time A be given by the sequence x, by identifying the time moment i with the
state s(i) (on the ith position in the sequence). If µ is a temporal type from
G2, then the temporal granule µ(i) may be identified with the set {sj ∈ S | j ∈
µ(i)}. Therefore, the temporal type µ induces a new sequence, xµ, defined as
xµ : N → 2S , xµ(i) = µ(i). (Remark : In the following the set µ(i) will be
considered, depending of the context, either as a set of states or as a set of
natural numbers, the indexes of these states).
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Consider now the linear time structure derived from M , Mµ = (2S , xµ, Iµ).
To be well defined, we must give the interpretation Iµµ(i), for each i ∈ N.
Because for a fixed i the set µ(i) is a finite sequence of states, it defines (if all
the states are complete states) a model M̃µ(i) for M . Therefore the estimated
general interpretation IG(M̃µ(i))

is well defined and we consider, by definition,
that for a temporal free formula (e.g. a temporal atom) p in L,

Iµµ(i)(p) = IG(M̃µ(i))
(p) = supp(p, M̃µ(i)) (8)

This interpretation is extended to any temporal formula in L according to the
rule:

Iµµ(i)(∇k1p1 ∧ . . . ∧∇knpn) =
1
n

n∑
j=1

Iµµ(i+kj)
(pj) (9)

where pi are temporal free formulae and ki ∈ Z, i = 1 . . . n.

Definition 18. If M = (S, x, I) is a first-order linear time structure and µ
is a temporal type from G2, then the linear granular time structure induced
by µ on M is the triple Mµ = (2S , xµ, Iµ), where xµ : N → 2S, xµ(i) = µ(i)
and Iµ is a function that associates with almost each set of states µ(i) an
interpretation Iµµ(i) according to the rules (8) and (9).

Of a particular interest is the linear granular time structure induced by the
greatest lower bound temporal type of the lattice G2, µ⊥(i) = i. In this case,
Mµ⊥ = (S, x, Iµ⊥), where the only difference from the initial time structure
M is at the interpretation level: for p = P (t1, . . . , tn) a formula in L, if the
interpretation Is(p) is a function defined on Dn with values in {true, false} –
giving so the meaning of truth – the interpretation Iµ⊥s (p) is a function defined
on Dn with values in [0, 1] – giving so the degree of truth. The relation linking
the two interpretations is given by Is(p) = true if and only if Iµ⊥s (p) = 1.
Indeed, supposing the state s(i) is a complete state, it defines the model M̃i =
(i, s(i)) and we have, for p a temporal free formula,

Iµ⊥µ⊥(i)(p) = supp(p, M̃i) =

{
1, if Is(i)(p) = true,

0, if Is(i)(p) = false
(10)

For a formula π = ∇k1p1 ∧ . . . ∧ ∇knpn, we have Isi(π) = true iff ∀j ∈
{1 . . . n}, i+ kj |= pj , which is equivalent with

supp(p1, M̃i+k1) = · · · = supp(pn, M̃i+kn) = 1

⇔ 1
n

n∑
j=1

Iµ⊥µ⊥(i+kj)
(pj) = Iµ⊥µ⊥(i)(π) = 1. (11)

Consequently, the linear granular time structure Mµ⊥ can be seen as an ex-
tension, at the interpretation level, of the classical linear time structure M .
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Example 4. Consider the first three granules of the linear granular time struc-
ture Mµ, which cover the first nine states of the linear time structure M
(represented graphically in Fig. 1).

Fig. 1. Graphical representation of the first nine states from the time structure M
and of the first three granules of temporal type µ

If p and q are two temporal free formulae in L, interpreted as true in the states
{1, 3, 6} (respectively {2, 4, 5, 7, 8, 9}) from M , then the following relations
occur:

Iµ(1)(p) = supp(p, M̃µ1) =
2
3
, Iµ(2)(p) = supp(p, M̃µ2) =

1
4

Iµ(3)(p) = supp(p, M̃µ3) =
0
2
, Iµ(1)(q) = supp(q, M̃µ1) =

1
3

Iµ(2)(q) = supp(p, M̃µ2) =
3
4
, Iµ(3)(q) = supp(p, M̃µ3) =

2
2

Iµ(1)(p ∧∇q) =
1
2
(
Iµ(1)(p) + Iµ(2)(q)

)
=

17
24

Iµ(1)(q ∧∇p ∧∇2q) =
1
3
(
Iµ(1)(q) + Iµ(2)(p) + Iµ(3)(q)

)
=

11
36

4.3 Linking two Granular Time Structures

All the granular time structures induced by a temporal type have in common
interpretations which take values in [0, 1] if applied on predicate symbols in L.
This observation allows us to establish the relation linking the interpretations
Iµ and Iν , from two linear granular time structures induced by µ and ν,
when there exists a relationship finer-than between these two temporal types.
According to the lemma 3, for each i ∈ N there is a subset Ni ⊂ N such that
ν(i) =

⋃
j∈Ni µ(j). If p is a temporal free formula in L, then the interpretation

Iν for p at ν(i) is the weighted sum of the interpretations Iµµ(j)(p), where
j ∈ Ni. We formalize this result in the following theorem:

Theorem 2. If µ, ν are temporal types from G2, such that µ 4 ν, and Iµ, Iν

are the interpretations from the induced linear time structures Mµ and Mν on
M , then for each i ∈ N,
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Iνν(i)(p) =
1

#ν(i)

∑
j∈Ni

#µ(j)Iµµ(j)(p), (12)

where Ni is the subset of N which satisfies ν(i) =
⋃
j∈Ni µ(j) and p is a

temporal free formula in L.

If we consider µ = µ⊥ 4 ν then #µ(j) = 1, for all j ∈ N and Iµµ(j)(p) =

supp(p, M̃j). Therefore,

Iνν(i)(p) =
1

#ν(i)

∑
j∈ν(i)

supp(p, M̃j)

=
1

#ν(i)
#{j ∈ ν(i) | j |= p} = supp(p, M̃ν(i)) = IG(M̃ν(i))

(p) (13)

result which is consistent with Definition 18. But the significance of the the-
orem 2 is revealed in a particular context. If µ, ν ∈ G3 and µ 4 ν, it can be
shown that #Ni = cν

cµ
,∀i ∈ N and so the relation (12) becomes

Iνν(i)(p) =
1

#Ni

∑
j∈Ni

Iµµ(j)(p). (14)

Generally speaking, consider three worlds, W1,W2 and W3 – defined as sets
of granules of information – where W1 is finer than W2 which is finer than
W3. Suppose also that the conversion between granules from two different
worlds is given by a constant factor. If the independent part of information
in each granule is transferred from W1 to W2 and then the world W1 is ”lost”,
the theorem 2 under the form (14) affirms that it is possible to transfer the
independent information from W2 to W3 and to obtain the same result as for
the transfer from W1 to W3.

Example 5. : Consider a linear time structure M (here, the world W1) and a
temporal free formula p such that, for the first six time moments, we have i |= p
for i ∈ {1, 3, 5, 6}. The concept of independence, in this example, means that
the interpretation of p in the state si does not depend on the interpretation
of p in the state sj . Let be µ, ν ∈ G3, µ 4 ν, with µ(i) = {2i − 1, 2i} and
ν(i) = {6i− 5, . . . , 6i}. Therefore, ν(1) = µ(1)∪µ(2)∪µ(3). According to the
definition 18, Iµµ(1)(p) = supp(p, {1, 2}) = 0.5, Iµµ(2)(p) = supp(p, {3, 4}) = 0.5,
Iµµ(3)(p) = supp(p, {5, 6}) = 1, whereas Iνν(1)(p) = supp(p, {1, .., 6}) = 0.66. If
the linear time structure M is ”lost”, the temporal types µ and ν are ”lost”
too (we don’t know the absolute time A given by M). But if we know the
induced time structure Mµ (world W2) and the relation between µ and ν

ν(k) = µ(3k − 2) ∪ µ(3k − 1) ∪ µ(3k), ∀k ∈ N

then we can completely deduce the time structure Mν (world W3). As ex-
ample, according to (14), Iνν(1)(p) = 1

3

∑3
i=1 Iµµ(i)(p) = 0.66. The condition



18 Paul Cotofrei and Kilian Stoffel

about a constant conversion factor between granules is necessary because the
information about the size of granules, as it appears in expression 12, is ”lost”
when the time structure M is ”lost”

The theorem 2 is not effective for temporal formulae (which can be seen as
the dependent part of the information of a temporal granule). In this case we
can prove that the interpretation, in the coarser world, of a temporal formula
with a given time window is linked with the interpretation, in the finer world,
of a similar formula but having a larger time window.

Theorem 3. If µ and ν are temporal types from G3 such that µ 4 ν and Iµ, Iν

are the interpretations from the induced linear time structures Mµ and Mν on
M , then for each i ∈ N,

Iνν(i)(p ∧∇q) =
1
k

∑
j∈Ni

Iµµ(j)(p ∧∇kq) (15)

where k = cν/cµ, ν(i) =
⋃
j∈Ni µ(j) and p, q are temporal free formulae in L.

If we define the operator zoomk over the set of formulae in L as

zoomk(∇k1p1 ∧ . . . ∧∇knpn) = ∇k·k1p1 ∧ . . . ∧∇k·knpn

then an obvious corollary of this theorem is

Corollary 1. If µ and ν are temporal types from G3 such that µ 4 ν and
Iµ, Iν are the interpretations from the induced linear time structures Mµ and
Mν on M , then for each i ∈ N,

Iνν(i)(∇k1p1 ∧ . . .∧∇knpn) =
1
k

∑
j∈Ni

Iµµ(j)(zoomk(∇k1p1 ∧ . . .∧∇knpn)) (16)

where k = cν/cµ, ν(i) =
⋃
j∈Ni µ(j), ki ∈ N and pi, i = 1..n are temporal free

formulae in L.

According to this corollary, if we know the degree of truth of a temporal
rule (template) in the world W1, we can say nothing about the degree of truth
of the same rule in the world W2, coarser than W1. The information is only
transferred from the temporal rule zoomk(H) in W1 (which has a time window
greater than k−1) to the temporal rule H in W2, where k is the coefficient of
conversion between the two worlds. Consequently, all the information related
to temporal formulae having a time window less than k is lost during the
transition to the coarser world W2.

4.4 The Consistency Problem

The importance of the concepts of consistency, support and confidence, (see
Subsect. 3.1), for the process of information transfer between worlds with dif-
ferent granularity may be highlighted by analyzing the analogous expressions
for a linear granular time structure Mµ.
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Definition 19. Given L and a linear granular time structure Mµ on M , we
say that Mµ is a consistent granular time structure for L if, for every formula
p, the limit

supp(p,Mµ) = lim
n→∞

∑n
i=1 Iµµ(i)(p)

n
(17)

exists. The notation supp(p,Mµ) denotes the support (degree of truth) of p
under Mµ.

A natural question concern the inheritance of the consistency property
from the basic linear time structure M by the induced time structure Mµ.
The answer is formalized in the following theorem.

Theorem 4. If M is a consistent linear time structure and µ ∈ G3 then the
granular time structure Mµ is also consistent.

The proof of the theorem (see Appendix 6) is based on the relation between
the support of a formula p in M , respectively in Mµ, which is:

supp(p,Mµ) = supp(p,M) (18)

supp(∇k1p1 ∧ . . . ∧∇kmpm,Mµ) =
1
m

m∑
j=1

supp(pj ,M) (19)

The implications of Theorem 4 are extremely important. It is easy to show,
starting from Definition 14, that the confidence of a temporal rule (template)
may be expressed using only the support measure if the linear time structure
M is consistent. Therefore, considering that by definition the confidence of
a temporal rule (template) H, H1 ∧ . . . ∧ Hm 7→ Hm+1, giving a consistent
granular time structure Mµ, is

conf(H,Mµ) =

{
supp(H1∧...∧Hm∧Hm+1,Mµ)

supp(H1∧...∧Hm,Mµ) if supp(H1 ∧ . . . ∧Hm,Mµ) > 0,

0 if not
(20)

we can deduce, by applying Theorem 4 and the relations (18) and (19), that
the confidence of H, for a granular time structure Mµ induced on a consistent
time structure M by a temporal type µ ∈ G3, is independent of µ. In other
words,

”The property of consistency is a sufficient condition for the independence
of the measure of support/confidence, during the process of information trans-
fer between worlds with different granularities, all derived from an absolute
world using constant conversion factors. In practice, this means that even we
are not able to find, for a given world Mµ, the granules where a temporal rule
H apply (according to Theorem 3), we are sure that the confidence of H is the
same in each world Mµ,∀µ ∈ G3.”



20 Paul Cotofrei and Kilian Stoffel

4.5 Event Aggregation

All the deduction processes made until now were conducted to obtain an
answer to the following question: how is changing the degree of truth of a
formula p if we pass from a linear time structure with a given granularity
to a coarser one. And we proved that we can give a proper expression if
we impose some restrictions on the temporal types which induce these time
structures. But there is another phenomenon which follows the process of
transition between two real worlds with different time granularities: new kinds
of events appear, some kinds of events disappear.

Definition 20. An event type (denoted E[t]) is the set of all temporal atoms
from L having the same name (or head).

All the temporal atoms of a given type E[t] are constructed using the same
symbol predicate and we denote by N [t] the arity of this symbol. Consider
E(t, t2, . . . , tn) ∈ E[t] (where n = N [t]). According to Definition 1, a term
ti, i ∈ {2, .., n} has the form ti = f(ti1, . . . , tiki). Suppose now that for each
index i the function symbol f from the expression of ti belongs to a family
of function symbols with different arities, denoted Fi[t] (so different sets for
different event types E[t] and different index i). This family has the property
that the interpretation for each of its member is given by a real functions
which

• is applied on a variable number of arguments, and
• is invariant in the order of the arguments.

A good example of a such real function is a statistical function, e.g. mean(x1, .., xn).
Based on the set Fi[t] we consider the set of terms expressed as fk(c1, . . . , ck),
where fk is a k−ary function symbol from Fi[t] and ci, i = 1..k are constant
symbols. We denote such a set as Ti[t]. Consider now the operator ⊕ defined
on Ti[t]× Ti[t]→ Ti[t] such that

fn(c1, .., cn)⊕ fm(d1, .., dm) = fn+m(c1, .., cn, d1, .., dm)

Of course, because the interpretation of any function symbol from Fi[t] is
invariant in the order of arguments, we have

fn(c1, . . . , cn)⊕ fm(d1, . . . , dm) = fn(cσ(1), . . . , cσ(n))⊕ fm(dϕ(1), . . . , cϕ(n))

where σ (respectively ϕ) is a permutation of the set {1, . . . , n} (respectively
{1, . . . ,m}). Furthermore, it is evident that the operator ⊕ is commutative
and associative.

We introduce now a new operator (denoted �) defined on E[t] × E[t] →
E[t], such that, for E(t, t2, .., ti, .., tn) ∈ E[t], E(t, t′2, .., t

′
i, .., t

′
n) ∈ E[t] we

have:

E(t, t2, . . . , tn)� E(t, t′2, . . . , t
′
n) = E(t, t2 ⊕ t′2, . . . , tn ⊕ t′n) (21)
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Once again, it is obviously that the operator� is commutative and associative.
Therefore, we can apply this operator on a subset E of temporal atoms from
E[t] and we denote the result as �

ei∈E
ei.

By definition, a formula p is satisfied by a linear time structure M =
(S, x, I) (respectively by a model M̃ = (T̃ , x̃) of M) if there is at least a state
si ∈ x (respectively si ∈ x̃) such that Isi(p) = true. Therefore, the set of
events of type t satisfied by M (respectively M̃) is given by:

E[t]M = {e ∈ E[t] | ∃si ∈ x such that Isi(e) = true} (22)

respectively by:

E[t]M̃ = {e ∈ E[t] | ∃si ∈ x̃ such that Isi(e) = true} (23)

If we consider now Mµ, the linear time structure induced by the temporal
type µ on M , the definition of E[t]Mµ

is derived from (22) by changing the
condition Isi(e) = true with Iµµ(i)(e) = 1. Of course, only for µ = µ⊥ we have
E[t]M = E[t]Mµ (we proved that Isi(p) = true ⇔ Iµ⊥µ⊥(i)(p) = 1). Generally
E[t]M ⊃ E[t]Mµ

⊃ E[t]Mν
, for µ 4 ν, which is a consequence of the fact that

a coarser world satisfies less temporal events than a finer one.

Example 6. : If M is a linear time structure such that for the event e ∈ E[t]
we have i |= e if and only if i is odd, and µ is a temporal type given by
µ(i) = {2i− 1, 2i}, then it is obviously that e ∈ E[t]M but e 6∈ E[t]Mµ

(for all
i ∈ N, Iµµ(i)(e) = supp(e, {2i− 1, 2i}) = 0.5).

In the same time a coarser world may satisfies new events, representing a kind
of aggregation of local, ”finer” events.

Definition 21. If µ is a temporal type from G2, we call the aggregate event
of type t induced by the granule µ(i) (denoted e[t]µ(i)) the event obtained by
applying the operator � on the set of events of type t which are satisfied by
the model M̃µ(i), i.e.

e[t]µ(i) = �
ei∈E[t]M̃µ(i)

ei (24)

According to (8), the interpretation of an event e in any world Mµ depends
on the interpretation of the same event in M . Therefore, if e is not satisfied by
M it is obvious that Iµµ(i)(e) = 0, for all µ and all i ∈ N. Because an aggregate
event (conceived of a new, ”federative” event), usually is not satisfied by M ,
the relation (8) is not appropriate to give the degree of truth for e[t]µ(i). But
before to give the rule expressing the interpretation for an aggregate temporal
atom, we must impose on M the following restriction: two different events of
type t can not be evaluated as true at the same state s ∈ S, or:

∃h : E[t]M → S, h injective, such that h(e) = s where Is(e) = true (25)
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Definition 22. If Mν is a linear granular time structure and e[t]µ(i0) is an
aggregate event induced by the granule µi0 (µ, ν ∈ G2), then the interpretation
of e[t]µ(i0) in the state ν(i) is defined as:

Iνν(i)(e[t]µ(i0)) =
#(Ei ∩ E)

#E
∑
ej∈E

Iνν(i)(ej) (26)

where E = E[t]M̃µ(i0)
, Ei = E[t]M̃ν(i)

.

The restriction (25) is given to assure that
∑
ej∈E Iνν(i)(ej) ≤ 1, for all i, i0 ∈ N.

Indeed, let be e1, . . . , en the events from E . If h(ej) = sj , j = 1..n, then
consider the sets Aj = {k ∈ ν(i) | k |= ej} = {s ∈ ν(i) | s = sj}. The function
h being injective, the sets Aj are disjoint and therefore

∑n
j=1 #Aj ≤ #ν(i).

Consequently, we have

n∑
j=1

Iνν(i)(ej) =
n∑
j=1

supp(ej ,Mν(i)) =
1

#ν(i)

n∑
j=1

#Aj ≤
#ν(i)
#ν(i)

= 1. (27)

The relation (27) and the fact that the coefficient #(Ei∩E)
#E is less or equal one

guarantee that the interpretation of an aggregate event is well-defined, i.e.
Iνν(i)(e[t]µ(i0)) ≤ 1. Furthermore, the interpretation is equal one if and only if:

(i)
#(Ei ∩ E)

#E
= 1⇔ E = Ei (28)

meaning that all the events of type t satisfied by M̃µi0
are also satisfied by

M̃νi , and

(ii)
n∑
j=1

Iνν(i)(ej) = 1⇔ 1
#ν(i)

n∑
j=1

#Aj = 1⇔
n∑
j=1

#Aj = #ν(i) (29)

meaning that the sets Aj form a partition of ν(i) (or equivalently h−1(ν(i)) =
E).

Example 7. Let be M a linear time structure, e1, e2, e3 ∈ E[t] such that (see
Fig. 2)

1 |= e1, 4 |= e1 and i |= e1 for i ∈ {6k − 2, 6k − 1, 6k | k ≥ 2}
3 |= e2, 5 |= e2 and i |= e2 for i ∈ {6k + 1, 6k + 2, 6k + 3 | k ≥ 1}
6 |= e3

Consider two temporal types µ, ν ∈ G3 such that µ(i) = {3i− 2, 3i− 1, 3i | i ≥
1} and ν(i) = {6i − 5, . . . , 6i | i ≥ 1}. The different aggregate events induced
by granules of temporal type µ and ν are:
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Fig. 2. Graphical representation of the first eighteen states of the time structure
M and of the first six (respectively three) granules of temporal types µ and ν

e[t]µ(1) = e1 � e2, e[t]µ(2) = e1 � e2 � e3, e[t]µ(3) = e2, e[t]µ(4) = e1

e[t]ν(1) = e1 � e2 � e3, e[t]ν(i) = e1 � e2 (for i > 1)

Lets denote e12 the aggregate event induced by µ(1). Evidently E = E[t]M̃µ(1)
=

{e1, e2} so #E = 2. The interpretation of this event in different granules of
types µ and ν can be calculated according to relation (26):

Iµµ(1)(e12) =
#(E ∩ E)

#E

2∑
j=1

Iµµ(1)(ej) =
2∑
j=1

supp(ej , M̃µ(1)) =
1
3

+
1
3

=
2
3

Iµµ(2)(e12) =
#(E2 ∩ E)

#E

2∑
j=1

Iµµ(2)(ej) =
#({e1, e2, e3} ∩ {e1, e2})

2

2∑
j=1

supp(ej , M̃µ(2))

=
1
3

+
1
3

=
2
3

Iµµ(3)(e12) =
#(E3 ∩ E)

#E

2∑
j=1

Iµµ(2)(ej) =
#({e2} ∩ {e1, e2})

2

2∑
j=1

supp(ej , M̃µ(3))

=
1
2

(
0
3

+
3
3

)
=

1
2

Iµµ(4)(e12) =
#(E4 ∩ E)

#E

2∑
j=1

Iµµ(2)(ej) =
#({e1} ∩ {e1, e2})

2

2∑
j=1

supp(ej , M̃µ(4))

=
1
2

(
3
3

+
0
3

)
=

1
2

Iµµ(2k+1)(e12) =
1
2
, Iµµ(2k+2)(e12) =

1
2
, for all k ≥ 1.

According to these results, the event e12 obviously is not satisfied by Mµ.
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Iνν(1)(e12) =
#(E1 ∩ E)

#E

2∑
j=1

Iνν(1)(ej) =
#({e1, e2, e3} ∩ {e1, e2})

2

2∑
j=1

supp(ej , M̃ν(1))

=
2
6

+
2
6

=
2
3

Iνν(2)(e12) =
#(E2 ∩ E)

#E

2∑
j=1

Iνν(2)(ej) =
#({e1, e2} ∩ {e1, e2})

2

2∑
j=1

supp(ej , M̃ν(2))

=
3
6

+
3
6

= 1

Iνν(k)(e12) = 1 for all k ≥ 1,

which means that e12 is satisfied by Mν , a coarser world than Mµ. As a general
rule, the degree of truth for an aggregate event e is equal one in a given granule
µ(i) if all individual events composing e (and only these events) are satisfied
by µ(i).

5 Conclusions

In this article we developed a formalism for a specific temporal data mining
task: the discovery of knowledge, represented in the form of general Horn
clauses, inferred from databases with a temporal dimension. The theoretical
framework we proposed, based on first-order temporal logic, permits to define
the main notions (event, temporal rule, constraint) in a formal way. The con-
cept of a consistent linear time structure allows us to introduce the notions
of general interpretation, of support and of confidence, the lasts two measure
being the expression of the two similar concepts used in data mining.

Starting from the inherent behavior of temporal systems – the perception
of events and of their interactions is determined, in a large measure, by the
temporal scale – we extended the capability of our formalism to ”capture” the
concept of time granularity. To keep an unitary viewpoint on the meaning of
the same formula at different scales of time, we changed the usual definition
of the interpretation Iµ for a formula in the frame of a first-order temporal
granular logic: it return the degree of truth (a real value between zero and
one) and not only the meaning of truth (true or false).

The consequence of the definition for Iµ is formalized in Theorem 2 :
only the independent information (here, the degree of truth for a temporal
free formula) may be transferred without loss between worlds with different
granularities. Concerning the temporal rules (scale dependent information),
we proved that the interpretation of a rule in a coarser world is linked with
the interpretation of a similar rule in a finer world, rule obtained by applying
the operator zoomk on the initial temporal rule.

By defining a similar concept of consistency for a granular time structure
Mµ, we could proved that this property is inherited from the basic time struc-
ture M if the temporal type µ is of type G2 (granules with constant size). The
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major consequence of Theorem 4 is that the confidence of a temporal rule
(template) is preserved in all granular time structures derived from the same
consistent time structure.

We defined also a mechanism to aggregate events of the same type, that
reflects the following intuitive phenomenon: in a coarser world, not all events
inherited from a finer world are satisfied, but in exchange there are new events
which become satisfiable. To achieve this we extended the syntax and the
semantics of L by allowing ”family” of function symbols and by adding two
new operators.

In our opinion, the logical next step in our work consists in adding a
probabilistic dimension to the formalism. Preliminary results (see [11]) confirm
that this approach allows a unified framework including the logical formalism
and its granular extension, framework in which the property of consistency
becomes a consequence of the capacity of a particular stochastic process to
obey the strong law of large numbers.

6 Appendix. Proofs

Proof (of Lemma 2).
Before we start, we introduce the following notation: given two non-empty

sets S1 and S2 of elements in A, S1 � S2 holds if each number in S1 is strictly
less than each number in S2 (formally, S1 � S2 if ∀x ∈ S1 ∀y ∈ S2 (x < y)).
Moreover, we say that a set S of non-empty sets of elements in A is monotonic
if for each pair of sets S1 and S2 in S either S1 � S2 or S2 � S1.

The relation µ1 
 µ2 is equivalent with the existence of a bijection func-
tion h : N→ N such that µ1(i) = µ2(h(i)), for all i. We will prove by induction
that h(i) = i, which is equivalent with µ1 = µ2.

• i = 1: suppose that h(1) > 1. If a = min(µ1(1)) – the existence of a is
ensured by the condition (5) – then µ1(1) = µ2(h(1)) ⇒ a ∈ µ2(h(1)).
Because 1 < h(1) we have µ2(1) � µ2(h(1)) (according to Definition 15)
and so there is b ∈ µ2(1) such that b < a. The inequality 1 < h(1) implies
h−1(1) > 1, and so µ2(1) = µ1(h−1(1)) � µ1(1). But the last inequality
(�) is contradicted by the existence of b ∈ µ1(h−1(1)) which is smaller
than a ∈ µ1(1). In conclusion, h(1) = 1.

• i = n + 1: from the induction hypothesis we have h(i) = i,∀i ≤ n. Sup-
posing that h(n+ 1) 6= n+ 1, then the only possibility is h(n+ 1) > n+ 1.
This last relation implies also h−1(n+1) > n+1. Using a similar rationing
as in the previous case (it’s sufficient to replace 1 with n+ 1), we obtain

µ1(n+ 1)� µ1(h−1(n+ 1)) = µ2(n+ 1)� µ2(h(n+ 1)) = µ1(n+ 1)

where each of the set from this relation are non-empty, according to (5).
The contradiction of the hypothesis, in this case, means that h(n + 1) =
n+ 1 and, by induction principle, that h(i) = i,∀i ∈ N. �
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Proof (of Lemma 3).
Let be µ ∈ G2, ν ∈ G2.

• µ 4 ν : let j0 ∈ N. The relation (6) means that for all k ∈ ν(j0), µ−1(k) 6= ∅
and so S =

⋃
k∈ν(j0){µ

−1(k)} 6= ∅. It is obviously, according to Definition
15, that the relation finer-than implies that for each i ∈ N there is a
unique j ∈ N such that µ(i) ⊆ ν(j). Consequently, if µ 4 ν and µ(i) ∩
ν(j) 6= ∅ then µ(i) ⊆ ν(j). Therefore, for all i ∈ S, µ(i) ⊂ ν(j0) which
implies

⋃
i∈S µ(i) ⊂ ν(j0) (a). At the same time, ∀k ∈ ν(j0) we have

k ∈ µ
(
µ−1(k)

)
which implies ν(j0) ⊆

⋃
i∈S µ(i) (b). From (a) and (b) we

have ν(j0) =
⋃
i∈S µ(i), which implies µ E ν.

• µ E ν: let i0 ∈ N and let k ∈ µ(i0). According to (6), there exists j =
ν−1(k). Because µ E ν there is a set S such that ν(j) =

⋃
i∈S µ(i). Because

the sets µ(i), i ∈ S are disjunct and k ∈ ν(j) ∩ µ(i0) we have i0 ∈ S.
Therefore, for each i0 there is j ∈ N such that µ(i0) ⊆ ν(j), which implies
µ 4 ν. �

Proof (of Theorem 2).
The formula p being a temporal free formula, we have w(p) = 0. According

to Definition 18 and Definition 12, we have

Iνν(i)(p) = supp(p, M̃ν(i)) =
#{j ∈ ν(i) | j |= p}

#ν(i)
(30)

On the other hand, because ν(i) =
⋃
j∈Ni µ(j), we have also

1
#ν(i)

∑
j∈Ni

#µ(j)Iµµ(j)(p) =
1

#ν(i)

∑
j∈Ni

#µ(j)supp(p, M̃µ(j))

=
1

#ν(i)

∑
j∈Ni

#{k ∈ µ(j) | k |= p} =
#{j ∈ ν(i) | j |= p}

#ν(i)
(31)

From (30) and (31) we obtain (12). �

Proof (of Theorem 3).
If µ, ν ∈ G3 such that #µ(i) = cµ and #ν(i) = cν , for all i ∈ N, it

is easy to show that the sets Ni satisfying ν(i) =
⋃
j∈Ni µ(j) have all the

same cardinality, #Ni = cν/cµ = k and contain successive natural numbers,
Ni = {ji, ji + 1, . . . , ji + k − 1}. From the relations (9) and (14) we have:
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Iνν(i)(p ∧∇q) =
1
2

(
Iνν(i)(p) + Iνν(i+1)(q)

)
=

1
2

 1
#Ni

∑
j∈Ni

Iµµ(j)(p) +
1

#Ni+1

∑
j∈Ni+1

Iµµ(j)(q)


=

1
2

1
k

ji+k−1∑
j=ji

Iµµ(j)(p) +
1
k

ji+2k−1∑
j=ji+k

Iµµ(j)(q)


=

1
2k

ji+k−1∑
j=ji

(
Iµµ(j)(p) + Iµµ(j+k)(q)

)
=

1
2k

ji+k−1∑
j=ji

2Iµµ(j)(p ∧∇kq)

 =
1
k

∑
j∈Ni

Iµµ(j)(p ∧∇kq) �.

Proof (of Theorem 4).
M being a consistent time structure, for each formula p in L the sequence
x(p)n = n−1#{i ≤ n | i |= p} has a limit and lim

n→∞
x(p)n = supp(p,M). In the

same time, µ ∈ G3 implies #µ(i) = k for all i ∈ N and µ(i) = {k(i − 1) +
1, k(i− 1) + 2, . . . , ki}. Consider the following two cases:

• p temporal free formula : We have∑n
i=1 Iµµ(i)(p)

n
=
∑n
i=1 supp(p,Mµ(i))

n

=

∑n
i=1

#{j∈µ(i) | j|=p}
#µ(i)

n
=
∑n
i=1 #{j ∈ µ(i) | j |= p}

kn

=
#{i ∈

⋃n
i=1 µ(i) | i |= p}
kn

=
#{i ≤ kn | i |= p}

kn
= x(p)kn

Therefore, there exists the limit lim
n→∞

∑n
i=1 Iµµ(i)(p)

n
= lim
n→∞

x(p)kn and we
have

supp(p,Mµ) = supp(p,M) for p temporal free formula (32)

• temporal formula π = ∇k1p1 ∧ . . . ∧∇kmpm: We have
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i=1 Iµµ(i)(∇k1p1 ∧ . . . ∧∇kmpm)

n
=

∑n
i=1

(
m−1

∑m
j=1 Iµµ(i+kj)

(pj)
)

n

=
1
m

∑n
i=1

∑m
j=1 supp(pj ,Mµ(i+kj))

n
=

1
mn

m∑
j=1

n∑
i=1

supp(pj ,Mµ(i+kj))

=
1
mn

m∑
j=1

n∑
i=1

#{h ∈ µ(kj + i) |h |= pj}
k

=
1
mn

m∑
j=1

#{h ∈
⋃n
i=1 µ(kj + i) |h |= pj}

k

=
1

mnk

m∑
j=1

(#{h ≤ k(kj + n) |h |= pj} −#{h ≤ kkj |h |= pj})

=
1

mnk

m∑
j=1

(
k(kj + n)x(pj)k(kj+n) − kkjx(pj)kkj

)
=

1
m

m∑
j=1

kj + n

n
x(pj)k(kj+n) −

1
m

m∑
j=1

kj
n
x(pj)kkj (33)

By tacking n→∞ in (33), we obtain

lim
n→∞

∑n
i=1 Iµµ(i)(∇k1p1 ∧ . . . ∧∇kmpm)

n

= lim
n→∞

 1
m

m∑
j=1

kj + n

n
x(pj)k(kj+n) −

1
m

m∑
j=1

kj
n
x(pj)kkj


=

1
m

m∑
j=1

lim
n→∞

kj + n

n
x(pj)k(kj+n) −

1
m

m∑
j=1

lim
n→∞

kj
n
x(pj)kkj

=
1
m

m∑
j=1

lim
n→∞

x(pj)k(kj+n) =
1
m

m∑
j=1

supp(pj ,M) (34)

and so we have

supp(∇k1p1 ∧ . . . ∧∇kmpm,Mµ) =
1
m

m∑
j=1

supp(pj ,M) (35)

From (6) and (35) results the conclusion of the theorem �.
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