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Abstract. Developing applications for wireless sensor networks (WSN) is a 
complicated process because of the wide variety of WSN applications and low-
level implementation details. Model-Driven Engineering offers an effective 
solution to WSN application developers by hiding the details of lower layers 
and raising the level of abstraction. However, balancing between abstraction 
level and unambiguity is challenging issue. This paper presents Baobab, a 
metamodeling framework for designing WSN applications and generating the 
corresponding code, to overcome the conflict between abstraction and 
reusability versus unambiguity. Baobab allows users to define functional and 
non-functional aspects of a system separately as software models, validate them 
and generate code automatically. 

1. Introduction 
Wireless sensor networks (WSNs) are used to detect events and/or collect data in 
physical observation areas. They have been rapidly increasing in their scale and 
complexity as their application domains expand, from environment monitoring to 
precision agriculture, from perishable food transportation to disaster response, as just 
a few examples. The increase in scale and complexity make WSN application 
development complicated, time consuming and error prone [1].  

The complexity of WSN application development derives from a lack of 
abstraction. A number of applications are currently implemented in nesC, a dialect of 
the C language, and deployed on the TinyOS operating system, which provides low-
level libraries for basic functionalities such as sensor reading, packet transmission and 
signal strength sensing. nesC and TinyOS abstract away hardware-level details; 
however, they do not aid developers to rapidly implement their applications. 

Model-driven development (MDD) is intended to offer a solution to this issue by 
hiding low-level details and raising the level of abstraction. Its high-level modeling 
and code generation capabilities are expected to improve productivity in WSN 
application development (e.g., [1, 2, 3]).  However, there is a research issue in MDD, 
particularly in metamodeling, for WSN applications: balancing generalization and 
specialization in designing a metamodel for WSN applications. When metamodel 
designers want their metamodels to be as much generic and versatile as possible for 
various application domains, the metamodels can be over generalized (e.g., [2, 3]). 
Over generalized metamodels tend to be ambiguous and type-unsafe. Metamodel 
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users do not understand how to specifically use metamodel elements and often make 
errors that metamodel designers do not expect. Model-to-code transformers can fail 
due to ambiguous uses and errors that metamodel users make in their modeling work.  

Another extreme in metamodeling is over specialized metamodels (e.g., [1]). Over 
specialized metamodels can avoid ambiguity and type unsafety; however, it lacks 
extensibility and versatility. Metamodel users cannot extend metamodel elements to 
accommodate requirements in their applications and cannot use them in the 
application domains that metamodel designers do not expect.  

Baobab is an MDD framework that addresses this research issue for WSN 
applications. It provides a generic metamodel (GMM) that is versatile across different 
application domains. Metamodel users can use it to model both functional and non-
functional aspects of their WSN applications. Baobab allows metamodel users to 
extend GMM for defining their own domain-specific metamodels (DSMMs) and 
platform-specific metamodels (PSMM). This extensibility is driven with generics to 
attain the type compatibility among GMM, DSMM and PSMM elements as well as 
the Object Constraint Language (OCL) [4] for avoiding metamodel users to extend 
GMM in unexpected ways. These two mechanisms allow application models to be 
type safe and unambiguous. Baobab’s model-to-code transformer type-checks and 
validates a given application model and generates application code in nesC. It can 
generate most of application code, and the generated code is lightweight enough to 
operate on resource-limited sensor nodes such as Mica2 nodes.  

2. Metamodels and Models for WSN Applications 
In Baobab, metamodels are partitioned into different packages. GMM is defined in 
the genericMetamodel package.  

2.1. Generic Metamodel Elements 

The element Sensor of the GMM represents sensor devices that are used in WSNs. All 
sensor classes, representing a specific type of sensor, extend from the base class 
Sensor. The most common sensor types that can be used in a variety of applications 
are defined in the generic metamodel. As the names imply, each sensor detects the 
specific phenomenon it is prefixed by. 

Nodes may send data to each other in a WSN occasionally. This can be done by 
packing Data (either some sensor reading value or a command) in a Message, and 
sending it to other nodes by a CommunicationUnit, which consists of a 
DataTransmitter and a DataReceiver. A WirelessLink represents the communication 
channel between two CommunicationUnits. The sensor readings and the associated 
information are represented as SensorData. Specific classes that extend from 
SensorData will have their own attributes, as well as the shared attributes. For 
example, AirTempData has a temperature attribute holding the air temperature 
reading value. When nodes aggregate multiple SensorData instead of transmitting 
them separately, an AggregatedData is created. All types of Data can be stored in and 
retrieved from a DataStorage by DataWriter and DataReader, respectively. 
EnergySource can be used to interrogate the remaining energy level of the node. 
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Usage of generic types in the GMM increases the extensibility of GMM elements, 
as well as assuring type-safety. As an example, the Sensor in our generic metamodel 
is expected to create SensorData, whereas AirTemperatureSensor creates 
AirTempData. We defined the type of sensorData reference between Sensor and 
SensorData as a generic type that extends from SensorData in the generic metamodel. 
Thus it is feasible to associate AirTempData with AirTemperatureSensor in the 
GMM, and associate BacteriaData with BacteriaSensor later in the fresh-food 
domain metamodel.  

There is a set of tasks that should be performed by a WSN node during each duty 
cycle. By the end of the duty cycle duration the sensor nodes will go to sleep in order 
to save energy. A Timer and a DutyCycleManager in the GMM manage all these 
series of events. At the beginning of each duty cycle DutyCycleManager invokes a 
chain of tasks to be performed, by calling the firstTask of the task chain defined. Each 
task to be performed is represented as a Task in the GMM. Upon completion, each 
Task will call the next Task defined. The tasks regarding the functional requirements 
of the WSN system are encapsulated in FunctionalTasks, whereas the tasks regarding 
the non-functional requirements of the WSN system are encapsulated in 
NonFunctionalTasks. 

2.1.1. Functional Requirements 
GMM defines several elements to express the most common functional aspects of 
WSNs. The functional tasks whose execution is bound to the fulfillment of a 
condition can be modeled by using ConditionalFunctional element of the GMM. This 
task can further be specialized into RepetitiveTask, which lets users to model iteration 
with conditions defined by the comparison of the two attributes: repetitionNumber, 
for holding the desired number of repetitions, and repeated, for keeping the number of 
repetitions completed so far. DataReceipt is used to define the receipt of data from 
another node in the network. In some cases, tasks need to be followed by a waiting 
period before another task can be called, which can be modeled by using 
WaitingTask. Another common functionality of WSNs, sensing phenomena, can be 
modeled with SensingTask. This element retrieves the newly created SensorData from 
the Sensor. 

2.1.2. Non-Functional Requirements 
Non-functional requirements represent the quality goals and constraints of a system. 
The tolerance rate of service performance, and constraints of a system are likely to 
change more often than the services (functional requirements) themselves in a system. 
Therefore, functional and non-functional aspects of a system should be modeled 
independent from each other. This separation not only enables developers to adapt the 
existing systems to new non-functional requirements easily, without annulling the 
whole design and creating a system from scratch, but also enables developers to reuse 
services in different non-functional contexts for future systems.  

The non-functional requirements of a system can be modeled explicitly by means 
of NonFunctionalTask class in our GMM. The specialized non-functional tasks that 
are defined in the GMM are: ClusterFormation, for dividing the network into clusters 
to simplify tasks such as communication [5] and to save energy by aggregating data 
within the cluster; ChangeSleepTime, for adjusting the sleep time to minimize energy 
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Fig. 1. Partial Generic Metamodel 
 
consumption or to maximize data collection; DataAggregation, for aggregating data 
to be transmitted for the sake of eliminating redundancy, minimizing the number of 
transmissions and thus saving energy [6]; DataTransmission, for transmitting data 
with a specific policy based on the non-functional requirements; 
ConditionalNonFunctional, for specifying the activation of a NonFunctionalTask that 
is bound to fulfillment of a  condition; and ChangeCommunicationRange, for 
adjusting the physical range of transmission to minimize energy consumption or to 
maximize data collection.  
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Fig. 2. Functional Aspects of the Generic Metamodel 
 
ClusterFormation has a reference to a ClusteringAlgorithm, which can be one of 

the specialized clustering algorithms [5]. ChangeSleepTime and 
ChangeCommunicationRange tasks can be used to adjust the sleep time and 
communication range, respectively, by a given rate. 
DataAggregation task has the attribute domain to specify whether the aggregation 
will be a TEMPORAL aggregation or a SPATIAL aggregation. The other attributes of 
DataAggregation are: hop, to specify how many hops away neighbors’ data will be 
aggregated (only if SPATIAL aggregation domain is selected); dutyCycleNumber, to 
specify the number of duty cycles’ collected data to be aggregated (only if 
TEMPORAL aggregation domain is selected); aggregatingNodes, the list of nodeIDs 
of the neighboring nodes to aggregate data with (only if SPATIAL aggregation domain 
is selected); and dataList, the list of the collected data to be aggregated. The types of 
aggregation supported in GMM are Average, Minimum, Maximum, Mean, Variance, 
MinimumAndMaximum, StandardDeviation, Suppression (eliminating redundant data, 
e.g. if the temperature readings of all neighboring sensors in a region are same, only 
one packet containing the single sensor reading will be forwarded to the base station), 
and Packaging (combining similar data into a single message). When using 
Packaging, either of the timeWindow or numberOfData attributes should be set. Using  
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Fig. 3. Non-Functional Aspects of the Generic Metamodel 

the attribute timeWindow denotes that exactly the same kind of data is packed together 
(e.g. temperature readings for the last 10 minutes), while using numberOfData 
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denotes that different kind of but related data is packed together (e.g.temperature 
readings and air flow readings). 

For DataTransmission task, GMM defines four possible communication policies. 
Unicast delivers a message to a single specified node, Broadcast delivers a message 
to all nodes in the network, Multicast delivers a message to a group of nodes that have 
expressed interest in receiving the message and Anycast delivers a message to any one 
out of a group of nodes, typically the one nearest to the source. 

2.2. Domain-Specific Metamodel Elements 

The GMM defined in Section 2 can serve wide variety of purposes across a broad 
range of domains for WSNs. However, every domain may use different terminology, 
concepts, abstractions and constraints. Using GMM for all domains can yield to 
ambiguous models. The purpose of Domain-Specific Modeling is to align code and 
problem domain more closely. By having Domain-Specific Metamodel (DSMM) 
elements, Baobab helps application developers to maintain the balance between high 
level of abstraction and unambiguity. The GMM elements and the associated 
transformation rules remain the same, thus the existing models created based on the 
previous version of the metamodel will not be affected.   

Fig. 4 shows an example DSMM for fresh food domain. In an application scenario 
for monitoring temperature, airflow and bacteria growth rate in a warehouse where 
tens to hundreds of rows of pallets of fresh meat stocked, there are several key entities 
and limitations that the application developers should take care of. The ambient 
temperatures should not be less than –1.5°C or more than +7°C throughout the cold 
chamber [7]. Airflow rate in the cold chamber affects the distribution of the cooled 
air, and setting the default air velocity to 1 m/s is ideal. The bacterial performance is 
measured by colony forming units (cfu/cm2) on the surface of the meat. For the 
bovine meat, the acceptable range is 0 to 2 log cfu/cm2, whereas the marginal range is 
between 3 to 4 log cfu/cm2 and above 5 log cfu/cm2 is unacceptable [8].  

For creating such models, a new package of fresh food domain elements should be 
added to the metamodel. The user can achieve this by creating a new package named 
as freshFood under the same directory as GMM, and populating it with the necessary 
metamodel elements. The GMM already has AirTemperatureSensor and 
AirTempData so the user does not have to define them again. However, there are no 
sensors or specific data types defined for airflow and bacteria in the GMM. So, they 
are added into this new DSMM package. Possible corrective actions to be taken by 
the base station are: changing the airflow speed and air temperature in the cold 
chamber. Based on this knowledge, two new functional tasks can be defined. 

2.3. Platform Specific Metamodel Elements 

The GMM and the DSMM explained in the previous sections are platform-
independent, in other words, they do not capture the details of the implementation 
language, the operating system to be deployed on, or the architecture of the 
application. This section explains the usage of Platform-Specific Metamodel (PSMM) 
elements. Separating the DSMM and PSMM results in highly re-usable models. For 
example, one may want to design a system by using the fresh food DSMM for mica 
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nodes (built upon nesC and TinyOS combination) as the target platform, using a 
biologically inspired architecture, and then the same domain-specific model can be re-
used to design an application to work on SunSPOT (built upon Java and JVM 
combination), using a database-centric architecture. The metamodel elements and the 
transformation rules used for the fresh food  domain remains the same, but the target 
platform specifications change. 

 
 
 

 
 
 
 
 

 

 
 
 
 
 

 

Fig. 4. Fresh Food Domain-Specific and BiSNET Platform-Specific Metamodel elements 

BiSNET (Biologically-inspired architecture for Sensor NETworks) is a middleware 
architecture for multi-modal WSNs [9]. The two software components in BiSNET are 
agents and middleware platforms. Agents sense their local environments, and take 
actions according to sensed conditions. Upon a significant change in sensor reading 
an agent (a stationary agent that resides on a platform all the time) emits a pheromone 
to stimulate replicating itself and its neighboring agents. Each agent replicates only 
when enough types and concentration of pheromones become available on the local 
node. A replicated agent (a migratory agent) migrates toward a base station on a hop-
by-hop basis to report sensor data.  

PSMM elements can be added to GMM just as DSMM elements are added. A new 
package for each platform should be created under the same directory as GMM, and 
then the new package can be populated with the necessary PSMM elements extending 
from GMM elements. Fig. 4 depicts the resulting BiSNET PSMM. 
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The middleware platform and agent concepts in BiSNET are mapped to PSMM 
elements Platform and Agent, respectively. Since there is no entity to model software 
agents in GMM, Agent defined in bisnet package does not extend from any element 
of the GMM. The two types of agents, stationary agents and migratory agents, are 
mapped to StationaryAgent and MigratoryAgent in the bisnet PSMM, respectively.  

2.4. Creating a Model Based on the Metamodel 

There are four types of sensor nodes in the application scenario explained above: 
bacteria node, air temperature node, airflow node and the base station. Since Baobab 
considers modeling the components and functionalities of each type of node 
separately, four different models should be created. Fig. 5 depicts the model created 
for bacteria node. 

3. Model Validation with OCL 
Baobab allows metamodel designers to specify OCL constraints on metamodel 
elements so that they are extended to DSMMs and PSMMs and instantiated in models 
in unambiguous manner. OCL constraints can set restrictions on property values and 
specify dependencies between property values of an element, or different elements. 
Then, Baobab validates models with a given set of OCL constraints. Listing 1 shows 
some of the OCL constraints that are checked against the model depicted in Fig. 5. 

4. Model-to-Code Transformation 
This section describes how Baobab transforms a model created with GMM, DSMMs, 
and PSMMs into nesC code for TinyOS. Currently, Baobab assumes that all 
metamodels and models are defined on Eclipse Modeling Framework1 and uses 
openArchitectureware2 to implement its model-to-code transformer.  

Listing 3 is a code snippet that Babab generates from the model depicted in Fig. 5. 
The code performs five tasks starting with PheromoneSensingTask. 
PheromoneSensingTask is performed in the code by calling a BiSNET-specific 
function, pheromoneSensing(), with pheromoneType specified in Fig. 5 as a 
parameter. DataAggregation is performed by calling getAggregatedData() of the 
DataAggregation interface with relevant parameters specified in Fig. 5. 
getAggregatedData() takes a parameter on aggregationType. AgentMigrationTask is 
performed by calling migrationTask(), which is another BiSNET-specific function. 

As for AgentReplicationTask, a conditional expression is generated as a comment 
in an if-statement. The actual value to be checked if it is greater than two is 
aggregatedData[0] of the previous task (DataAggregation). However, the generated 
code does not keep the previous for a task because it can be any Task subtype, but 
nesC is not an object-oriented language and it does not support polymorphism. Thus, 

                                                
1 www.eclipse.org/modeling/emf 
2 www.eclipse.org/gmt/oaw 
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this conditional expression is left as a comment and a programmer should replace it 

with a real Boolean expression to reflect what is meant in the model. 
 

Fig. 5. Model based on fresh food domain and BiSNET platform 
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Listing 1 

-- All Data created by a Sensor should be for the same phenomenon. 
context Sensor 
inv sensorData->forAll(a1, a2 | a1 <> a2 and 

a1.phenomenonType = a2.phenomenonType) 
 

-- AirTempSensor can only generate AirTempData. 
context AirTempSensor 
inv: sensorData->forAll(self.oclIsTypeOf(AirTempData)) 
 

-- dutyCycleNumber is used only when aggregation domain is TEMPORAL. 
-- hop and aggregatingNodes should be only used when domain is SPATIAL. 

context DataAggregation 
inv: dutyCycleManager <> null implies domain = TEMPORAL 
     and hop <> null implies domain = SPATIAL 
     and aggregatingNodes <> null implies domain = SPATIAL 
 

-- If aggregation domain is SPATIAL, aggregatingNodes and hop are non-full. 
context DataAggregation 
inv: domain = SPATIAL implies  
  (hop <> null) xor (aggregatingNodes <> null) 
 

-- If aggregation domain is TEMPORAL, dutyCycleNumber cannot be null.  
context DataAggregation 
inv: domain = TEMPORAL implies dutyCycleNumber <> null 

Listing 3 

//:PheromoneSensingTask 
pheromones = pheromoneSensing(REPLICATION);                    
//:DataAggregation 
aggregatedData = call DataAggregation.getAggregatedData( 
                                                SPATIAL, 1, 0, AVERAGE); 
//:AgentReplicationTask  
if(/* previous.aggregatedData[0] > 2 */) { 

int weight[4] = {0, 0, 0, 0}; 
call Agent.setWeight(weight); 
agent = replicationTask( 
                aggregatedData.sensorData[0].colonyFormingUnitsPg,1); 
// :ChangeSleepTimeTask 
Timer_interval *= 0.5; 
//:AgentMigrationTask 
migrationTask(agent); } 

5. Preliminary Evaluation 

This section discusses preliminary results to evaluate Baobab. Baobab generates 
1,279 lines of nesC code from the model depicted in Figure 5. It takes 544 
milliseconds to generate the code. After the code is generated, there are 12 lines of 
code to be manually written by a programmer, which takes approximately 2 minutes. 
Baobab generates 99.1% of the total code; it can significantly simplify the 
development of WSN applications. The generated code can be deployed on the Mica2 
sensor node as well as the TOSSIM simulator [10]. Table 1 shows memory footprint 
of the generated code on the two deployment environments. Baobab generates 
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lightweight nesC code that can operate on sensor nodes with severely limited 
resources. For example, a Mica2 node has 4 KB in RAM and 128 KB in ROM.  

Table 1. Memory Footprint of a Generated WSN application 

  ROM (bytes) RAM (bytes) 
Mica2 19,496 1,153 
PC (TOSSIM) 72,580 179,188 

6. Conclusion 

This paper proposes an MDD framework, called Baobab, for WSN application 
development. Baobab provides a metamodel that includes the most common 
components and behaviors of WSN nodes, in a platform-independent way. Besides, it 
can be extended easily for new application domains and platforms without impairing 
the existing elements and rules. This metamodel also enables users to model non-
functional aspects of WSN systems as well as their functional aspects. Applications 
can be constrained further by a set of OCL rules, and the models can be validated 
against these rules. The model-to-code generator creates runnable code from the input 
models with a little modification by the programmers. 
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