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Abstract. We apply evolutionary computation to calibrate the parameters
of a morphogenesis model of Drosophila early development. The model aims
to describe the establishment of the steady gradients of Bicoid and Caudal
proteins along the antero-posterior axis of the embryo of Drosophila. The
model equations consist of a system of non-linear parabolic partial differen-
tial equations with initial and zero flux boundary conditions. We compare
the results of single- and multi-objective variants of the CMA-ES algorithm
for the model the calibration with the experimental data. Whereas the multi-
objective algorithm computes a full approximation of the Pareto front, re-
peated runs of the single-objective algorithm give solutions that dominate
(in the Pareto sense) the results of the multi-objective approach. We retain
as best solutions those found by the latter technique. From the biological
point of view, all such solutions are all equally acceptable, and for our test
cases, the relative error between the experimental data and validated model
solutions on the Pareto front are in the range 3% − 6%. This technique is
general and can be used as a generic tool for parameter calibration problems.

1 Introduction

The ultimate validation of mathematical or computational models of real Complex
Systems can only be achieved by comparing the outcomes of the models with those
of the actual system. Such models generally depend on several parameters that must
be identified using experimental data. System calibration is the search for the set of
parameters such that the output of the model best fits the available data. Ideally,
in order to avoid possible over-fitting of the model to the data, system calibration
should be performed using a data set, and the validation of the model should be
done using other data sets not used during the calibration.

This paper deals with the validation and calibration of a reaction-diffusion model
for the spatial distribution of proteins during the early stage of morphogenesis of
Drosophila. This model incorporates the regulatory repression mechanism of Bicoid
protein over caudal mRNA. In this case, several experimental data sets for both
Bicoid and Caudal proteins are available.

Model calibration from experimental data can be formulated as an optimization
problem — find the model that minimizes the difference between its outputs and the
experimental data [MSM97]. Such optimization problems are usually highly multi-
modal, and classical methods (e.g. gradient-based techniques) fail to give reliable
solutions. Therefore, Evolutionary Algorithms (EAs) are a better choice.

In the case analyzed here, we have experimental data for the distribution of
both Bicoid and Caudal proteins along the antero-posterior axis of the embryo of



Drosophila. An ideal set of parameters for the perfect model would reach the best
possible fit for both distribution, and the calibration problem could be turned into
a standard optimization problem involving both fits by minimization of the sum
of the Mean Square Errors (MSEs) of both models calculated with the data for
both distributions. However, we are looking for meaningful biological parameters
rather than for the best set of parameters. Moreover, it is likely that the orders of
magnitude or the experimental errors on both proteins differ, and a simple linear ag-
gregation of MSEs might give unbalanced results between both proteins. Therefore,
a multi-objective approach seems more appropriate for our gols of model calibration
and validation. On the other hand, it has been shown that the multi-objectivization
of a fitness function can reduce the number of local optima [HLK08].

In order to validate these arguments, we compare the results of a single-objective
approach (minimizing some weighted sums of both MSEs) to those of a multi-
objective algorithm. Each trial of single-objective minimization allows us to iden-
tify one point close to the Pareto front, and hence several trials, together with
good guesses for the weights of the aggregation, are necessary to sample the Pareto
front reliably. The multi-objective approach lead to a full set of solutions that are
hopefully close to the Pareto front. However, it turns out that for this calibration
problem, a simple single-objective strategy seems to outperform better than the
multi-objective approach.

This paper is structured as follows. Section 2 gives a brief description of the
meaningful biological mechanisms involved in the Drosophila early development.
Section 3 derives the reaction-diffusion model describing the production of Bicoid
and Caudal from mRNAs. The parameters in the reaction-diffusion equations are to
be calibrated with the experimental data. Initial conditions are given as piecewise
constant functions and will be also fitted with the evolutionary algorithm. Section 4
introduces the evolutionary single- and multi-objective optimization algorithms.
Section 5 applies both algorithms to the calibration of the model and compares the
results. Finally, in section 6, we discuss the main conclusions of the paper.

2 Biological Background

Morphogenesis in Drosophila early development begins with the deposition of bicoid
mRNA of maternal origin near one of the poles of the embryo [NV96]. During the
first two hours of development, a sequence of 14 mitotic nuclear replication cycles
occurs without the formation of cellular membranes around the nuclei. The early
formed nuclei of the embryo lie in a single cell — the syncytial blastoderm. The
nuclear membranes only appear at the end of the 14th mitotic cycle.

The absence of cellular membranes facilitates the diffusion of substances in the
embryo and, during the syncytial stage, stable gradients of proteins are established.
In later stages of development, the formation of the head, of the thorax and of the
abdomen are associated with the patterns of distribution of proteins that took place
during the previous syncytial stage of development.

After fertilization of the egg, the localized bicoid mRNA is translated into Bicoid
protein and this protein regulates the transcription of the other zygotic genes. Other
proteins of maternal origin as Caudal, Nanos or Hunchback, are produced in the
early syncytial stage and are regulated by Bicoid.

During mitotic cycles 11 to 14, the observed distribution of proteins along the
antero-posterior axis of Drosophila shows a high concentration near the nuclear
membranes and a low concentration in the space between nuclei, Figure 1a and 1b.

In order to explain the observed protein gradients, a mRNA diffusion model has
been proposed [DM09]. In this model, mRNA diffuses along the embryo and the
produced protein stay localized near the nuclei of the mebryo. As the developmental
process proceeds in time, proteins reach a steady gradient-like distribution.



Fig. 1. Localization of Bicoid (blue) and Caudal (green) proteins near the nuclear mem-
brane of the embryo of Drosophila after mitotic cycles number 11 (a) and 12 (b). This
picture was taken from the datasets ab18 (a) and ab17 (b) of the FlyEx database
(http://flyex.ams.sunysb.edu/flyex/, [MKRS99] and [MSKSR01]). From 1a to 1b, the nu-
clei have divided by mitosis, but the proteins remain sticked to the region around the nu-
clear membranes. In c), we show the steady state concentrations of proteins Bicoid (BCD)
and Caudal (CAD) along the antero-posterior axis (x) of the embryo of Drosophila. This
distribution has been extracted from the data set ad13 (FlyEx database), corresponding
to a late stage of the mitotic cycle number 14. The horizontal axis has been scaled to the
embryo length L = 1, and the vertical scale corresponds to light intensity arbitrary units.

Developmental processes are in general associated with the production of a cas-
cade of regulatory processes involving genes, mRNAs and proteins. In nowadays
experiments, these regulatory dependencies are specifically addressed. The simplest
example is the repression effect of protein Bicoid over caudal mRNA, [RPJ96], Fig-
ure 1c). In this paper, we model the relationship between Bicoid and Caudal through
the repression mechanism, and we further calibrate it with experimental data.

3 The Mathematical Model

During the first stage of development of Drosophila, the processes occurring in the
embryo can be modelled in an one-dimensional domain of length L, representing
the antero-posterior axis of the embryo. The bicoid (bcd) and caudal (cad) mRNA
of maternal origin have initial distributions given by,

bcd(x, t = 0) =

{
A > 0, if 0 < L1 < x < L2 < L
0, otherwise

cad(x, t = 0) =

{
C > 0, if 0 < L3 < x < L4 < L
0, otherwise

(1)

where L1, L2, L3 and L4 are constants defining the intervals of localization of the
corresponding mRNA, andA and C are concentration constants. These distributions
of mRNAs correspond to a precise initial localization as shown in experiments.

During the first stage of development, bicoid and caudal mRNAs are transformed
into proteins with rate constants abcd and acad. This transformation occurs in the
ribosomes, in general localized near nuclear membranes. The presence of the protein



Bicoid prevents the expression of Caudal through a repression mechanism ([RPJ96])
that can be described by the mass action type transformation,

BCD + cad
r→ BCD (2)

where r is a rate of degradation.

Introducing the hypothesis that mRNA diffuses and proteins stay localized in
the embryo, and with the additional repression mechanism (2), the concentration
of proteins and mRNAs in these processes evolves in time according to the model
equations, 

∂bcd

∂t
= −abcdbcd(x) +Dbcd

∂2bcd

∂x2

∂BCD

∂t
= abcdbcd(x)

∂cad

∂t
= −acadcad(x)− rBCD.cad+Dcad

∂2cad

∂x2

∂CAD

∂t
= acadcad(x)

(3)

where Dbcd and Dcad are the diffusion coefficients of bicoid and caudal mRNAs,
respectively. Capital letter symbols refer to protein concentrations, and lower case
italic letters to mRNA concentrations.

In order to calibrate the model equations just derived in (3) with the experimen-
tal profiles, as the ones in Figure 1c), we have to identify the parameters of protein
production (abcd and acad), the parameter of repression (r), the initial distribution
of mRNAs (1), the ratio between the diffusion coefficients (Dbcd/Dcad, see [DJ98]),
and the time, considered here as a parameter.

An ideal set of parameters calibrating an exact model with ideal experimental
data would reach the best possible fit for both distributions (a zero-error fit), the
calibration problem could simply be turned into a standard optimization problem
involving both fits through the minimization of the sum of Mean Square Errors
for both distributions. However, as in general the model is not exact, the data
are noisy, and the experimental errors of both proteins might differ even by some
orders of magnitude, the simple weighted sums of MSEs might give unbalanced
results between both proteins.

The goal here is to find a set of parameters whose fit for both proteins has an
error under a reasonable error margin, and to select an ensemble of parameters that
are equivalent and well distributed inside this set of parameters. Such a goal can be
rigorously defined in the setting of multi-objective or Pareto optimization.

In the following, we fit the parameters of model equations (3) for the distribution
of proteins Bicoid and Caudal, with single- and multi-objective approaches. We
compare the errors and computational efforts of both approaches.

4 The algorithms

In this section, we introduce the algorithms that have been used to calibrate the
model derived in the previous section. Both are based on the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) algorithm [HO01], an Evolutionary Al-
gorithm for black-box continuous optimization. The first algorithm is for single-
objective optimization, and will be referred as CMA-ES. The second algorithm is
a multi-objective version of CMA-ES, and uses embedded CMA-ES processes, to-
gether with a global Pareto-dominance based selection [IHR07].



4.1 Single-objective optimization: CMA-ES

Since we are dealing here with continuous optimization, the best choice of an evo-
lutionary method is the Covariance Matrix Adaptation Evolution Strategy (CMA-
ES), first introduced in the mid-90s by Hansen and Ostermeier [HOG95,HO96], and
that has reached maturity in the early 00’s [HO01,HMK03,AH05]. Results from the
CEC 2005 competition [Han05] and further systematic comparisons [HRM08], have
shown that, thanks to its ES invariance properties, CMA-ES outperforms better
than most other methods on artificial benchmarks with tunable difficulties, as well
as on many real-world problems from different scientific domains.

CMA-ES is a (µ, λ)−Evolution Strategy [Sch81], in the sense that it is an EA
that uses a population of µ parents to generate λ offspring, and deterministically
selects the best µ of those λ offspring for the next generation. As in all Evolution
Strategies (ES), the offspring are generated by sampling a Gaussian distribution.
However, in CMA-ES, this distribution is centered on a weighted recombination of
the µ parents. Moreover, multidimensional Gaussian distributions are determined
by their covariance matrix, a positive definite symmetrical matrix, and the art of ES
lies in the way the parameters of this Gaussian mutation (i.e. the covariance matrix)
are adapted on-line: CMA-ES uses the notion of cumulated path, i.e. modifies the
matrix such that previous good moves become more likely (for further details see
[HO01]). One of the important properties of CMA-ES is that it is independent of
the coordinate system (rotation-invariant).

4.2 Evolutionary Pareto Optimization

Pareto optimality is a concept introduced by Vilfredo Pareto to evaluate the effi-
ciency of an economic system, with applications in game theory, engineering and
social sciences. It is at stake in the process of simultaneously optimizing several con-
flicting objectives subject to certain constraints. Pareto optimization is concerned
in finding the set of optimal trade-offs between conflicting objectives, i.e., solutions
such that the value of one objective cannot be improved without degrading the
value of at least another objective. Such best compromises are what is called the
Pareto set of the multi-objective optimization problem.

Pareto optimization is based on the notion of dominance. Consider a minimiza-
tion problem with M real valued objective functions f = (f1, . . . , fM ), defined on a
subset X ⊂ RN , f : X ⊂ RN → RM . A solution x ∈ X is said to dominate x̄ ∈ X,
(denoted by x ≺ x̄), if,

(∀m ∈ {1, . . . ,M} : fm(x) ≤ fm(x̄)) ∧ (∃m ∈ {1, . . . ,M} : fm(x) < fm(x̄)) .

The goal of Pareto optimization is to find a good approximation to the Pareto
set, the set of non-dominated points of the search space, generating a set of solutions
in such a way that the objective values are as uniformly distributed as possible on
the Pareto front, the image of the Pareto set in the objective space.

The classical approach of reducing the multi-objective problem into a mono-
objective one by linearly aggregating all the objectives in a scalar function might
provide only a subset of the Pareto optimal solutions, as for instance it does not
allow to sample the concave regions of the Pareto front [DD97]. A better idea is to
use the Pareto dominance relation to select the most promising individuals within
an evolutionary algorithm. Unfortunately, the dominance relation is only a partial
order relation, i.e., in many cases, neither A dominates B, nor B dominates A. A
secondary selection criterion is hence needed in order to get a total order relation
over the search space. Many different approaches have been proposed in the last



decade (see e.g. [Deb01] and [CVL02] for recent textbooks), and Evolutionary Multi-
Objective Optimization is considered today a stand-alone branch of Evolutionary
Algorithms with specialized workshops and conference series.

Because Covariance Matrix Adaptation was proven so successful for (single-
objective) evolutionary continuous optimization, and because a multi-objective ver-
sion of the algorithm has been recently proposed [IHR07], it seemed a good choice
for the calibration problem at hand here.

4.3 Multi-Objective CMA-ES

The Multi-Objective CMA-ES (MO-CMA-ES) [IHR07] is based on a specific (1+1)-
CMA-ES algorithm, a simplified version of CMA-ES where the number of parents is
set to 1, and the update of the stepsize uses a simple rule based on Rechenberg’s well-
known 1/5th rule [Rec73]. λMO (1+1)-CMA-ES are run in parallel, each with its
own stepsize and covariance matrix. At each generation, each parent generates one
offspring, and updates its mutation parameters. Then the set of λMO parents and
their λMO offspring are ranked together according to the chosen selection criterion,
and the best λMO carry on to the next generation.

The selection criterion goes as follows. The first sorting criterion, based on the
Pareto dominance, is the non-dominated sorting proposed with NSGA-II algorithm
[DPA02]: all non-dominated individuals are given rank one, and removed from the
population. Amongst remaining individuals, the non-dominated ones are given rank
2, and the procedure continues until the number of required individuals is reached
(λMO here). With a fast non dominated sorting approach the computational time
needed to rank a population of size N can be kept of the order of MN2 where M
is the number of the objectives (see [DPA02]).

However, a second criterion is necessary, firstly in order to rank the solutions
within the same rank of non-dominance, but also (and more importantly here) to
guarantee a distribution as uniform as possible in the region of the objective space
occupied by the Pareto front. In [IHR07] two criteria are examined: the crowding
distance and the contributing hypervolume.
The crowding distance has been proposed by [DPA02] for the NSGA-II algorithm,
and ranks the solutions depending on their distances to their immediate neighbors
in the objective space.

Another approach is to use a metric called S-metric or hypervolume measure
introduced by Zitler and Thiele [ZT98] which gives the “size of the objective value
space which is covered by a set of non-dominated solutions”. More precisely, it is the
Lebesgue measure Λ of the union of the hypercubes ai defined by the non-dominated
points mi and a reference point xref (see Figure 2):

S(D) := Λ
({#D⋃

i=1

ai : mi ∈ D
})

= Λ
( ⋃
m∈D

{
x : m ≺ x ≺ xref

})
where D is the set of the non-dominated points.

In [Fle03], Fleischer proved that the maximization of S constitutes a neces-
sary and sufficient condition for the objectives to be maximally diverse Pareto op-
timal solutions of discrete, multi-objective, optimization problem, and proposed
an algorithm to evaluate the hypervolume measure of a set in a polynomial time
O(K3M2), where K is the number of solutions in the Pareto set and M is the
number of objectives. This algorithm can be efficiently implemented by an archiv-
ing strategy [KCF03]. In such a way the multi-objective problem is reduced to the
single-objective one of maximizing the hypervolume measure. This measure also
provides a unary indicator on the degree of success of the algorithm enabling the
comparison with the results of other multi-objective algorithms.
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Fig. 2. The hypervolume measure is “the size of the objective value space which is covered
by a set of non-dominated solutions”from a reference point (r). In light and dark grey
the hypervolume measure of three non-dominated individuals I1, I2, I3. In dark grey the
contributing hypervolume of the individual I2.

According to [IHR07], after several tests on both criteria with two unary indi-
cators, namely the hypervolume and the ε-indicator, “selection based on the hyper-
volume seems to be superior”.

5 Experimental Calibration of the Model

5.1 The objectives

We have applied and compared two multi-objective strategies for the calibration of
the parameters in model equations (3). The experimental data has been taken from
the FlyEx database, [MKRS99] and [MSKSR01]. We have tested two algorithms
on the distributions of the proteins Bicoid and Caudal along the antero-posterior
axis of the embryo of Drosophila during cleavage cycle 14 (embryo ad13, see Fig-
ure 1). We describe these distributions by the numerical solutions of equations (3),
determined by the techniques developed in [DJ98]. In order to keep the calibration
as little biased as possible, we have set the number of integration steps as an un-
known parameter. In this case, we are not assuming that Bicoid and Caudal protein
distributions are in a steady state.

We denote by BCD(x,α) and CAD(x,α) the results of the numerical integra-
tion of equations (3), where x ∈ [0, 1] and α = (α1, . . . , αm) is the set of parameters
to be determined. The parameter search space is a hyper-rectangle in Rm, and we
denote by {(xi, BCDexp(xi))}ni=1 and {(xi, CADexp(xi))}ni=1 the experimental data
points. The calibration of the parameters for the model equation (3) is thus reduced
to a bi-objective optimization problem, minimizing the fitness functions,

FitBCD(α) =
1

n

n∑
i=1

(BCD(xi,α)−BCDexp(xi))
2

FitCAD(α) =
1

n

n∑
i=1

(CAD(xi,α)− CADexp(xi))
2



5.2 The strategies

The multi-objective strategy uses MO-CMA-ES (Section 4.3) with a population
size of λMO = 100. However, as we are not interested in the extreme parts of the
Pareto Front, that have very low error value for one protein at the cost of a very high
error on the other, we added a penalization to gradually eliminate large error values.
More precisely, the target was to sample the Pareto front in the range [0, 40]× [0, 80]
(bounds chosen after some preliminary runs), and we penalized FitBCD (resp.
FitCAD) by the amount by which FitCAD (resp. FitBCD) overpassed its upper
bound.

In total, the algorithm has been run 100 times, then the non-dominated points
were extracted from the 100 populations, grouped together, leading to what can be
seen as the best approximation of the Pareto Front by MO-CMA-ES.

As for the single-objective strategy, we used a standard aggregation tech-
nique: We have repeatedly executed CMA-ES for a family of single-objective fitness
functions defined by a set of lines in the objective space with slopes ci, namely,

Fit(α, ci) = FitCAD(α) + ci · FitBCD(α), where i = 1, . . . , 5

12 different slopes have been used (0.01, 1, 5, 10, 25, 50, 60, 70, 75, 80, 90, 100), with
10 runs for each slope. In the end, the best results obtained for each slope has
been gathered together, and the non-dominated ones are considered to be the best
possible approximation of the Pareto Front for this strategy.

e
e

d

d

c

c

b

b

a

a

best non dominated set

HMOCMAL

CMA

28.5 29.0 29.5 30.0 30.5 31.0 31.5

70

80

90

100

Fitness Bicoid

F
it

n
e
s
s

C
a
u

d
a
l

CMA and MOCMA solutions

Fig. 3. Best non-dominated sets found by the single-objective (CMA) and multi-objective
(MO-CMA) techniques. In the single-objective approach, we have optimized the fitness
function FitCAD + ci · FitBCD, for ci = 1, 5, 25, 50, 100. By construction, the Pareto
front is tangent to these lines. The results are labelled as small a, b, c, d, e, respectively. For
each slope ci, the mean values and the standard deviations are represented with crosses.
The best result of each set of 10 optimization runs for each ci has the same label. The final
result of the multi-objective case is the best non-dominated population calculated by the
intersection of the final populations of 100 independent runs. In this case, the MO-CMA
technique gives worst solutions for the optimization problem.

5.3 Results

Figure 3 presents the results of both strategies, in objective space: the approxima-
tion of the Pareto Front by MO-CMA-ES is concentrated around 8 points only, and
5 points (a-e) represent the best approximation of the Pareto Front by CMA-ES,



corresponding to the slopes (1, 5, 25, 50, 100). For each of these, the crosses repre-
sent the average values over the 10 runs along with standard deviations in both
directions.

The first conclusion to be drawn is that MO-CMA-ES results are dominated
by the CMA-ES results. Moreover, and this is the reason why so few slopes below
1 were tried, the results with slope 0.01 are slightly dominated, but very close to
those with slope 1 (hence they are not plotted on Figure 3). This seems to indicate
that FitCAD has orders of magnitude more influence on the fits than FitBCD. In
order to confirm this point, we ran CMA-ES on each fitness alone: it reaches error
values down to FitCAD = 47, but at the cost of an error on Bicoid of order 106 -
while FitBCD never reached any value lower than 28.
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Fig. 4. Evolution of the fitnesses (MSEs on the Bicoid and Caudal) during optimization.
Plotted are the averages and standard deviations over 100 runs for both CMA-ES, mini-
mizing the sum of both fitnesses, and MO-CMA-ES. Above are single fitness values (the
minimal values in the population for MO-CMA-ES, the values for the best individual in
CMA-ES). Below is the sum of both of the above (the actual fitness used by CMA-ES).

Another finding was that the final populations of the MO-CMA-ES runs (not
shown) were very diverse, whereas all single-objective runs for the same slope ro-
bustly found very similar solutions, as witnessed by the crosses on Figure 3. MO-
CMA-ES seems to lack some evolutionary pressure toward the true Pareto Front,
maybe because, in multi-objective algorithms, the whole population rapidly con-
tains only non-dominated points, and the selection pressure is then enforcing the
uniform spreading on the current front rather than progress toward the true Pareto
Front.

Figure 4 illustrates the situation, by plotting average results for 100 runs of MO-
CMA-ES on the one hand, and of CMA-ES optimizing FitCAD(α) +FitBCD(α)
(i.e. corresponding to point a in figure 3) on the other hand. Above plots are the best
values in the population (averaged over the 100 runs) for FitCAD and FitBCD,
and below is the sum of both. The fact that the MO-CMA-ES plot never catches
up that of CMA-ES, even when considering the best possible value for one error
alone, is another sign of its poor behavior.

Note that both algorithms are compared using the number of function evalua-
tions on the x-axis, but the MO-CMA-ES requires some additional overhead time:



the update of the covariance matrix is made for each individual, and the whole pop-
ulation undergoes non-dominated sorting. However, for larger systems of differential
equations, such as the ones describing the genetic network of the early development
of Drosophila, [AD06], the computational cost of numerical integration will be the
most time consuming part of the algorithm. This is why it has also been used here.

Table 1 displays the parameters of model equations (3) and the corresponding
fitness values, fitted with the CMA-ES algorithm. The actual fits of the correspond-
ing solutions of the model equations (3) and plotted against experimental data are
shown in Figure 5. In the numerical fits, we have fixed the Drosophila embryo length
to the standard value L = 0.5 × 10−3m, and all the graphs of Figure 5 have been
scaled to the interval [0, 1].

a b c d e mean σ

L1 5.68 · 10−2 6.72 · 10−2 6.25 · 10−2 3.29 · 10−2 1.43 · 10−2 4.67 · 10−2 2.24 · 10−2

L2 1.73 · 10−1 1.68 · 10−1 1.62 · 10−1 1.84 · 10−1 1.94 · 10−1 1.76 · 10−1 0.12 · 10−1

L3 4.28 · 10−1 4.35 · 10−1 4.04 · 10−1 4.07 · 10−1 4.04 · 10−1 4.16 · 10−1 0.14 · 10−1

L4 7.63 · 10−1 7.74 · 10−1 8.45 · 10−1 8.45 · 10−1 8.48 · 10−1 8.15 · 10−1 0.42 · 10−1

B 1.53 · 10+3 1.98 · 10+3 3.47 · 10+3 2.36 · 10+3 1.98 · 10+3 2.26 · 10+3 0.73 · 10+3

C 1.06 · 10+3 1.08 · 10+3 1.26 · 10+3 1.28 · 10+3 1.28 · 10+3 1.19 · 10+3 0.11 · 10+3

Dbcd 1.00 · 10−2 1.09 · 10−2 1.99 · 10−2 2.03 · 10−2 2.04 · 10−2 1.63 · 10−2 0.53 · 10−2

Dcad 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 1.00 · 10−2 0.00 · 10−2

abcd 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 1.31 · 10+1

acad 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 9.99 · 10+4 3.96 · 10+1

r 8.64 · 10+3 6.74 · 10+3 3.34 · 10−2 5.74 · 10−2 6.71 · 10−4 3.07 · 10+3 4.26 · 10+3

Iterations 9.84 · 10+3 9.79 · 10+3 9.37 · 10+3 9.35 · 10+3 9.36 · 10+3 9.54 · 10+3 0.25 · 10+3

Table 1. Parameter values for the five best non-dominated solutions of model equations
(3), obtained with the CMA algorithm, for the experimental data set of Figure 1c). In Fig-
ure 5, we show this data set together with the solutions of equations (3) for the parameter
values a-e. All the different choices of these parameter values are calibrated candidates of
the experimental data set. We also show, for each parameter, the mean value (mean) and
the standard deviation (σ) taken on the Pareto front.

The mean relative error between the experimental data and the optimized so-
lutions of the model equations (3) can be measured by the fitness function. For
example, for the case of Bicoid protein, if BCDmax is the maximum value of the
experimental values, the relative error of the calibrated model equations can be
measured by

√
FitBCD/BCD2

max. For the experimental data analyzed here, the
mean relative error of all solution in the approximated Pareto front using the single-
objective strategy are in the range 3%− 6%.

6 Discussion and conclusion

We have tested the applicability of a single- and a multi-objective algorithms to
the calibration of a model equation for a biological process. We have used two
approaches: reducing the multi-objective optimization problem to a parametrized
single-objective problem, repeatedly tackled by CMA-ES algorithm; and use an
ab-initio multi-objective perspective, the multi-objective version of CMA-ES.

From a Computer Science perspective, the most striking fact is the difference
in performance between both algorithms. Further experiments with other multi-
objective algorithms should be run before any conclusion can be drawn. However,
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Fig. 5. Fits with experimental data for Bicoid and Caudal from the data shown in Fig-
ure 1c). (Embryo ad13 from the FlyEx database). The five figures correspond to the
parameter values a-e in Table 1. The parameters of the different functions are on the best
approximated Pareto set of Figure 3. In (a), we show the best fit for Bicoid and the worst
fit for Caudal, then a gradual variation occurs, and in (e) it we have plotted the worst fit
for Bicoid and the best fit for Caudal.

in this paper, the multi-objective approach lacks pressure toward the Pareto front,
suggesting that other algorithms with a better control of the convergence to the
Pareto front should be tried. Another important issue that must be tested is the
generalization issue, i.e. how well the parameters that have been identified using one
experimental dataset fit another dataset gathered from the same biological system.

From the biological point of view, we have shown that, if multi-objectives are
considered, biological data is compatible with a large set of parameters values asso-
ciated with a specific model. This non-dominated variability, intrinsic to biological
systems, can explain the phenotypic plasticity of living systems.

On the other hand, from a more practical point of view, this problem enabled
us to show the applicability of an mRNA diffusion model in order to describe the
establishment of steady gradients of proteins in Drosophila early development.
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