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Abstract. We apply gene expression programing to evolve a player for
a real-time strategy (RTS) video game. The paper describes the game,
evolutionary encoding of strategies and the technical implementation of
experimental framework. In the experimental part, we compare two se-
tups that differ with respect to the used approach of task decomposition.
One of the setups turns out to be able to evolve an effective strategy,
while the other leads to more sophisticated yet inferior solutions. We dis-
cuss both the quantitative results and the behavioral patterns observed
in the evolved strategies.

1 Introduction and Related Work

Among the genres of computer games, the popularity of real-time strategy games
(RTS) increased significantly in recent years. As the acronym suggests, an im-
portant feature of an RTS game is the lack of turns: the players issue moves at
an arbitrary pace. This makes timing essential, and requires the players to fea-
ture a mixture of intelligence and reflection. However, what makes RTS games
distinctive is not their real-time mode of operation (which they share with, e.g.,
the first-person shooter games), but the strategic and tactical character. Rather
than impersonating a specific character in the game, each player operates a set
of units in a virtual world. The units are semi-autonomous: they obey commands
issued by a player, but otherwise operate autonomously, carrying out some low-
level tasks (like moving to a specific location, attacking an enemy unit, etc.).
The game’s world typically hosts also various types of resources that have to
be managed. As these features are characteristic for military operations, RTS is
typically considered as a subcategory of wargames. Contemporary iconic repre-
sentatives of this genre include Starcraft and Warcraft.

Some RTS games offer software interfaces that enable substituting the human
player with an encoded strategy. There are gamers who specialize in handcoding
such strategies, known as ‘Als’ or ‘bots’. Despite this fact and despite the grow-
ing interest of computational intelligence researchers in the domain of games as
a whole [SITOJITITT], attempts to make an RTS game a playground for computa-
tional intelligence surfaced only recently [2I12]. The primary reason for the low
interest of computational intelligence community in the RTS realm is probably
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the inherent complexity of such games, resulting from the abundance of actors,
heterogeneity of units, complexity of the environment and its dynamic character.
These factors make it difficult to draw sound conclusions concerning the utility
of a particular approach, parameter setting, or strategy encoding.

Trying to avoid the overwhelming complexity of off-shelf RTS games, we ap-
proach a task that is scaled-down yet preserves the essential RTS features. In
particular, we verify the utility of gene expression programming as a tool for
evolving a strategy for a relatively simple single-player game of gathering re-
sources described in Section 21

2 The Gathering Resources Game

The game of gathering resources has been originally proposed by Buro and
defined within the Open Real-Time Strategy (ORTS) [3], an open-source scaled-
down environment for studying algorithms for RTS games. The gathering re-
sources game is one-person, perfect information, non-deterministic RTS game
where the player controls a homogeneous set of 20 workers that operate in a
discrete 2D world of 32x32 tiles (see Fig. [l), with each tile composed of 16x16
tilepoints. This results in a discrete grid of 512x512 points that may be occu-
pied by workers, discrete resources called minerals, and other objects. The goal
of the game is to maximize the amount of gathered minerals within the available
simulation time.

The initial position of a worker is close to the control center (base). The worker
should approach minerals, which are grouped into several patches, mine up to 10
of them (this is worker’s maximum ’capacity’), and bring the collected minerals
back to the base. This task is non-trivial due to the presence of static obstacles
(hills), dynamic obstacles (randomly moving ’sheep’ and other workers), and the
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Fig. 1. A board of the gathering resources game used in the experiments



Evolving Teams of Cooperating Agents for Real-Time Strategy Game 335

constraint that one mineral cannot be mined by more than four workers at a
time. Thus, the two elementary skills required to attain a reasonable score are
obstacle avoidance and collaborative pathfinding.

The player exerts control over each worker by means of four possible actions:

move(x,y) — start moving towards location (z,y) (with a predefined speed),
— stop() — stop moving or mining (depending on the current activity),

— mine() — start mining minerals (effective in the vicinity of a mineral patch),
— drop() — drop all minerals (effective in the vicinity of the base).

The pace of the game is determined by the speed of worker movement (4 tile-
points per 1 simulation frame) and mining (1 mineral per 4 simulation frames).
When played by a human, the complete game lasts for 10 minutes at 8 simula-
tion frames per second (totalling 4800 frames), with the player allowed to issue
every unit 1 command per simulation frame.

3 The Approach and Setup
3.1 Worker Control and Strategy Encoding

We implement the model of homogenous agents, meaning that each worker imple-
ments the same behavior, which at the top level may be viewed as a finite-state
machine. To ease the emergence of well-performing solutions, we manually de-
compose the task into two components and encode them in separate expression
trees hosted by one individual that encodes the complete strategy. The first
tree, called commander in following, is responsible for selecting a mineral and is
queried when a particular worker is free. Once a particular mineral is selected by
the commander as a target for the worker, the control over worker is taken over
by the second tree, navigator, which is intended to guide the worker towards the
target and may refer to it via one of available terminals. The state of approach-
ing the mineral lasts until the worker reaches it, when it switches to the 'mineral
mining’ state for 40 simulation frames (mining speed x worker’s capacity). After
mining is over, the control over the worker is passed back to the navigator, this
time substituting the base as the navigation target. When reaching the base, the
worker drops the minerals and becomes ready for another round. This working
cycle is fixed; only commander and navigator undergo evolution.

When designing the representation (the set of terminals and functions) we had
to handle the inevitable trade-off between the compactness of representation (and
the resulting cardinality of the search space) and its expression power. In order
to keep the representation compact, commanders and navigators use disjoint,
task-oriented data types. The former uses only scalars (real numbers) and the
latter only vectors (tuples of real numbers).

Table [l shows the set of functions and terminals used by commanders. Each
time an agent has to choose which mineral to gather, the commander tree built
from these components is applied to every mineral on the board to compute
its ‘utility’. The mineral with the highest utility is assigned to the worker; this
assignment remains unchanged until the worker reaches the prescribed mineral.
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Table 1. Functions and terminals (arity=0) used by the commander tree. The notation
‘a 7 b: ¢ means ‘if a is true return b ohterwise return c’.

Notation Arity Result
SOPP(S) opposite value
SINV(S) inverted value
SABS(S) absolute value
SSIG(S) sigmoid function
SADD(S1,52) addition
SSUB(S1,S2) substraction

SMUL(S1,52)
SMAX(S1,52)
SMIM(S1,52)
SLEN(SR,S1,52)
STF1(SR1,SR2,S1,52)
SIF2(SR1,SR2,S1,52)
S_ONE
S_DISTANCE
S_MINERAL_INDEX
S_WORKER_INDEX
S_LAST_VALUE
S_AVG_VALUE
S_MAX_VALUE
S_REFERENCES
S_VISITS
S_TASKS

multiplication
maximum
minimum
SABS(SR-S1) < SABS(SR-S2) 7 S1:S2
SR1 < SR2 7 S1:8S2
SR1 >= SR2 ? S1: S2
1.0
distance to the mineral
current mineral index
current agent index
previously computed value
the average value of all minerals
the maximum value of all minerals
number of workers going to the mineral
number of workers’ visits
S _REFERENCES + S_VISITS

O O O O O O O O O O = = W N N N NN~ = = =

Table Pl presents the set of functions and the set of terminals used for encoding
of navigators. In each simulation frame the ORT'S simulator queries the navigator
to obtain a temporary movement target for each worker. The navigator tree
evaluates to a vector represented as a tuple of two real numbers: the length
and the angle. The vector is then transformed into board coordinates and an
appropriate move(z,y) command is performed by the worker.

Both commander and navigator are encoded in a common linear chromosome
using Gene Expression Programming (GEP) [5]. In canonical GEP, an expres-
sion tree is encoded as a sequence of numbers subdivided into head and tail,
with the head consisting of both function and terminal symbols, and the tail
containing terminal symbols only (see [6] for more details). The length of the
head determines the maximal size of the expression tree. In addition to GEP’s
head and tail, we introduce an extra part called forehead that contains only
function symbols. This allows us to control the minimal number of nodes in
an expression tree, which might be helpful in forcing the evolution to focus on
complex solutions. Table [3] presents the complete chromosome setup.

Defining individual’s fitness as the the number of collected minerals proved
ineffective in one of the preliminary runs. We noticed that evolution may stagnate
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Table 2. Functions and terminals (arity=0) used by the navigator tree

Notation Arity Result
VOPP(V) 1 opposite vector
VINV (V) 1 vector with inverted length
VRIG(V) 1 perpendicular vector (turn counter clockwise)
VLEF(V) 1 perpendicular vector (turn clockwise)
VSHO(V) 1 normalization to a short distance
VMID(V) 1 normalization to a middle distance
VLON(V) 1 normalization to a long distance
VADD(V1,V2) 2 addition
VSUB(V1,V2) 2 subtraction
VMAX(V1,V2) 2 longer vector
VMIN(V1,V2) 2 shorter vector
VROT(VR,V) 2 rotates V towards VR
VMUL(VR,V) 2 scales V accordingly to VR
VCRD(VR,V) 2 represents V treating VR as a vector on OX axis
VIFZ(VR,V1,V2) 3 length(VR)=0 ? V1 : V2
VLEN(VR,V1,V2) 3 chooses vector with length “closer” to the VR
VDIR(VR,V1,V2) 3 chooses vector with direction “closer” to the VR
V_CLOSEST_POSITION 0 vector to the closest unit
V_CLOSEST_ MOVE 0 move vector of the closest unit
V_ANTISRC 0 inverted vector to the source
V_DST 0 destination vector
V_LAST 0 vector to the previous position
V_ORDER 0 previous move vector
V_ANTIHILL 0 vector that “points” away from the closest hill patch
V_ANTIUNIT 0 vector that “points” away from the local group of units

due to the discrete nature of such straightforward fitness measure. To provide
an extra incentive for individuals, we defined fitness as

[|lworker;, target;||

1 n
it = 5000 ; l (1 1
fitness x |minerals + ; ( (1)

[|source;, target;|| |’

where n is the number of workers, source; is the starting point of it" worker,
target; is the current target of i'” worker (one of the minerals or the base,
depending on the current phase of the worker’s cycle), || || stands for Euclidean
distance, and [() is the logistic function (I(z) = 1/(14exp(—z))). Effectively, such
a definition introduces a second objective that rewards a strategy for workers’
proximity to their current targets at the end of simulation. The above formula
combines these objectives in a lexicographic manner, i.e., given two strategies
that collect the same number of minerals, the one that has its workers closer
to their current targets is considered better. Such a definition is helpful in the
initial stages of an evolutionary run, when the individuals have not discovered
yet that collecting minerals is a beneficial behavior.
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Table 3. Chromosome structure (numbers indicate lengths of chromosome parts)

Navigator Commander
Forehead (5) Head (25) Tail (61) Forehead (5) Head (25) Tail (121)
Functions Func+term Terminals Functions Func+term Terminals

Experiment

1
. expressions results
Evolution v I
i i F-—-mm - execute command |-
Simulation ash scripts ‘| ¢ . . | ;
| strategies as game
1 Cmacros  parameters results !
1 2 12 | :
I
C++ ORTS |1 on-the-fly game '
client code [} compilation simulation |
I I
[ 1 [ /_ - _T _______ !
ORTS client binary ‘ | ORTS server binary

Fig. 2. Experiment framework scheme

It is worth mentioning that the technical realization of the experiment was
challenging. We followed and modified the previously verified technical setup
for performing evolutionary experiments from [7]. We used ECJ ver. 18 [I] for
running the evolutionary experiment, the ORTS framework for real-time game
simulations, a homebrew parser for mapping GEP chromosomes to trees, and
advanced bash-scripting to "tie the loose ends". Figure [2] shows the major soft-
ware components and data flow within an experiment. ECJ standard classes are
responsible for the main evolutionary loop. In the evaluation phase, individual’s
genotype is expressed into the C code and passed to the script, which performs
on-the-fly compilation of those lines along with ORTS client code (which is con-
stant and responsible for connecting with ORTS server). When the compilation
finishes, the script runs the simulation — it starts the ORTS server and than the
newly build ORTS client. When the simulation finishes, the result of the game
is returned to the ECJ evaluator.

3.2 Evolutionary Parameters

Both experiments discussed in the following used the same parameter settings:
population size 200, 150 generations, tournament selection with tournament size
5, and simple elitism (the best-of-generation individual is unconditionally copied
to the next population). Though GEP introduces many innovative genetic op-
erators (e.g., gene recombination, RIS-transposition), for simplicity we use the
standard one-point crossover applied with probability 0.9 and one-point muta-
tion applied with probability 0.1.
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We expect that that due to the large numbers of functions and terminals the
search space of this problem is very large. To avoid expanding it even more, we
restrain from using random constants.

The rather moderate population size and number of generations is an in-
evitable consequence of the time-consuming evaluation process that requires
simulating the entire game. Even after shortening the game to 1000 simula-
tion frames (compared to 4800 in the original ORTS game specification) and
speeding up the simulation rate to 160 frames per second (compared to default
8 in ORTS), a 2.4GHz CPU needed more than 40 minutes to evaluate just one
population, so that it took 9 days to finish the computations.

4 The Results

The major objective of the experiment was to test our approach with respect
to the ability of evolving a successful cooperation between the commander and
the navigator. To this aim, we performed two evolutionary runs. In the first one,
the fized-target experiment, we have fixed the commander to always assign the
same, arbitrary chosen mineral to all workers. Thus, in this scenario, only the
navigator was evolved. In the second one, called the evolving-target experiment,
evolution of both the commander and the navigator took place.

Figure Bl shows the mean fitness graph for both experiments. From the very
beginning of the runs, the evolving-target approach improves the performance
of the average individual at notably better rate than the fixed-target run, which
seems to stagnate already around the 40" generation. However, without more
insight into the evolved solutions, it is difficult to determine the underlying cause
for this difference.

In following we qualitatively analyze the behavioral changes in strategies en-
coded by successive best-of-generation individuals from both runs. Some of the
emerging behaviours prove that the commander-navigator tandem was adapting
to the game characteristic.

In the fixed-target experiment all agents aim at gathering mineral from the
same static location and only the navigator was evolved. The target mineral was
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Fig. 4. Best-of-generation fitness graphs

relatively far from the base and there was a wall (a static obstacle) between them.
We observed qualitative changes in following generations (the best-of-generation
fitness plot (Fig. [dh) reflects well these major ‘evolutionary leaps’):

(2) Small-circle. Agents move along small circular paths using the closest unit
as the reference (the center of the circle). This is the first attempt of the agents
to avoid each other (but not the hills).

(12) Big-circle bouncing. Agents move on large circular paths, but usually do not
block each other, as two circles intersect at most only two points. Simultaneously,
evolution discovers the first method of walking around the hills — agents “bounce
off” the hills by rotating the move vector.

(58) Shaking. The previous behaviours did not prevent agents from blocking
when they crowd (which inevitably happens when gathering the same mineral).
In this generation agents learned to move towards a common destination by
incorporating small random steps into various directions. It looks similar to
Brown’s movements of chemical particles, however oriented towards a chosen
point. Unfortunately, this trick does not help yet walking around the hills.

(59) Upgraded shaking. The agents adapted the shaking move so that it success-
fully helps avoiding the hills. Evolution discovered also entirely different path to
reach the target mineral, which turned out to be far superior to the old one.

(137) Shaking on demand. When there are no other units in proximity agents
tend to favor movement on straight or curved lines. “Shaking” is still used to
avoid obstacles or other units.

In the evolving-target experiment both the navigator and the comman-
der were evolved. The results are far better in terms of fitness, but the observed
behaviors are less sophisticated. Already the initial generation turned out to
contain a commander that chooses the closest mineral, and this approach dom-
inated the remaining part of evolution (except for the 5th generation when the
best individual distributes agents over different minerals).



Evolving Teams of Cooperating Agents for Real-Time Strategy Game 341

With the commander always choosing the closest mineral, the task of the
navigator becomes less sophisticated than in the fixed-target experiment, because
(i) the shortest path to the target does not collide with the hills (see Fig.[Il), and
(ii) the short distance to be traversed does not require an elaborate mechanism
for handling worker collisions. Thus, the major remaining problem to solve was
the ability to move ’in herds’. Evolution discovered the Small-circle move in
the 5th generation, the shake move in the 17th generation, and significantly
increased the intensity of shaking in the 46th generation (Fig. @b). The traits
acquired later were minor and did not lead to any meaningful behaviour changes.
Unfortunatelly, the agents did not learn how to walk around the base and some
of them remained blocked for entire simulation.

5 Conclusions and Discussion

In general terms, the result obtained in the reported experiments may be con-
sidered as positive. Given a vocabulary of quite low-level functions and termi-
nals, and with a little help in terms of experiment design (augmented fitness
definition and task decomposition), our approach was able to evolve effective
strategies that exhibit most of the functionalities requires to solve the task. Let
us emphasize that, apart from the assignment of workers to minerals and the
ability of perceiving the board state, the evolved strategies are stateless — in
a short run, the agents work exclusively using the stimulus-reaction principle.
There is no short-term memory to help agents in carrying out such actions like,
e.g., obstacle avoidance.

We have to admit that, considering the behavioral aspect, the evolving-target
experiment produced rather disappointing outcome. Our model of artificial evo-
lution proved very effective at cutting off the corners and, at the same time,
rather ineffective at going beyond an easy-to-come-up-with yet globally not op-
timal solution. A lesson learned is that behavioral sophistication does not always
go hand in hand with the performance.

There are numerous ways in which the proposed approach could be extended
or varied. For instance, the number of functions and terminals used by comman-
ders and navigators is large (see Tables [[land ). On one hand, this enables the
evolving trees to express complex concepts, on the other, however, lowers the a
priori probability of picking a particular function or terminal. We look forward
for methods that address this difficult trade-off.

The fitness function defined in Formula () aggregates two undelying objec-
tives: the number of collected minerals and worker’s distance from the assigned
target. The particular form of aggregation is quite arbitrary. In theory, a more
elegant way would be to approach the problem with multi-objective formulation.
However, our past experience with multiobjective evolutionary compuation in-
dicates that it inevitably implies weaker selective pressure and may negatively
impact the convergence of the evolutionary run. In the light of very expensive
evaluation cost in our study, such approach seemed risky. For the same rea-
son of high computational demand, in seems reasonable to consider distributed
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computing. This would also allow us to run the experiments several times to
obtain a more reliable estimates of its performance.

Finally, this large-scale study could be possibly used as a yardstick for com-
paring GEP to GP.
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