Skip to main content

Scalable Interconnection Networks

  • Chapter
  • First Online:
Simula Research Laboratory

Abstract

A modern supercomputer or large-scale server consists of a huge set of components that perform processing functions and various forms of input/output and memory functions. All of the components unite in a complex collaboration to perform the tasks of the entire system. The communication between these components that allows this collaboration to take place is supported by an infrastructure called the interconnection network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Lysne, J. M. Montanana, J. Flich, J. Duato, T. M. Pinkston, and T. Skeie. An efficient and deadlock-free network reconfiguration protocol. IEEE Transactions of Computers, 57(6):762–779, 2008.

    Article  MathSciNet  Google Scholar 

  2. W. J. Dally and B. Towles. Principles and practices of interconnection networks. Morgan Kaufmann, 2004.

    Google Scholar 

  3. J. Duato. A necessary and sufficient condition for deadlock-free adaptive routing in wormhole networks. IEEE Trans. Parallel Distrib. Syst., 6(10):1055–1067, 1995.

    Article  Google Scholar 

  4. R. Seifert. Gigabit Ethernet. Addison Wesley Pub Co., 1998.

    Google Scholar 

  5. Adaptive Enterprise: Business and IT Synchronized to Capitalize on Change. White paper, HP, 2005.

    Google Scholar 

  6. S. Microsystems. Sun Grid Compute Utility — Reference Guide. Part no. 819-5131-10, 2006.

    Google Scholar 

  7. F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachtenberg. The Quadrics network: High-performance clustering technology. IEEE Micro, 22(1):46–57, /2002.

    Article  Google Scholar 

  8. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and W.-K. Su. Myrinet: A gigabit-per-second local area network. IEEE Micro, 15(1):29–36, 1995.

    Article  Google Scholar 

  9. Top 500 supercomputer sites. http://www.top500.org/, October 2008.

  10. F. Petrini and M. Vanneschi. K-ary N-trees: High performance networks for massively parallel architectures. Technical Report TR-95-18, 15, 1995.

    Google Scholar 

  11. X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang. A multiple lid routing scheme for fat-tree-based infiniband networks. IPDPS. IEEE Computer Society, 2004.

    Google Scholar 

  12. 18th International Parallel and Distributed Processing Symposium (IPDPS 2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004, Santa Fe, New Mexico, USA. IEEE Computer Society, 2004.

    Google Scholar 

  13. Google. www.google.com.

  14. J. Flich, J. Duato, T. Sødring, Å. G. Solheim, T. Skeie, O. Lysne, and S. Rodrigo. On the potential of noc virtualization for multicore chips. Proc. International Workshop on Multi-Core Computing Systems (MuCoCoS’08). IEEE Computer Society, 2008.

    Google Scholar 

  15. F. Sem-Jacobsen. Towards a unified interconnect architecture: Combining dynamic fault tolerance with quality of service, community separation, and power saving. PhD thesis. University of Oslo, 2008.

    Google Scholar 

  16. Sun. Red sky at night, sandia’s delight.

    Google Scholar 

  17. S. Graphics. SGI Altix ICE System Administrator’s Guide. Silicon Graphics, version 001 edition, 2008.

    Google Scholar 

  18. O. Lysne, S.-A. Reinemo, T. Skeie, Å. G. Solheim, T. Sødring, L. P. Huse, and B. D. Johnsen. The interconnection network — architectural challenges for utility computing data centres. IEEE Computer, 41(9):62–69, 2008.

    Google Scholar 

  19. Amazon.com. Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.

  20. N. Carr. The Big Switch. W. W. Norton, New York, London, 2008.

    Google Scholar 

  21. J. Duato, O. Lysne, R. Pang, and T. M. Pinkston. Part I: A theory for deadlock-free dynamic network reconfiguration: A theory for deadlock-free dynamic network reconfiguration. IEEE Transactions on Parallel Distributed Systems, 16(5):412–427, 2005.

    Article  Google Scholar 

  22. J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks: An Engineering Approach. Morgan Kaufmann Publishers, 2003.

    Google Scholar 

  23. O. Lysne, T. M. Pinkston, and J. Duato. Part ii: A methodology for developing deadlock-free dynamic network reconfiguration processes. IEEE Transactions on Parallel Distributed Systems, 16(5):428–443, 2005.

    Article  Google Scholar 

  24. S. Warnakulasuriya and T. M. Pinkston. A formal model of message blocking and deadlock resolution in interconnection networks. IEEE Transactions on Parallel and Distributed Systems, 11(3):212–229, 2000.

    Article  Google Scholar 

  25. N1 Grid Engine 6 features and capabilities. Sun Microsystems White Paper, 2004.

    Google Scholar 

  26. T. Pinkston, R. Pang, and J. Duato. Deadlock-free dynamic reconfiguration schemes for increased network dependeability. IEEE Transactions on Parallel and Distributed Systems, 14(8):780–794, Aug. 2003.

    Article  Google Scholar 

  27. N. Natchev, D. Avresky, and V. Shurbanov. Dynamic reconfiguration in high-speed computer clusters. Proceedings of the International Conference on Cluster Computing, pages 380–387, Los Alamitos, 2001. IEEE Computer Society.

    Google Scholar 

  28. R. Casado, A. Bermúdez, J. Duato, F. J. Quiles, and J. L. Sánchez. A protocol for deadlock-free dynamic reconfiguration in high-speed local area networks. IEEE Transactions on Parallel and Distributed Systems, 12(2):115–132, Feb. 2001.

    Article  Google Scholar 

  29. J. Fernández, J. García, and J. Duato. A new approach to provide real-time services on high-speed local area networks. Proceedings of the 15th International Parallel and Distributed Processing Symposium (IPDPS-01), pages 124–124, Los Alamitos, CA, Apr. 23–27 2001. IEEE Computer Society.

    Google Scholar 

  30. T. L. Rodeheffer and M. D. Schroeder. Automatic reconfiguration in Autonet. Proceedings of 13th ACM Symposium on Operating Systems Principles, pages 183–197. Association for Computing Machinery SIGOPS, Oct. 1991.

    Google Scholar 

  31. D. Teodosiu, J. Baxter, K. Govil, J. Chapin, M. Rosenblum, and M. Horowitz. Hardware fault containment in scalable shared-memory multiprocessors. Proceedings of the 24th Annual International Symposium on Computer Architecture (ISCA-97), volume 25, 2 of Computer Architecture News, pages 73–84, New York, 1997. ACM Press.

    Article  Google Scholar 

  32. A. Kvalbein, A. F. Hansen, T. Čičić, S. Gjessing, and O. Lysne. Multiple routing configurations for fast IP network recovery. IEEE/ACM Transactions on Networking, 2009 (To Appear).

    Google Scholar 

  33. I. T. Theiss and O. Lysne. Froots, a fault tolerant and topology agnostic routing technique. IEEE Transactions on Parallel and Distributed Systems, 17(10):1136–1150, 2006.

    Article  Google Scholar 

  34. N. Sharma. Fault-tolerance of a min using hybrid redundancy. Simulation Symposium, 1994., 27th Annual, pages 142–149, Apr 1994.

    Google Scholar 

  35. F. O. Sem-Jacobsen, T. Skeie, O. Lysne, and J. Duato. Dynamic fault tolerance with misrouting in fat trees. Proceedings of the International Conference on Parallel Processing (ICPP), pages 33–45. IEEE Computer Society, 2006.

    Google Scholar 

  36. N. A. Nordbotten and T. Skeie. A routing methodology for dynamic fault tolerance in meshes and tori. International Conference on High Performance Computing (HiPC), LNCS 4873, pages 514–527. Springer-Verlag, 2007.

    Google Scholar 

  37. C. Carrion, R. Beivide, J. A. Gregorio, and F. Vallejo. A flow control mechanism to avoid message deadlock in k-ary n-cube networks. High-Performance Computing, International Conference on, 0:322, 1997.

    Google Scholar 

  38. M. E. Gómez, N. A. Nordbotten, J. Flich, P. López, A. Robles, J. Duato, T. Skeie, and O. Lysne. A routing methodology for achieving fault tolerance in direct networks. IEEE Transactions on Computers, 55(4):400–415, 2006.

    Article  Google Scholar 

  39. J.-D. Shih. Fault-tolerant wormhole routing in torus networks with overlapped block faults. Computers and Digital Techniques, IEE Proceedings —, 150(1):29–37, 2003.

    Article  Google Scholar 

  40. J.-D. Shih. A fault-tolerant wormhole routing scheme for torus networks with nonconvex faults. Information Processing Letters, 88(6):271–278, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Chalasani and R. Boppana. Fault-tolerant wormhole routing in tori. Proceedings ACM International Conference on Supercomputing, pages 146–155, 1994.

    Google Scholar 

  42. S. Park, J.-H. Youn, and B. Bose. Fault-tolerant wormhole routing algorithms in meshes in the presence of concave faults. Parallel and Distributed Processing Symposium, 2000. IPDPS 2000. Proceedings. 14th International, pages 633–638, 2000.

    Google Scholar 

  43. H. Gu, Z. Liu, G. Kang, and H. Shen. A new routing method to tolerate both convex and concave faulty regions in mesh/tori networks. Parallel and Distributed Computing, Applications and Technologies, 2005. PDCAT. Sixth International Conference on, pages 714–719, Dec. 2005.

    Google Scholar 

  44. S. Kim and T. Han. Fault-tolerant wormhole routing in mesh with overlapped solid fault regions. Parallel Computing, 23:1937–1962, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  45. P. Sui and S. Wang. An improved algorithm for fault-tolerant wormhole routing in meshes. IEEE Transactions on Computers, 46(9):1040–1042, 1997.

    Article  MathSciNet  Google Scholar 

  46. C. Cunningham and D. Avresky. Fault-tolerant adaptive routing for two dimensional meshes. Proceedings Symp. on High-Performance Computer Architecture, pages 122–131, 1995.

    Google Scholar 

  47. Openfabrics Alliance. www.openfabrics.org.

  48. Å. Solheim, O. Lysne, T. Skeie, T. Sødring, and I. Theiss. Routing for the asi fabric manager. IEEE Communication Magazine, 44(7):39–44, 2006.

    Article  Google Scholar 

  49. O. Lysne, T. Skeie, S.-A. Reinemo, and I. Theiss. Layered routing in irregular networks. IEEE Transactions on Parallel and Distributed Systems, 17(1):51–65, 2006.

    Article  Google Scholar 

  50. A. Mejía, J. Flich, S.-A. Reinemo, and T. Skeie. Segment-based routing: An efficient fault-tolerant routing algorithm for meshes and tori. Proceedings of the 20th IEEE International Parallel and Distributed Processing Symposium, pages 1–10, 2006.

    Google Scholar 

  51. A. Joraku, K. Koibuchi, and H. Amano. An effective design of deadlock-free routing algorithms based on 2d turn model for irregular networks. IEEE Transactions on Parallel and Distributed Systems, 18(3):320–333, March 2007.

    Article  Google Scholar 

  52. J. Sancho, A. Robles, and J. Duato. An effective methodology to improve the performance of the up*/down* routing algorithm. IEEE Transactions on Parallel and Distributed Systems, 15(8):740–754, 2004.

    Article  Google Scholar 

  53. H. Sullivan and T. Bashkow. A large scale, homogeneous, fully distributed parallel machine. Proceedings of the 4th International Symposium on Computer Architecture, March 1977.

    Google Scholar 

  54. R. V. Boppana and S. Chalasani. Fault-tolerant wormhole routing algorithms for mesh networks. IEEE Transactions on Computers, 44(7):848–864, 1995.

    Article  MATH  Google Scholar 

  55. R. Casado, A. Bermúdez, F. J. Quiles, J. L. Sánches, and J. Duato. Performance evaluation of dynamic reconfiguration in high-speed local area networks. Proceedings of the Sixth International Symposium on High-Performance Computer Architecture, 2000.

    Google Scholar 

  56. S. Chalasani and R. V. Boppana. Communication in multicomputers with nonconvex faults. IEEE Transactions on Computers, 46(5):616–622, 1997.

    Article  MathSciNet  Google Scholar 

  57. L. Cherkasova, V. Kotov, and T. Rockicki. Fibre channel fabrics: Evaluation and design. 29th Hawaii international conference on system sciences, 1995.

    Google Scholar 

  58. A. A. Chien and J. H. Kim. Planar-adaptive routing: Low-cost adaptive networks for multiprocessors. Journal of the Association for Computing Machinery, 42(1):91–123, 1995.

    MATH  Google Scholar 

  59. W. J. Dally and C. L. Seitz. The torus routing chip. Distributed Computing, 1:187–196, 1986.

    Article  Google Scholar 

  60. W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor interconnection networks. IEEE Transactions on Computers, C-36(5):547–553, 1987.

    Article  Google Scholar 

  61. C. J. Glass and L. M. Ni. The turn model for adaptive routing. Journal of the Association for Computing Machinery, 41(5):874–902, 1994.

    Google Scholar 

  62. C. J. Glass and L. M. Ni. Fault-tolerant wormhole routing in meshes without virtual channels. IEEE Transactions on Parallel and Distributed Systems, 7(6):620–636, June 1996.

    Article  Google Scholar 

  63. I. T. Association. Infiniband architecture specification.

    Google Scholar 

  64. D. H. Linder and J. C. Harden. An adaptive and fault tolerant wormhole routing strategy for k-ary n-cubes. IEEE Transactions on Computers, 40(1):2–12, 1991.

    Article  MathSciNet  Google Scholar 

  65. O. Lysne and J. Duato. Fast dynamic reconfiguration in irregular networks. Proceedings of the 2000’ International Conference of Parallel Processing, Toronto (Canada), pages 449–458. IEEE Computer Society, 2000.

    Google Scholar 

  66. O. Lysne and T. Skeie. Load balancing of irregular system area networks through multiple roots. Proceedings of 2nd International Conference on Communications in Computing, pages 142–149, 2001.

    Google Scholar 

  67. L. M. Ni and P. McKinley. A survey of wormhole routing techniques in direct networks. Computer, 26:62–76, 1993.

    Article  Google Scholar 

  68. W. Qiao and L. M. Ni. Adaptive routing in irregular networks using cut-through switches. Proceedings of the 1996 International Conference on Parallel Processing (ICPP ’96), pages 52–60. IEEE Computer Society, 1996.

    Google Scholar 

  69. J. C. Sancho, A. Robles, and J. Duato. A new methodology to compute deadlock-free routing tables for irregular networks. Proceedings of the Workshop on Communication, Architecture, and Applications for Network-Based Parallel Computing (CANPC’00), 2000.

    Google Scholar 

  70. M. D. S. et.al. Autonet: a high-speed, self-configuring local area network using point-to-point links. SRC Research Report 59, Digital Equipment Corporation, 1990.

    Google Scholar 

  71. T. Skeie, O. Lysne, and I. Theiss. Layered shortest path (LASH) routing in irregular system area networks. In proceedings of Communication Architecture for Clusters, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lysne, O., Skeie, T., Reinemo, SA., Sem-Jacobsen, F.O., Nordbotten, N.A. (2010). Scalable Interconnection Networks. In: Tveito, A., Bruaset, A., Lysne, O. (eds) Simula Research Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01156-6_14

Download citation

Publish with us

Policies and ethics