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Abstract. Population size is a critical parameter that affects the per-
formance of an Evolutionary Computation model. A variable population
size scheme is considered potentially beneficial to improve the quality of
solutions and to accelerate fitness progression. In this contribution, we
discuss the relationship between population size and the rate of evolu-
tion in Genetic Programming. We distinguish between the rate of fitness
progression and the rate of genetic substitutions, which capture two dif-
ferent aspects of a GP evolutionary process. We suggest a new indicator
for population size adjustment during an evolutionary process by mea-
suring the rate of genetic substitutions. This provides a separate feedback
channel for evolutionary process control, derived from concepts of popu-
lation genetics. We observe that such a strategy can stabilize the rate of
genetic substitutions and effectively accelerate fitness progression. A test
with the Mackey-Glass time series prediction verifies our observations.

1 Introduction

The search process in Evolutionary Computation (EC) systems is a simultaneous
process of exploration in parallel and exploitation in depth. Population size is
a key factor to maintain population diversity in this process, and thus critical
for the performance of an EC method. Recently, population size control has
attracted increasing interests in the literature [13]. Population size control is
non-trivial and challenging because it is often problem-specific and the interac-
tion among various EC parameters is not completely clear yet. In general, the
literature on population size control has two main foci: i) initializing a proper
population size a priori and ii) adjusting population size during evolution. In
this article, we focus on the latter. Population size adjustment is motivated by
the observation that the required population size changes during different stages
of evolution [2]. Such an adjustment is usually directed by a feedback loop. This
feedback has been implemented through the controlled persistence of individuals
or through the measurement of fitness progression, both of which are able to re-
flect the process of evolution to some extent. In Biology, particularly in the study
on population genetics, population size has been intensely studied regarding its
role in the rate of evolution [15,16]. It is generally accepted that the effect of
population size on evolution acceleration is conditioned on the nature of selec-
tion at a particular moment rather than on a monotonic relationship. Typically,
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under positive selection, i.e., selection mostly accepting adaptive phenotypes,
a large population is favorable for rapid evolution. In contrast, under negative
selection, i.e., selection mostly eliminating deleterious phenotypes, a small popu-
lation evolves faster. These two selection conditions can be reflected by the rate
of genetic substitutions. Although this perspective is still under debate in the
biological community, it is intriguing to study this relationship in EC systems.
Thus, we investigate the interplay between population size and rate of evolution
in a GP model and see how this originally biological notion translates to artificial
systems.

2 Background and Motivation

In this section, we first briefly review studies on population size control in EC.
Then, we discuss the relation between population size and the rate of evolution
from both an EC and biological point of view.

2.1 Population Size Control

Research on population size control in EC originated from Genetic Algorithms
(GAs). A number of theoretical contributions on analyzing population size ini-
tialization have been published based on Goldberg’s seminal “components de-
composition approach” and the notion of building blocks [8,9]. The essence of
these works is that population size should be initialized according to the “com-
plexity” of a specific problem. That is, for a more difficult problem, more di-
versity of a population is required, and thus a larger population size should be
initialized.

Recently, it was realized that even for a given problem instance the required
population size can vary during the process of evolution. Therefore, besides a
good initial population size, some empirical methods on adjusting population size
dynamically have been proposed. Arabas et al. [1] propose the Genetic Algorithm
with Variable Population Size (GAVaPS) by regulating the age and lifetime of
each individual. Population size fluctuates as a result of removing over-aged in-
dividuals and reproducing new ones. Back et al. [2] extend this lifetime notion in
their Adaptive Population size Genetic Algorithm (APGA) to steady-state GAs.
Fernandes and Rosa [5] propose the Self-Regulated Population size Evolutionary
Algorithm (SRP-EA) to enhance APGA using a diversity-driven reproduction
process. Alternatively, Harik and Lobo [10] introduce parameter-less GA, where
several populations with different sizes evolve in parallel, starting with small
population sizes. By inspecting the average fitness of these populations, less fit
undersized populations are replaced by larger ones. Eiben et al. [4] suggest to
use the pace of fitness improvements as the signal to control population size in
Population Resizing on Fitness Improvement GA (PRoFIGA).

In GP, determination of an ideal population size is of even greater signifi-
cance. As with the GA, population size in GP is relevant to its capabilities in
finding the target and to its computational efficiency. In particular, it is related
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to the phenomenon of bloat. Poli et al. [17] establish that smaller populations
bloat at a slower rate than larger ones. Downing [3] investigates population size
in relation to evolvability in GP. Thus, adjusting population size dynamically
benefits GP in various ways. A theoretical analysis on population size in GP
based on building blocks is conducted by Sastry et al. [18]. The empirical pop-
ulation size adjustment schemes for GAs can also be applied to GP. Moreover,
some GP-specific techniques have been employed as well. For example, Wedge
and Kell [20] propose the Genotype-Fitness Correlation as a landscape metric
to predict ideal population sizes in different systems. Tomassini et al. [19] de-
sign a dynamic population size GP using fitness progression as signal to delete
over-sized and worse-fit individuals or to insert mutated best-fit individuals with
certain criteria.

2.2 Population Size and Rate of Evolution

The term rate of evolution is understood somewhat differently in EC and in
Biology. The goal of evolution is much more explicit in computational systems
than in nature. It is to find the fittest solution to a given problem. Therefore,
the rate of evolution in EC usually refers to how fast an EC population improves
its fitness value, i.e., the rate of fitness progression. In this sense, as long as an
EC population is able to find solutions, a small size is favored because of a small
overhead. Thus, computer scientists have been seeking intelligent population size
control schemes to strike a balance between exploration and exploitation during
the search process.

In Biology, there is no explicit fitness function to measure, and the rate of
evolution comes in a few different flavors, depending on the objects being ex-
amined, such as gene sequences, proteins, etc. Because of the infeasibility of
defining fitness explicitly in natural systems, fitness is usually reflected by the
likelihood that a relevant genetic change is selected. For instance, in molecular
biology, the rate of evolution is usually measured by the rate that mutants are
accepted and replace former alleles in genetic sequences. Biologists refer to this
rate of evolution as rate of genetic substitutions. Here, we distinguish the rate of
fitness progression and the rate of genetic substitutions to acknowledge the two
aspects of rate of evolution. Fitness progression focuses on attaining the goal of
the search, while rate of genetic substitutions concentrates on the dynamics of
evolution and provides a different tool to study evolutionary processes.

Population geneticists have been identifying the effect of population size on
the rate of molecular evolution, i.e., the rate of genetic substitutions. The Nearly
Neutral Theory of molecular evolution by Ohta [15,16] is regarded as one of the
most important principles for modern molecular evolution research. This theory
defines both slightly deleterious and slightly advantageous mutations as nearly
neutral mutations. It extends an earlier insight of Fisher [6] that the probability
of a mutant being selected will be low if the outcome of this mutation on pheno-
types is far-reaching. The theory predicts that there are a substantial number of
nearly neutral mutations in molecular evolution. These nearly neutral mutations
would be able to generate adaptation at a later time under certain genetic or
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environmental changes. Thus, they play an important role for providing varia-
tion potential. In this theory, population size can influence the rate of molecular
evolution by its effects on the chance of accepting a nearly neutral genetic change
through statistical laws. That is, the chance of a random mutant being favored
by selection is slimmer within a larger population. When the majority of muta-
tions are deleterious, a smaller population can evolve faster because more nearly
neutral changes are introduced into the population. In contrast, when muta-
tions are mostly advantageous, evolution is faster in a larger population. When
most mutations are neutral, the rate of evolution is nearly independent of the
population size.

These predictions have been extensively tested and discussed in the biologi-
cal community. Below are some examples where both increasing and decreasing
population size may accelerate evolution, depending on the link to environments.
Gillespie [7] examines the relation between population size and the rate of genetic
substitutions via computer simulation of several well-known biological models.
While verifying such a relation, he suggests the relation can sometimes be blurred
by the extreme complexity of natural systems. With population size fluctuation
being one of these complicating factors, he further emphasizes the necessity of
studying such fluctuation in population genetics. Woolfit and Bromham [21] com-
pare genetic sequences between island endemic species and closely related main-
land species. This is an example where decreasing population size can accelerate
evolution. In a study on the recent rapid molecular evolution in human genomes,
Hawks et al. [11] hypothesize that the current dramatically growing human pop-
ulation may be the major driving force of new adaptive evolution. They indicate
that a growing population size can provide the potential for rapid adaptive inno-
vations if a population is highly adaptive to the current environment.

3 Adjusting Population Size during Evolution in GP

We propose to apply the ideas from population genetics to a GP system. It
is generally assumed that the fitness of new offspring generated by mutation
or crossover in each generation approximately follows a Gaussian distribution.
According to the Central Limit Theorem, the average fitness among a larger
population has a smaller variance [15] (Fig. 1). We use the selection favoring
degree Sf , similar to the selection coefficient in Biology, to denote the degree of
new offspring being favored by selection. A positive value of Sf of an offspring
implies that it is likely to be accepted, and a negative value of Sf means that
it will most likely be rejected by selection. Further, if the majority of offspring
have positive Sf , selection is referred to as positive (Fig. 1 left). In contrast, the
selection is negative when Sf < 0 for most offspring (Fig. 1 right). From this
figure, we observe that, under positive selection, increasing population size can
accelerate the rate of genetic substitutions (left), while decreasing population
size can allow more genetic substitutions under negative selection (right).

Selection acting positively or negatively may vary during different stages of
an evolutionary process in GP, and the rate of genetic substitutions reflects this
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Fig. 1. Selection effects. Positive selection (left) and negative selection (right).

varying selection pressure. Therefore, adjusting population size according to the
rate of genetic substitutions is expected to compensate the selection pressure.
Thus, evolution can be guided away from stagnation and, further, can achieve
better fitness progression. A measurement for the rate of genetic substitutions
is reviewed briefly next, followed by our proposed population size adjustment
approach.

3.1 Measuring the Rate of Genetic Substitutions

The nonsynonymous to synonymous substitution ratio ka/ks is a widely accepted
measurement of the rate of genetic substitutions in molecular biology [23]. This
metric has been applied by us [12] to measure the rate of genetic substitutions in
GP. Not all genetic changes are effective in GP. Genetic changes that modify the
encoded function can be regarded nonsynonymous, while others are regarded as
synonymous changes. Specifically, in each generation the population is formed by
surviving individuals under genetic variations and selection. Then, ka measures
the rate of nonsynonymous genetic substitutions of the process, and ks measures
the rate of neutral changes accepted. The rates ka and ks are obtained by count-
ing the number of nonsynonymous (synonymous, resp.) genetic substitutions
normalized by the total nonsynonymous (synonymous, resp.) sensitivities of in-
dividuals to genetic operations in each generation. Therefore, ka measures the
adaptive evolutionary “distance” (adaptive substitution rate) and ks practically
provides the background “clock ticks” (neutral substitution rate). In Biology, the
ratio ka/ks is regarded as a measure for the rate of genetic substitutions. On one
hand, ka/ks > 1 implies that most genetic changes are adaptive and favored by
selection. On the other hand, when ka/ks < 1, the majority of genetic changes
are regarded deleterious and are diminished by selection.

Here, we slightly revise this ka/ks ratio to measure the rate of genetic substi-
tutions. From one generation to the next, Na denotes the number of all nonsyn-
onymous genetic changes (i.e., attempted changes) and Ma counts the number of
nonsynonymous genetic substitutions (i.e., accepted changes). A sampled seman-
tic test set different from the training set is fed to an individual before and after
a genetic change to test whether this change is nonsynonymous or synonymous.
For instance, if a parent and its offspring have the same output for all sampled
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semantic test cases, the genetic change generating this offspring from the parent
is regarded as synonymous. Otherwise, the change is considered nonsynonymous.
Thus, ka = Ma/Na measures the rate of nonsynonymous genetic substitutions.
The synonymous substitution rate ks can be defined similarly by dividing the
number of synonymous genetic substitutions Ms by the number of attempted
synonymous genetic changes Ns. The ratio ka/ks measures the rate of adaptive
genetic substitutions relatively to a background silent genetic substitution rate.
The case ka/ks = 1 corresponds to the situation where nonsynonymous genetic
changes are selected at the same rate as neutral changes. When ka/ks > 1, selec-
tion is positive because a larger portion of nonsynonymous changes are favored
by selection. In contrast, negative selection is reflected by the case ka/ks < 1.

3.2 Adaptive Population Size Approach

Next, an adaptive population size scheme is proposed using the ka/ks ratio de-
fined above. We adopt truncation selection such that population size adjustment
can be achieved easily without duplication or generating random individuals.
Typically, at generation t, the current population produces an offspring popu-
lation of the same size via genetic variations including crossover and mutation.
Parents and offspring will compete through tournament selection to yield the
next generation, and the population size Psize(t + 1) will be adjusted according
to the currently observed rate of genetic substitutions (ka/ks)(t). Thus, the adap-
tive population size is regulated in each generation in an attempt to maintain a
stable rate of genetic substitutions as follows:

– If (ka/ks)(t) > 1 (positive selection), we increase the population size propor-
tional to the changes of the rate of genetic substitutions such that,

Psize(t + 1) = Psize(t) × (1 + |(ka/ks)(t) − (ka/ks)(t − 1)|).
– If (ka/ks)(t) = 1 (neutral selection), we keep the same population size that,

Psize(t + 1) = Psize(t).

– If (ka/ks)(t) < 1 (negative selection), when (ka/ks)(t) is increasing, we in-
crease the population size to suppress further deleterious genetic substitu-
tions, and when (ka/ks)(t) is decreasing, we decrease the population size to
encourage more genetic substitutions. That is,

Psize(t + 1) = Psize(t) × (1 + ((ka/ks)(t) − (ka/ks)(t − 1))).

Note that we do not limit the population size by an upper bound. However,
a lower bound of population size will be established in applications.

4 Experiments

We expect that dynamic adjustment of population size according to the mea-
sured ka/ks ratio can maintain a fairly stable rate of genetic substitutions. Since
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evolution is better guided this way, the performance of a GP system in fitness
progression should improve as well. This is verified through simulations and
comparisons to fixed-size populations. A tree structure is adopted to encode GP
individuals here. The test benchmark will be introduced next, followed by our
discussion of experimental results.

4.1 Test Suite

We use the Mackey-Glass chaotic time series prediction as our benchmark prob-
lem. Mackey-Glass time series prediction is a difficult modeling problem in ma-
chine learning and in GP [14]. It predicts future values of a time series based on
history. GP is trained using these historical data. The series is generated using
the following recursive function [22],

xt+1 = xt − b × xt +
a × xt−τ

1 + (xt−τ )10
,

where x0 = 1, and the parameters are set to

a = 0.2, b = 0.1, τ = 17.

Fig. 2 depicts a plot of this function. We use the first 1,001 points as the
training set. This problem is considered a difficult one because it does not have
a closed-form solution. Thus, it will take GP a long time to converge.

Empirically, a population size between 500 and 1,000 is suitable for this type
of problem. Here we conduct experiments in three scenarios. Two of the scenarios
have fixed-size populations of 500 and 1,000, the third has an adaptive population
size (APS) using our dynamic adjustment approach. It starts with an initial
population size of 1,000 and a lower limit 300. The GP configuration is as shown
in Table 1. Note that we adopt the number of function evaluations as a control
metric although it operates in a generational mode. This allows a fair comparison
among different scenarios.
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Table 1. GP Configuration

Population size 500/1,000/APS(Adaptive Population Size)

Tree initialization Ramped-Half-and-Half with limit 6

Function set +, −, ×, and protective /

Terminal variable set x1, x2, ..., and x17, variable xi denotes the
previous point i time steps ago

Terminal constant set Random ephemeral numbers equally dis-
tributed in [−1, 1] with granularity 0.01

Crossover rate 0.9

Mutation rate 0.1

Maximum mutation subtree depth 4

Crossover and mutation method Subtree replacement

Maximum tree depth 100

Training set Points from 0 to 1,000 time steps

Fitness function Root Mean Square (RMS) error

Selection Tournament with size 4

Sampled sematic test set 20 cases such that xj
i = (i + j − 2) × 0.04

(1 ≤ i ≤ 17, 1 ≤ j ≤ 20), 0 ≤ xj
i ≤ 1.4

Maximum number of evaluations 100,000

4.2 Results and Discussion

We have run GP 200 times for each scenario. Before we present statistical results,
we look into the details of a “typical” execution of the APS scenario (Fig. 3). This
particular population evolves for 147 generations before it reaches the 100,000
function evaluation number limit. In the figure, we plot (a) best fitness, (b)
ka/ks ratio, (c) average tree size, and (d) population size over generations. We
observe that the ka/ks ratio stays well under 1, which implies that selection is
negative over time. This concurs with the general understanding that random
genetic changes are mostly deleterious and with the property of the ka/ks ratio
in Biology [23]. The population size drops from an initial 1,000 to approximately
700 after 20 generations, and stabilizes at 650∼700 afterwards. Also notice that,
as evolution progresses, the best fitness improves but at a slower rate and av-
erage tree size increases, which is expected for tree GP. Normally, bloat would
slow down the rate of genetic substitutions due to the introduction of redundant
substructures. However, this is successfully alleviated by adjusting the popula-
tion size to stimulate evolution so that there is a steady ka/ks ratio. This is
verified by our next close study of the interaction between the ka/ks ratio and
population size.

In Fig. 4, we depict the response of the ka/ks ratio change to population size
adjustment, derived from the data recorded from 200 runs of the APS scheme.
Using the recorded population size and the ka/ks ratio of each run, we quantify
the correlation between the way they change over generations using a sequence
of 1’s and −1’s. For a generation compared to the previous, if both population
size and the ka/ks ratio increase, or if both population size and the ka/ks ratio
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decrease, we have a 1. Otherwise, we have a −1. Therefore, the number of 1’s in
the produced sequence records the number of occurrences where the change of
the ka/ks ratio positively correlates to that of the population size; while −1’s in-
dicate negative correlation. We define the response coefficient C as C = (2n−l)/l,
where n is the number of 1s in the sequence and l is the sequence length. Thus, if
a run has C = 0, its ka/ks ratio is independent of the change of population size.
Alternatively, a positive value of C indicates a positive correlation between the
changes of the ka/ks ratio and that of the population size. On the other hand,
a negative value of C suggests a negative correlation. The figure presents the
coefficients for all the 200 simulation runs. Clearly, they are all well below the
level of 0. This is indeed our intention of dynamically adjusting population size
to stabilize the rate of genetic substitution as stated in Section 3.2.
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Table 2. Mean Best Fitness (×10−3) Comparison

Mean Best Fitness Standard Deviation Median 95% Confidence Interval

Psize 500 13.980 6.941 12.36 [13.153, 14.806]

Psize 1,000 12.902 5.406 12.98 [12.195, 13.610]

APS 12.053 4.750 11.56 [11.226, 12.888]
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Fig. 5. Fitness progression with fixed population sizes (Psize 500, Psize 1000) and
adaptive population size (APS)

Our next observation is that fitness progression can also be accelerated by our
population size adjustment scheme. Here, we adopt the three most commonly
used metrics to measure the performance of an EC model. They are mean best
fitness, success rate, and average number of evaluations to a solution. Table 2
presents the mean best fitness and standard deviation over 200 runs for the three
scenarios of fixed population size 500, 1,000, and APS. Clearly, APS achieves an
even better fitness than maintaining 1,000 individuals but its population size is
mostly between 500 and 1,000. The cumulative success rates of these three groups
are depicted in Fig. 5(a). We focus on the best fitness of a run once it terminates.
The figure plots the percentage of the total 200 runs of each scenario that yield
a better fitness than a given threshold between 0.01 and 0.035. Apparently, APS
has the highest percentage for all of the cases, which indicates its superiority over
fixed population size strategies. Fig. 5(b) reveals a dual measure for the three
scenarios. In this chart, we compare the average number of evaluations needed
for a simulation run to achieve fitness levels of 0.01, 0.15, and 0.02. For a given
fitness level, APS always incurs less computation overhead, and this difference
becomes greater as the fitness requirement gets higher.

5 Conclusion and Future Work

In this article, we investigated the role of population size for rate of evolution in
a GP system. We distinguished between rate of genetic substitutions and rate of
fitness progression, which describe two aspects of an evolutionary process. The
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measurement of rate of genetic substitutions was revised and adopted. We trans-
ferred an idea from population genetics that population size has varying effects
on rate of genetic substitutions under differing selection regimes. We proposed
and tested that dynamically adjusting population size can effectively stabilize
the rate of genetic substitutions even during late stages of an evolutionary pro-
cess. It has been further verified that this strategy can also successfully accelerate
the rate of fitness progression.

Our observations suggest some future research. First, we would like to imple-
ment this idea in GP with different representation structures, e.g., Linear GP and
Graph GP, to see if similar conclusions hold in these GP systems. Applications
to other branches of Evolutionary Computation, e.g., GAs, are also expected.
Second, we will investigate this adaptive population size scheme in changing en-
vironments, since dynamic environments may affect the regime of selection more
dramatically than static environments. Third, we propose to apply our method
to other benchmarks in order to test how it fares compared to other well-known
adaptive population size strategies.
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