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Abstract 

There exist intelligent agents to aid online sellers to dynamically calculate a competitive 

price for their products in online markets. However, these intelligent agents usually make 

a number of assumptions for dynamic pricing. Some intelligent agents assume that sellers 

consist of prior knowledge about the online market parameters. In other words, the agents 

assume that the sellers are well aware of other competitors' pricing strategies, consumers 

purchase preferences, consumers' reservation price, profit made by other competing 

sellers etc. In addition, other agents assume that price is the only attribute that determines 

consumers' purchase decision. On the contrary, in real life sellers have limited or no prior 

knowledge about the market parameters. In addition, nowadays along with price other 

attributes such as after sale service, product quality etc. contribute in determining 

consumers' purchase decision. In this thesis, we propose an approach where sellers have 

limited knowledge on market parameters. We also assume that buyers' purchase decisions 

are based on multiple attributes. We are using a feed-forward neural network approach 

for calculating a competitive price dynamically to increase the sellers' revenue. Product 

price, product quality, delivery time, after sales service and seller's reputation are taken 

into consideration while determining the competitive price of the product by our model. 

In our experimental evaluation we showed that once the sellers, by considering the five 

attributes, set an initial price of the product, our model adjusts the price of the product 
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automatically with the help of neural network in order to raise the revenue. In setting the 

initial price of a product, we assume that sellers use their prior knowledge about the 

prices of the product offered by other competing sellers. Any other prior knowledge like 

buyer demand or competitor's price setting behaviors is not used in our evaluation. The 

experimental results portray the effect of considering the five attributes in earning 

revenue by the sellers. Before concluding with directions for future works, we discuss the 

value of our approach in contrast with related work. 
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Chapter l: Introduction 

1.1 Motivation 

In today's sophisticated world's competitive online market, buyers take the aid of 

shopbots in determining which seller to select for purchasing any product. In the words of 

Greenwald et al. [31], "Shopbots are helping more and more buyers minimize 

expenditure and maximize satisfaction". A traditional shopbot is an online comparison 

service that filters products information based on different dimensions, such as price, 

product quality, sellers' reputation etc. According to Kephart and Greenlawald [26], 

shopbots are internet agents that search information regarding price, quality of goods and 

other attributes along with services by searching different vendors. Shopbots, by 

providing valuable information, assist buyers in making purchase decision. Markopoulos 

and Kephart [25] analyzed the importance of price information provided by shopbots to 

the buyers. They figured out that price information of a product is 6% to 10% as valuable 

as the product itself. 

The buyers in the online economy take the aid of shopbots to minimize their expenditure. 

Along with the existence of multiple competitive sellers, the appearance of shopbots 

turned the task of setting a dynamic selling price for products by a seller into a 



challenging one. Similar to shopbots, pricebots entered the market to aid sellers in the 

online economy in setting a selling price for products. Sellers make use of pricebots to 

maximize their profits. Greenwald and Kephart [28] described pricebot as an agent that 

employ automated pricing algorithm. 

In dynamic pricing products prices always respond to the fluctuation of the market and 

hence the prices keep on changing with the tick of a clock. Every seller wants to set the 

selling price of their products so that their revenue is increased. 

If a seller X sets the price of a product too high (say, Ph) then he/she could make greater 

profit from buyers. However, the number of buyers purchasing the product at price Ph 

would be zero or very few, because buyers would prefer to purchase the product from a 

different seller Y if that seller offers the same product at a lower price. Moreover, when 

the buyers, who bought the product from seller X at price Ph, realize that seller X has set 

the price too high compared to other sellers in the market then the buyers would be much 

less likely come back to seller X for purchasing any products in future. Ultimately, the 

seller X would not be able to make satisfactory revenue due to setting the price of the 

product too high. 

On the other hand, if seller X sets the price of the product too low (say, Pi) then he/she 

might attract a greater number of buyers. However, since Pi is too low, seller X would not 

make as much revenue as expected. In such case, seller X could increase the price of the 
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product by a certain amount in order to lift up his/her revenue. In addition, setting the 

product price too low might have some negative psychological impact on buyers' 

purchasing behavior. Some buyers may think that because of the low quality of the 

product seller X has set the price of the product too low compared to other competing 

sellers in the market. 

Therefore, determining selling prices of products is a challenging task for the sellers to 

sustain in the market. The purpose of the dynamic pricing problem is to determine selling 

prices such that sellers receive satisfactory revenue. Dynamic pricing, or personalized 

pricing, has been defined as estimating a shopper's desire, measuring his/her means, and 

then charging accordingly [1]. The motivation of this thesis lies here with the 

development of an algorithm to dynamically determine selling prices of products such 

that sellers earn better revenue compared to revenue earned by using traditional pricing 

algorithm. 

1.2 Research Problem 

Usually, a customer before buying a product selects a store/seller for the purchase. The 

selection may be done under multiple attributes (preferences), such as best price offered, 

after-sale services, product quality, delivery time, sellers' reputation etc. Therefore, the 

sellers have to provide a competitive price for a product in response to variation in the 

market parameters such as competitors' prices and consumers purchase preferences. 
3 



There exist intelligent agents, called pricebots, which enable online sellers to dynamically 

calculate a competitive price for a product. According to Dasgupta et al. [2], "these 

intelligent agents provide a convenient mechanism for implementing automated dynamic 

pricing algorithms for the sellers in an online economy". However, some intelligent 

agents use a number of assumptions for the dynamic pricing in online markets. Some 

intelligent agents assume that sellers are provided with complete knowledge of market 

parameters, while some other agents consider product price as the only attribute that 

determines consumers' purchase decision [2, 9, 10, 12, 22]. In recent decades extensive 

research has been done in dynamic pricing. Some of the research made an assumption 

that there is only one seller in the market [17]. The authors, in their model, assumed a 

market with imperfect competition such as a monopolist market. Their main concern was 

to maximize sellers revenue by dynamically pricing the products where products were 

supposed to be sold within a given time horizon. However, in real life sellers have limited 

or no prior knowledge about the market parameters (e.g., buyer's reservation price, 

competitive sellers' price and profit etc). In addition, in reality there exist several 

competitive sellers in online market. The goal of this work is to address the problem of 

dynamic pricing in a competitive online economy, where sellers have limited or no prior 

knowledge about the market parameters and where a buyer's purchase decision is 

determined by multiple attributes. 
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1.3 Thesis Contributions 

• In this thesis, we propose an approach of dynamic pricing using feed-forward neural 

network where buyers purchase decision is dependent on multiple preferred purchase 

attributes. As discussed in Section 1.2, some of existing intelligent agents for 

dynamic pricing make an assumption that price is the only attribute that a buyer 

would be interested before making any purchase. On the contrary, in present days 

besides price other attributes such as after sale service, product quality etc. contribute 

in determining consumers' purchase decision. In our approached model of dynamic 

pricing we considered five attributes namely product price, product quality, delivery 

time, after sales service and sellers' reputation. However, our model is general 

enough to work for any number of attributes. Some agents assume that there exists 

only one seller in the market. In contrast, we can see multiple sellers competing in 

today's competitive market of online economy. Our model expects that there will be 

multiple competing sellers in the market. The approach requires the sellers, by 

considering the five attributes, to set an initial price of the product by using their prior 

knowledge about the prices of the product offered by other competing sellers. Our 

approach adjusts the selling price of products automatically with the help of neural 

network in order to raise seller revenue. The experimental results portray the effect of 

considering the five attributes in earning revenue by the sellers. 
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• Partial work of this thesis has been published in MCeTech'09 conference: Tapu 

Kumar Ghose and Thomas T. Tran. "Dynamic Pricing for Electronic Commerce 

using Neural Network", Proc. 4' International MCETECH Conference on e-

Technologies, Ottawa, ON, Canada, May 2009. 

• The work of this thesis has appeared in AI'2010 conference: Tapu Kumar Ghose and 

Thomas T. Tran. "A Dynamic Pricing Approach in E-Commerce based on Multiple 

Purchase Attributes", Proc. The 28' Canadian Conference on Artificial Intelligence, 

Ottawa, ON, Canada, May 31 - June 2, 2010. 

1.4 Thesis Outline 

The remaining of the thesis is organized as follows: Chapter 2 provides the background 

information on neural network and back propagation technique followed by related work. 

Chapter 3 presents our proposed approach for dynamic pricing using neural networks. 

Chapter 4 represents results and analysis from our experimental evaluation followed by a 

brief discussion on our model. Finally, chapter 5 concludes the thesis with future research 

directions. 
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Chapter 2: Background and Related Work 

2.1 Neural Network 

Neural network is a mathematical model which is composed of a large number of highly 

interconnected groups of artificial neurons that are used to process information [19]. 

Generally, neural network is an adaptive system that learns from example [5]. The 

structure of the neural network is based on the information flowing through the network. 

The complexity of the structure can be determined by the connection between the 

neurons [19]. 

The market of the present world is very competitive. This fact makes the sellers to change 

their offered prices of products frequently in order to sustain in competitive online 

economy. In other words, products prices always respond to the fluctuation of the market 

and hence the prices keep on changing with the tick of a clock. Therefore, in establishing 

a dynamic price our model employs an algorithm whose output changes with time for a 

given scenario. Since traditional programming methods always provide the same output 

for a given problem, they do not work in our case. In the traditional programming, we 

code line by line, instruction by instruction how the program should perform a calculation 

7 



or task. Hence, a traditional programming always leads to one specific output for a 

specific input. In contrast, our model employs an algorithm where the output is not static. 

Therefore, we aim to use an adaptive method where instead of telling the program how to 

do something, we show it examples of what we want to be done. We provide it with data 

on inputs and show it what outputs we want and the adaptive system builds the actual 

function autonomously. There exist several randomized and adaptive methods. Among 

them we choose feed-forward neural network to address the problem as it has the ability 

to determine trends and extract patterns from imprecise data and provides output 

depending on the determined trends. 

2.1.1 Framework of Neural Network 

Neural Networks consist of a set of nodes and links. Generally, all nodes fall under one of 

the three layers: input layer, hidden layer and output layer. The nodes in input layer 

accept information from outside the network, while the nodes in output layer send 

information outside the network. Each node, also known as unit, is connected to one or 

more other nodes by directed links. Each link contains a numerical weight, for instance 

Wy indicates the strength of the connection between unit i and unity, where the link is 

directed from unit /' (u,) to unity (u7). The numerical weight, Wy, ranges from 0 to 1. 
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Input Layei Hidden Ljyei Output Layer 

Figure 1: A general Neural Network. 

Each unit u, has an activation value at which acts as output of the unit. The activation 

values of the units of the input layer are set to some predefined values. A link from u, to 

uy serves to propagate the activation a, from u, to u,. Each unit u, first computes a 

weighted sum of its input. The computed sum is then passed as parameter to an activation 

function/to derive output a* of the unit as follows: 

M 

7=0 
(1) 

;-l 
where, 'YWjflj is the weighted sum of the inputs to unit u, and / is the activation 

7=0 

function applied to the weighted sum. This can be summarized by the following figure: 

i - i 

• > 3j-

Figure 2: A simple Neuron. 
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The activation function/controls the amplitude of the output of the units. In the simplest 

case/is the identity function, f(x) = x, and the unit's output is just its net input [19]. Step 

function, logistic sigmoid and symmetric sigmoid can also be used as activation function. 

Step function gives 0 or 1 as output, whereas, the range of output for symmetric sigmoid 

function varies from -1 to 1. On the other hand, the output of logistic sigmoid function 

ranges from 0 to 1. Among these functions, symmetric sigmoid provides higher range of 

output. However, it provides negative values too. Our approached model of neural 

network produces a competitive price of a product as output of the network. Since the 

price of a product cannot be a negative value, we have chosen logistic sigmoid function 

as the activation function. The function is as follows: 

\ + e 

In worst case scenario, assume that all the numerical weights of the links between the 

input layer and the hidden layer of Figure 1 are zeroes. In such case if identity function is 

used as the activation function, according to equation 1, the activation value or output of 

each unit of the hidden layer would be zero. Consequently, the output of the entire 

network would be zero. However, the aim of our network is to produce a competitive 

price of a product in order to increase the sellers' revenue. To overcome this problem we 

include a bias unit in our network. 

10 



A bias unit is connected to any unit of the input layer. We assume that the bias unit is 

connected to unit Uo of the input layer. Every product has its own production cost below 

which sellers are unwilling to sell the product. Therefore, we are setting the production 

cost of the product as the output of the bias unit. In addition, we set the numerical weight 

of the links associated with the bias unit to 1. With the help of the additional bias unit we 

can ensure that our network will never provide the price of a product below its production 

cost. 

Input Layei HiidenLayei Output Layer 

Figure 3: Neural Network with additional Bias Unit. 

In our model of neural network, a unit is activated when the weighted sum of the inputs 

exceed the input of the bias unit. The weighted sum of the inputs also includes the bias 

unit's input. 
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2.1.2 Feed-forward Neural Network 

There are three types of units that can be found in the neural network: input units, hidden 

units and output units (Figure 1). Input units receive data from outside of neural network. 

Output units send data outside the neural network. The input and output data of hidden 

units are remained within the network. Neural network can be divided into two major 

categories: feed-forward network and feed-back network. Feed-back network feeds its 

output back into its own inputs. In feed-forward network each unit in a specific layer 

receives input only from the units in the immediately preceding layer. Unlike feed-back 

networks, there is no loop in the feed-forward networks, i.e., the output of any layer does 

not affect the same layer [4]. 

The most common feed-forward network consists of three layers: input layer, hidden 

layer and output layer. Every unit of the input layer is connected to one or more units of 

the hidden layer, and every unit of the hidden layer is connected to one or more units of 

the output layer. 

The advantage of adding the hidden layer is that it enlarges the space of hypothesis that 

the network can represent. Any continuous activation function of inputs with arbitrary 

accuracy can be represented with a single hidden layer [21]. If two hidden layers are used 

then discontinuous functions can also be represented. The problem of choosing the right 

number of hidden layers is still not well understood [4, 20]. 
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2.1.3 Back Propagation Algorithm 

The selection of links among the units in neural networks plays an important role in 

performing any specific task. The assignments of the weights to the links must be done 

appropriately such that the networks produce a better approximation of the desired 

output. The objective behind most algorithms for neural networks is to adjust the weight 

of each link of the networks to minimize some measure of the errors on the training set 

[4]. 

In order to train a neural network to perform a specific task, the weights of each unit must 

be adjusted in such a way that the error between the desired output and actual output is 

reduced. This requires neural network to calculate rate of change of errors with respect to 

weights, i.e., how errors change as weights are changed. 

The back-propagation algorithm is the most widely used method for determining the error 

derivative of the weights, denoted by AE. AE can be computed as follows [4]: 

Error, E = Vi Err2 ~ XA (X - Y)2, where X = desired output, Y = actual output 

The squared error can be reduced by calculating partial derivative of error E with respect 

to every weight W,,,. 
13 



8E 8 A 2 dErr 
AE = = {—Err ) = Errx 

dWUi dWj, 2 dWLi 

= Errx-^—(X-Y) 
aw.. 

From equation (1), we know the actual output of each unit is represented by 

7 - 1 

fC^WjPj). Therefore, by substituting the value of actual output Y from equation (1) 
7=0 

we get, 

AE = Errx-^-iX-fCZW^.)) 
J.' 

<-l 
= Errx(0-(aJxf'(YJWuaJ))) 

7=0 

i - l 

-Errxajxf(£wjjaj) (2). 
7=0 

The algorithm computes the error derivative of the weights, AE, by computing the 

amount of error at each unit. AE gives the direction in which the weight, W, has its 

steepest slope. Therefore, in order to reduce error we move a small step in the opposite 

direction of AE (i.e., - AE). The small step is determined by a constant called learning 

rate, a. By using equation (2), the error E can be reduced by updating the weights as 

follows: 
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W = W + a x (- AE), where a is the learning rate 

= W - a x M (3). 

The learning rate, a, is a constant value (real number) which ranges from 0 to 1. It 

determines by what amount we change the weights W at each step. 

The error, Err* for the output units u* is simply the difference between desired output (X) 

and actual output (Y). 

Enk=(X-Y) 

Substituting the value of Err* into equation (2), we get 

AE* =-(X-Y)xajX / ' ( I X * a , ) (4). 
7=0 

Using equation 3 and 4, the weights W7,* for the links between hidden layer units u7 and 

output layer units u* are then updated as follows: 

W/,* = W,,* - a x AEk, where a is the learning rate. 
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Since the units ut of the output layer are connected to the units uy of the hidden layer, the 

units u, have influence for some fraction of the error AE*. Therefore, the error AE^ is 

divided according to the weights of the links between the units u7 and the units u*. The 

divided error is then propagated back to determine the errors Err, for each unit Uy of the 

hidden layer. This is accomplished by multiplying the weights Wy,* of each link between 

uy and Uk with AE* and then summing up the products. 

Err;=iXtA£t 

Substituting the value of Erryinto equation 2, we get 

AE, =- ^WJJAE, xa.xfifptja,) (5). 
>=0 1=0 

Using equation 3 and 5, the weights Wy for the links between hidden layer units and 

input layer units are then updated as follows: 

Wy = Wy - a x AEj, where a is the learning rate. 

In summary, the process of training the three-layered network using back-propagation 

algorithm to reduce the errors at each layer by updating the weights is as follows: 
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i. Compute the errors AE* at the output units which is simply the difference between 

desired output (X) and actual output (Y). 

ii. Update the weights between the hidden layer and the output layer by using the 

errors AE*. 

iii. Propagate the errors AE* back to the hidden layer to find the errors AE,- at the 

hidden layer units, 

iv. Update the weights between the input layer and the hidden layer by using the 

errors AE, determined in step (iii). 

2.2 Literature Review 

Over the past few years there can be observed a noticeable rise in interest of dynamic 

pricing in commercial and research communities. Several analytical models have been 

developed for dynamic pricing in online economies [1, 16, 22, 9, 11, 2]. The main aim 

behind dynamic pricing is to adjust the product price in order to capitalize sellers' 

revenue. In spite of rich literatures in the field, majority of the research works do not 

consider the competition markets where there exist multiple sellers for selling the same 

product. [12]. 
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2.2.1 Monopolist Market and Single Purchase Attribute 

Setting the exact price of a product that would maximize revenue is one of the most 

challenging tasks for the sellers. Li et al. [24] studied the enterprises' dynamic decision 

problem on price strategies (dynamic pricing decision) in duopolistic retailing market 

under uncertain market state. They assumed that two enterprises simultaneously choose 

their strategic variable in each period to maximize their expected revenue. They used 

Markov stochastic game frame to build up their model. In their design they showed two 

distinct type of reinforcement learning methods, Nash Q-learning and Best-response Q-

learning, in their simulation. Their numerical study concluded that the Best-response Q-

learning method outperformed the Nash Q-learning method in dynamic pricing decision 

in duopolistic retailing market. 

Chinthalapati et al. [9] used machine learning based approach to study price dynamics in 

an electronic retail market. The paper gave an overview on what steps the sellers might 

take in order to attract the customers to buy goods. Volume discount, consumer 

segmentation and sales promotion can be some of them. In the study they considered a 

multi seller environment which consisted of two competitive sellers. In addition, the 

authors have taken price attributes into consideration that would determine a customer's 

buying decision. The study was carried on two scenarios. First, "no information case" 

where none of the sellers had any information about customer queue levels, inventory 

levels, or prices at the competitors. Second, "partial information case" where all the 
18 



sellers had information about the customer queue levels and inventory levels of the 

competitors. The authors demonstrated a Reinforcement Learning (RL) based pricing 

algorithm to reset the prices at random intervals with the aim of maximizing discounted 

cumulative profit. The resetting of prices based on few factors such as number of back 

orders, inventory levels, and replenishment lead times. The authors discussed about two 

types of consumers: captives and shoppers. Captives are not price sensitive and buy the 

product at per unit cost. They get preference over the shoppers with regard to supply of 

items in the absence of stock. Shoppers receive their products only after delivering the 

goods to the captives. Shoppers are price sensitive. They are willing to bear with the 

waiting based inconveniences imposed by the sellers. In a nutshell, the authors 

considered two competitive sellers in the markets. They also assumed price as the only 

attributes of the product in determining customers' buying decisions. 

In derivative following (DF) strategy, initially, product prices are set randomly and 

profitability is observed. The product prices are increased in the same direction unless the 

observed profitability falls. If the observed profitability falls then product prices are 

decreased as long as profit is encountered. It requires keeping track of past average profit 

of each state, and increases the prices till the profitability level falls [9]. Dasgupta et al. 

[10] studied dynamic pricing in a multi-agent economy which consisted of buyers and 

competing sellers. They divided buyers into two categories: bargain hunting buyers and 

random selecting buyers. Each buyer has a valuation price Pvai below which he/she 

unwilling to pay for a product. A bargain hunting buyer employs a shopbot to select the 
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seller that offers the lowest price and purchases the good if the price offered by the seller 

is below PVai- A random selecting buyer selects a seller at random and purchases the good 

if the price offered by the seller is below Pvai. They had taken price as the only attribute 

which take part in buyers purchase decision. They considered that each seller had limited 

information about the competitors' prices. In their work, they refined the DF algorithm 

and introduced a model optimizer (MO) algorithm that re-estimates a relationship 

between price and profit for a seller at every interval more efficiently and builds an 

internal model by nonlinear regression of historical data with time-discounted weighting. 

The simulations showed that MO outperforms DF even though it has no additional 

information about the market. C. Brooks et al. used neural network for dynamic pricing 

where a monopolist market has been considered [7, 8]. 

In contrast, our model considers four more attributes (product quality, delivery time, after 

sale service and sellers' reputation) other than price. In fact our model is general enough 

to work for any number of attributes. Moreover, our model is not limited to two 

competitive sellers. Our model is general enough to work for both monopolist market and 

a competitive market with multiple sellers. 

2.2.2 Pricing for Products with Finite Time Horizon 

Dimicco et. al [34], by using Learning Curve Simulator, analyzed performance of two 

adaptive pricing algorithms: Goal-Directed (GD) and Derivative-Following (DF). They 
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considered both monopoly and competitive economy of finite markets where goods like 

airlines ticket, sport events ticket, perishable goods have to be sold by finite time horizon. 

The goal of the GD strategy is to sell entire inventory by a given finite time period. It 

follows a strategy of lowering the prices when sales are low and raising prices when sales 

are high. In contrast, DF relies on historical data. It adjusts price based on revenue earned 

on previous day due to previous days price change. It follows a strategy of changing the 

price in same direction if revenue earned by following previous days price change is less. 

The direction of changing price is reversed otherwise. The authors found that GD 

outperforms DT for slower moving markets, whereas, DF is superior when there is an 

early demand peak in the market. Moreover, in monopoly condition, it is recommended 

by the authors to use similar strategies like GD since its goal is to sell the entire 

inventory. Another finding is that when GD and DF co-exist, GD success is detrimented 

by DF strategies. However, adaptive pricing strategies result in price war if buyers are too 

pricing sensitive. 

Alexandre et. al [13] discussed on the problems of dynamic pricing in finite time horizon. 

They considered a retailer who has to set the price of a good to optimize the total 

expected revenues over a period of time T. Their model is dependent on demand curve of 

the products. They assumed both demand and price were to be continuous variables. 

They studied the problems of optimizing sales revenues based on a parametric model in 

which the parameters were unknown. The sellers had to set the price at a level in order to 

maximize current revenue and at the same time learn about the parameter values in order 
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to increase the future revenues. It has been showed that among different strategies for 

learning, one-step look-ahead rule produced good short term performance. 

Kong [11], in his paper, examined seller strategies for dynamic pricing in a market for 

which a seller has finite time horizon to sell its inventory. For this purpose a dynamic 

pricing strategy is developed using neural network based on online learning (called 

SDNN strategy, Sales-Directed Neural Network). The SDNN strategy takes in account 

the dynamics and resulting uncertainties of the market place. Neural network used here 

consists of three layers: input, hidden and output layer. The only unit of the input layer 

takes real price of the product as input, whereas, output is the sales quantity. The SDDN 

strategy continually used the observed sales to calculate the error between the current sale 

and desired sale. The error is then propagated backward through the network and small 

changes are made to the weights in each layer. The strategy did not use any information 

regarding buyer population or competitor's pricing strategies. The only knowledge 

included in the SDNN strategy was the demand curve. Here, the functionality relationship 

between price and sales quantity was represented by the demand curve. 

Dasgupta et. al [14], in their paper, employed push strategies mechanism for dynamic 

pricing. The authors considered time-limited goods in a supplier driven marketplace 

where goods are sold by maintaining strict deadline. These goods become nominal after a 

certain deadline. Examples of such goods include electricity, airline tickets, goods with 

expiry date like dairy products etc. In their paper the authors had considered dynamic 
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pricing in two scenarios. In the first case they assumed that seller were unable to sample 

buyers' demand curve. In such scenario the sellers used a heuristic dynamic pricing 

technique called Maximum Return Algorithm to estimate and refine the demand curve of 

goods at each buyer. The supplier then offers a price at every buyer that maximizes the 

sum of the immediate profit to the supplier for the currently estimated demand curve, and 

the estimated value of the surplus stock that the supplier is unable to sell in the market. In 

the second case, the authors studied a scenario where the deadline to sell the products is 

not strict. In such case, the authors showed that the sellers sample the buyer demand and 

use it to dynamically negotiate an exchange point for the good which simultaneously 

improves both the sellers' profits and buyers' utility, as compared to trading without 

negotiation. The authors used price and quantity of the products as the only criterion that 

determine buyer's purchase decision. 

In contrary, our model is not dependent on buyer's population in the market, which is 

why we did not consider demand curve in the model, because demand curve cannot be 

produced without the buyer's population. Therefore, our model of dynamic pricing does 

not require the sellers to figure out the demand curve of the products. In our approach of 

dynamic pricing our objective is to aid the online sellers in determining a selling price for 

the products. In the approach we are not concerned whether the products are perishable or 

not. In other words, our model is not limited to goods with finite time horizon. 
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2.2.3 Kephart in Dynamic Pricing 

Kephart et al. [27], for their work, considered a picture where a monopolist seller willing 

to maximize his/her revenue, provided buyers demand curve is random and 

unpredictable. The authors, in their model, employed a trial and error technique to 

optimize sellers' revenue. They claimed that fixed pricing or two-parameter dynamic 

pricing technique are preferred when demand curve is unpredictable. According to them, 

trial and error technique, besides providing satisfactory revenue, helps in enriching 

underlying consumer preferences information which could turn out to be handy for the 

sellers if they want to receive higher profits by capitalizing on the information. Their 

model did not take demand curve of consumers into consideration. Instead, the model 

uses historic information regarding profits earned while different price schedules are 

practiced by the sellers. With the aid of this information, the model attempts to learn the 

most profitable price schedule. To accomplish this task the authors employed a 

modification of the amoeba algorithm. In their simulation, the authors worked with five 

different price schedules, namely, pure bundling, linear pricing, two part tariff, mixed 

bundling and non linear pricing. The authors have related sellers' response to topography 

of profit landscape, degree of exploration and frequency of shocks. They showed that 

non-linear pricing schedule work best when the demand shock is very infrequent. Among 

the five price schedules two-part tariff and mixed bundling are less complex and they can 

be learn quicker than other price schedules. 
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Greenwald and Kephart [28] explored no-regret learning for probabilistic pricing 

algorithm. They examined both high information and low-information settings. The goal 

of their work is to identify most profitable pricebot algorithms by investigating dynamics 

of interaction among different pricebot algorithms. They made an assumption that buyers 

follow two strategies (Bargain Hunter and Any Seller) for selecting a seller to purchase 

the goods. Buyers practicing Bargain Hunter select the seller who offers lowest price 

compared to other sellers. Buyers of this category usually take the aid of shopbots. On the 

other hand, buyers practicing Any Seller strategy select any random seller provided that 

seller offers less prices than buyer's valuation. Buyers of this category usually prefer 

product quality or other attributes over product price. The authors, in their work, studied 

two typed of pricebot algorithms: informed and naive. An informed algorithm requires 

relevant profits information as input, whereas, naive algorithm functions need no 

information. They run simulations with two to five adaptive pricebots algorithm that 

employ no regret pricing strategies. They found that, for both informed and naive, No 

Internal Regret (NIR) and No External Regret (NER) pricebots converge closely to Nash 

equilibrium. In their model they considered an economy for single homogeneous goods. 

On the contrary, our model is not restricted to homogeneous goods. 

Tesauro and Kephart [30] showed that unaccepted behaviors of pricebots such as eternal 

price war can be avoided by introducing foresight in the pricing algorithm. For this task 

they proposed two heuristic approaches based on adaption of classic minimax fixed-depth 

search algorithims and dynamic programming (DP) style algorithms. For the first 
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approach they found that it is adequate to curtail price war by using any amount of look-

ahead in the pricing algorithms. For the second approach the authors used three versions 

of DP algorithms: synchronous, asynchronous and incremental. The incremental version 

is an extension of asynchronous version where a random element is adjusted by a small 

increment towards the calculated optimal price. Their experimental results portrayed that, 

among the three versions, incremental version converge to a unique self-consistent 

solution. Our model is not concerned about how many sellers are there in the market, 

whereas, in their experiment they assumed that there are only two competing sellers 

participating in the economy who alternatively take turns in adjusting their prices at each 

time step. 

Greenwald et. al [31] studied four different price-setting strategies: game-theoric pricing 

(GT), myoptimal pricing (MY), derivative following (DF), and Q-learning (Q). These 

strategies are different from each other in terms of infomational and computational 

requirements. They analyzed their results for both homogeneous and heterogeneous 

settings. They found that when all pricebots use same pricing strategy (homogeneous 

setting), DF outperforms MY and GT. In contrast, Q strategy demonstrate superior 

performance over all strategies when different pricing algorithms are practiced 

(heterogeneous setting). Kephart and Tesauro [29] studied nature and behavior of Q-

learning in a model market in which two interacting agents co-exit. They analyzed 

symmetric and asymmetric solutions for the model. They found that, between symmetric 

and asymmetric, choice of solution obtained by Q-learning depends on discount 
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parameter and on randomness of exploration. The trend is that with increasing discount 

parameter, asymmetric solution is preferred over symmetric solution. However, there are 

some limitations in GT, MY, DF and Q-learning. GT strategy makes an assumption that 

all other competing sellers use game-theoretic [31], however, in present world different 

sellers employ distinct pricing strategies. In comparison, our model is not concerned 

about what strategies are being used by other competing sellers. MY strategy assumes 

that prices set by other competing sellers will remain unchanged [31]. In the contrary, 

sellers are always willing to change their offered price for the sake of sustaining in 

competing market. Hence, our model always keeps an eye on the random prices set by 

other sellers. Q-learning strategy uses a lookup table representation of the Q-function and 

requires extensive size of computational requirement. It makes use of both buyers' 

demand curve and knowledge about competitors pricing strategies. On the other hand, 

our model does not rely on buyer demand curve. 

2.2.4 Overview of Our Approach 

In our proposed approach, the dynamic pricing described uses feed-forward neural 

network to determine a competitive selling price for the products and use little prior 

knowledge about market parameters. Moreover, instead of taking only price attribute, we 

took five different attributes based on which a customer's purchase decision can be made. 

However, our model is general enough to work for any number of attributes. For 

instance, if a seller wish to determine a competitive price for his/her product without 
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considering sellers reputation attribute, then he/she can use our model by deleting the 

corresponding input unit from the input layer of our network. On the other hand, if a 

seller plan to derive his/her product's price by taking another additional attribute into 

consideration, then our model can be used by adding an extra input unit into the input 

layer. In a word, our model is suitable for flexible number of attributes. 
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Chapter 3: Design and Implementation of Proposed Model 
using Feed-Forward Neural Network 

3.1 Introduction 

In present days the customers' buying decision is not only determined by the product 

price. Along with the product price, customers purchase decision is also triggered by 

other attributes such as product quality, delivery time, after sale service, sellers' 

reputation etc. The preferable purchase attributes of product may vary from buyers to 

buyers. To demonstrate this, let us assume that the price for a product, P, based on 

different attributes is offered by three different sellers according to Table 1. If a buyer BA 

is concerned with the quality of products, then he/she may prefer to buy the product, P, 

from the seller SB who offers the best price amongst the three sellers when price is set 

based on product quality. Similarly, a buyer Be would choose seller SA when he/she wish 

to enjoy after sale service. 

Table 1: Price offered by different sellers for a product, P, based on different attributes 

Seller 

SA 

SB 

Sc 

Product 
Price 

10.50 
11.50 
10.25 

Product 
Quality 

10.75 
10.65 
10.95 

Delivery 
Time 

12.25 
12.85 
12.50 

After Sale 
Service 

11.52 
11.54 
11.61 

Seller's 
Reputation 

11.98 
11.62 
11.25 
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In order to increase the revenue, a seller has to set the selling price of products in such a 

way that the price is capable of attracting as many buyers as possible, provided that there 

are enough inventories for the products. Since buyers preferred purchase attributes of a 

product vary, in order to attract buyers from wider range the sellers have to consider 

multiple purchase attributes in setting the product price. For instance, the seller SA from 

the above example could have attracted both the buyers BA and Be if SA would have 

considered both product quality and after sales service attributes while setting selling 

price for the product P. Moreover, sometimes it may happen that a buyer is appearing 

with more than one preferred purchase attributes, or in other words, a buyer may wish to 

enjoy multiple preferred purchase attributes before making any purchase decision. 

Therefore, in order to attract greater number of buyers, instead of providing different 

selling prices based on different attributes, the sellers can provide a single price that has 

been set by considering multiple purchase attributes. Under the above circumstances, we 

propose a model for dynamic pricing which takes multiple purchase attributes into 

consideration and provide a single price that covers all the considered attributes. As 

discussed in the following subsections, our model takes five purchase attributes of 

products into consideration in providing a selling price for a product, namely product 

price, product quality, delivery time, after sales service and seller's reputation. 

Once the sellers set an initial price of the product, our model adjusts the price of the 

product automatically with the help of neural network in order to increase the revenue 

earned. In setting the initial price of a product, we assume that sellers use their prior 

30 



knowledge about the prices of the product offered by other competing sellers. No other 

prior knowledge is used in the evaluation. In the following chapter we simulate an e-

commerce market place with three different sellers. The sellers employ three distinct 

pricing techniques: our model, simple pricing algorithm and derivative-following (DF). 

From the experimental evaluation demonstrated in Section 4.2.4 and Section 4.3 we can 

see that our approach performs better than a traditional simple pricing algorithm. A seller, 

by taking five attributes of our model into consideration, could employ a simple pricing 

algorithm to determine a competitive price of products. A simple pricing algorithm may 

take at least the production cost of a product as initial selling price of the product. If a 

buyer prefers to enjoy any additional attributes such as after sale service, then the 

algorithm may wish to add some additional price for each supplementary attributes. 

Finally, the algorithm would provide a selling price of the product. Since in online 

economy prices of products do not remain static, a seller has to frequently update his/her 

offered price of the products. While updating the prices, there can arrive two different 

scenarios for a seller who employs the simple pricing algorithm. First, the algorithm, 

while updating the price by adding extra amounts for additional attributes, does not use 

any information on how other competing sellers in the market set their selling price. 

Since the algorithm has no knowledge about market parameters, it uses some random 

extra prices for additional attributes. Hence, the price can be too low or too high which 

may lead to inadequate revenue for a seller. In other words, sellers employing a simple 

pricing algorithm run a risk of earning less revenue. In the second scenario let us assume 
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that a seller who employed the simple algorithm, do some manual search on the prices 

offered by other vendors. The algorithm uses information obtained from the seller's 

search to determine a selling price for products. However, the manual search could be 

time consuming. It might take from hours to days or even longer to gather information by 

manual search. Since prices change within very short span of time in online market, the 

information acquired by manual search during relatively large span of time might become 

outdated. Consequently, the algorithm would be using obsolete information which may 

lead to inappropriate output. In contrary, our model outputs a competitive selling price of 

products by providing importance to the five attributes based on historical data, which 

implies it does not rely on any manual search. In addition, our technique, while 

determining competitive selling price, considers the sellers make use of their prior 

knowledge of the prices set by other competing sellers in providing initial input to the 

model. This indicates that our model keep an eye on the competitive price set by other 

sellers in competing market and utilizes fresh information of price. In other words, our 

technique performs better than manual search in terms of time and non-obsolete 

information. 

3.2 Purchase Attributes 

Best Buy and Future Shop are the largest retailers of electronic goods in the United States 

and Canada respectively. By analysing the prices offered by them, we found that their 

prices are set based on product price, delivery time, after sales service and product quality 
32 



(e.g., sealed products vs. opened box products). They offer different price for the same 

product based on different purchase attributes. For instance, if a buyer prefers to receive 

the purchased product earlier then they add some additional value to the selling price on 

the basis of faster delivery time. Similarly, a buyer is asked with higher selling price than 

the usual selling price if he/she wants to enjoy after sales services like warranty. 

According to a quarterly survey that was conducted on October 2008 in United States, 

eBay was ranked as No. 1 online retailer [43]. Besides product price and product quality, 

eBay also makes use of sellers' reputation in setting selling price of a product. In online 

shopping transaction it is difficult for a buyer to measure quality of the purchased goods 

well ahead of delivery. The buyers, hence, have to rely on the products' information 

provided by sellers. In such scenario seller reputation becomes an important means of 

reliance [35] before the outcome of the transaction. Chen et al. [37] studied the attributes 

or factors of e-commerce website that have effect on cosumers' on-line shopping 

preference and figured out that, beside other attributes, trust and delivery would play role 

in buyers purchase satisfaction. In the words of Dasgupta et al. [2], "micro-economic 

literature and online consumer surveys suggest that a consumer's purchase decision is 

determined by multiple product attributes including price, delivery time, seller reputation, 

product quality and after-sale service". From information of above mentioned literature 

review, the most common attributes that can play vital role in determining customers' 

purchase decision would include product price, product quality, delivery time, after-sale 

service, and sellers' reputation. 
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Under the above circumstances, in our model we choose to include product price, product 

quality, delivery time, after-sale service, and sellers' reputation as the purchase attributes 

of product in setting a selling price for a product, P. However, our model is not restricted 

to these five attributes. For simplicity we have chosen the said attributes. Our model is 

general enough to work for any number of attributes. We use feed-forward neural 

network to determine a competitive price for the products in order to raise sellers' 

revenue. The prices of products do not remain constant. It varies with time. Since 

traditional programming methods always provide the same output for a given problem, 

they do not work in our case. As discussed in Section 2.1, we choose feed-forward neural 

network to address the problem as it has the ability to determine trends and extract 

patterns from imprecise data and provides output depending on the determined trends. 

3.3 Structure of the Proposed Model 

The objective of the thesis is to determine a competitive price for a product such that the 

number of buyers willing to buy the product at the determined price is increased and 

hence the sellers' revenue is raised. In our model, for determining the price, we used a 

feed-forward neural network which contains three layers: input layer, hidden layer and 

output layer. 
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INPUT LAYER HIDDEN LAYER OUTPUT LAYER 

Figure 4: Block diagram of the proposed model. 

3.3.1 Units of the Input Layer 

In our model we are considering five important attributes which contribute in buyers' 

purchase decisions. These attributes are product price, product quality, delivery time, 

after sale service, and sellers' reputation. As discussed in Section 3.2 we believe that 

these are the most common attributes that buyers would consider to make purchase 

decisions. Therefore, the network we designed consists of five units in the input layer, 

one for each attribute. Each attribute can be assigned to any of the five units of the 

network if the unit is still unoccupied by any attribute. In our case, we are assigning 

product price, product quality, delivery time, after sale service and sellers reputation to 

ui, U2, U3, U4 and U5, respectively. 
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Figure 5: Units of Input Layer of the proposed model. 

The input layer also consists of one extra unit u0 as the bias unit as explained in Section 

2.1.1. We set the value of ao to the production cost of the product. Usually, sellers are not 

willing to sell their products below the production cost of the corresponding products. 

Hence, we considered the production cost of the product as the output of the bias unit. 

Initially, all the values ai, a2, a3j a4 and as of the input units are set by the sellers. These 

values represent input to the five units of input layer ui, U2, U3, U4 and U5 respectively. In 

setting these values, we assume that sellers use their prior knowledge about the prices of 

the product offered by other competing sellers in the market. No other prior knowledge is 

used in our model. 

HIDDEN LAYER OUTPUT LAYER 
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3.3.2 Inputs of the model 

All the units of the input layer accept numerical values as input, i.e., we provide a 

numerical value of the product based on different purchase attributes. 

Product price: Different sellers offer different prices for an identical product in the online 

economy. A brand new "Sony Vaio (VGNNS330DS)" laptop of same configuration is 

offered at CDN 699.99 and CDN 679.95 by Best Buy1 and Future Shop2 respectively, as 

shown by Figure 6 and 7 below [40, 39]. 

,.:,,;;.;%..&;' | [ | i f ^ . l ^9 te i i i r iA^ l3^ j 

1 Sony VAI015.4" Laptop featuring Intel Pentium T4200 
' (VGHNS330DS)-Silver 
UPDATE 

«£''Mz&i"'"' 

I I2 I1 IS5 j lPite , 

BShip J699-99 

D Pick up r 

Sî î ri 

to 

1699.99 

Figure 6: Price offered by Best Buy for Sony Vaio (VGNNS330DS) laptop. 

United States largest electronics retailer that also operates in Canada, Mexico, and China. 
! Canada's largest electronic retailer. 
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Sony VAIO 15.4" Intel Pentium T4200 
2GHz Laptop (VGNNS330PS) - Silver 

a Product Availability: 

Eg] Ship M Pick up 

a Add Product Service Plan t'lJM? 

• View Accessories 

k 
$679.95 $679.95 

Total Before Taxes and Shipping $679.95 

Figure 7: Price offered by Future Shop for Sony Vaio (VGNNS330DS) laptop. 

Usually a consumer would like to buy a product from the lowest price offered seller. 

Therefore, when a buyer purchase decision is made by the product price offered, the 

buyer would choose Future Shop to purchase the laptop. The first unit, uj, of the input 

layer of our network takes price of the product as input, aj, based on the "product price" 

attribute. The sellers study the price offered by other competitive sellers in the market 

before providing an input to the first input unit, uj. 

Product quality: Vendors offer different prices for same product with different qualities. 

For instance, a consumer can get a laptop (Latitude E5500) from Dell at two different 

prices as portrayed in Figure 8 and Figure 9. Dell offers a Latitude E5500 laptop at CDN 

1160.00 [41]. However, the same laptop with higher battery quality or battery life time 

can be bought from Dell at CDN 1258.00 [41]. A businessman, who travels more 

compared to a student, would prefer to pay more for the sake of better battery life time. 
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The second input unit, 112, of our network accepts product price based on product quality 

as the input, 02. 

Latitude E5500 M$v« tan t»Dfy Swot 
tens i RMXW* 

to 

WeWCflre™12 0u& P960B C2.44IGH2.3M12 C«K»e. lOEaMK; FSB5. Oeni** Wnctow* 
VfStrt*l»BB5WSM,WlhfllHfe 

) Adjust System 

Oly 

l|siaieT«d 

thiit Price 

!l,t:S0OO 

PROCESSOR 
OPERATING SYSTEM 
LCD DISPLAY 
MEMORY 
HARD DRIVE 
OPTICAL DRIVE 

<gjTTERY OPTIONS 
INTERNAL KEYBOARD 

Intel® Core™ 2 Duo P8600 (2.40GHz, 3M L2 Cache, 1066MHz FSB) 
Genuine Windows Vista® Home Basic SP1, With media 
15.4 inch Wide Screen WXGA Anti-glare LCD Panel 
2.0GB, DDR2-800 SDRAM, 2 DIMMS 
80GB Hard Drive, 5400 RPM 
8X DVD with Cyberlink PowerDVD™ 

B C e l l B a t t e n O 
Internal English Single Pointing Keyboard 

Figure 8: Price offered by Dell for a Latitude E5S00 laptop with low quality of battery. 
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PROCESSOR 
OPERATING SYSTEM 
LCD DISPLAY 
MEMORY 
HARD DRIVE 
OPTICAL DRIVE 

TERY OPTIONS 
INTERNAL KEYBOARD 

Intel® Core™ 2 Duo P8600 (2.40GHz, 3M L2 Cache, 1066MHz FSB) 
Genuine Windows Vista® Home Basic SP1, With media 
15.4 inch Wide Screen WXGA Anti-glare LCD Panel 
2.0GB, DDR2-800 SDRAM, 2 DIMMS 
80GB Hard Drive, 5400 RPM 
8XDVD with Cyberlink PowerDVD™ 
9 Cell B a t t e Q 
Internal English Single Pointing Keyboard 

Figure 9: Price offered by Dell for a Latitude E5500 laptop with high quality of battery. 
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Delivery time: If a buyer's preferred attribute is delivery time, then the seller would 

deliver the product as soon as possible. In such case the sellers might have to go for 

express mail option in sending the desired product to the buyer. Therefore, the seller may 

add some extra money to the cost of the product so that the expense of the express mail 

does not affect the sellers' revenue. Since the "delivery time" attribute is taken care of by 

the third input unit, wj, the seller would set the value of a,?, to some price x such that the 

revenue is not affected by the extra cost of express mailing service. For instance, the 

price of a Nikon D3000 DSLR camera set by Future Shop is CDN 799.98. However, the 

vendor charge an additional cost of CDN 14.87 (Figure 10) if a consumer wishes the 

product to be mailed in faster means (air) so that it can be delivered in less time. The 

third input unit, U3, of our network receives price of the product based on delivery time. 
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Nikon D3000 10.2MP DSLR Camera 
With 1 8 - 5 5 m m Lens Kit & 5 5 - 2 0 0 m r 
Lens Package 

D In Stock: Usually ships next 
business day, 

D Product Availability: 

El Ship M Pick up 

• Add Product Service Plan 

Nikon D3000 10.2MP Digital SLR 
Camera With 18-55mm Lens Kit 
Nikon 55-200mm Compact 
Telephoto Zoom Lens With 
Vibration Reduction (AF-S DX VR) 

$799.98 $799.98 

Total Before Taxes and Shipping $ 7 9 9 . 9 8 

Ytsu want easy re-tarts. 
m. 
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Shipping Service Del ivery Date'1' 
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Shipping C h a r g e * 
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$14.87 

* Estimate only; Applies to "In-stock" products only, Does not apply for products listed as "Special 
Delivery". 

* Estimate only. Actual charges will appear when selecting shipping service in check-out. 

Figure 10: Future Shop charges additional price for faster delivery. 

After sales service: To facilitate a buyer with after sales services it is a common practice 

for the vendors to charge a specific amount in addition to the selling price of a product. 

For example, as shown in Figure 11 the price of a "Sony Vaio (VGNNW130DT)" laptop 

offered by Future Shop is CDN 979.99 [39]. 



~ " . i. • • ; • • . I m 

Sony VAIO 15.5" Intel Core 2 Duo 
T6500 2.1GHz Laptop (VGNNW130PT) 

a Product Availability: 

a ship a pick UP 

n Add Product Service Plan 

• View Accessories 

Total Before Taxes and Shipping $979.99 

Figure 11: Price offered by Future Shop for a Sony Vaio (VGNNW130DT) laptop. 

However, if a consumer would like to enjoy warranty for additional two years, then 

Future Shop charges additional CDN 274.99 for adding on-site product service plan for 

two years (Figure 12). That is, total price of the laptop including the mentioned after sale 

service would be CDN 1254.98 [39]. The fourth input unit, U4, of our network accepts a 

price of a product based on after sale service attribute as input, 04. 
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$979.99 

$274.99 

$979.99 

$274.99 

Tota l Before Taxes and Shipping $1,254.98 

Figure 12: Additional price charged by Future Shop for a Sony Vaio (VGNNW130DT) 

laptop with two years service plan. 

Seller's reputation: Product price may vary with a particular seller's reputation. In online 

market since buyers have to pay the fare of purchased product before delivery, they run a 

risk of trusting seller's integrity. Before purchasing a product, a consumer carries a 

certain level of expectations regarding the products quality [38]. In online shopping 

transaction it is difficult for a buyer to measure quality of the purchased goods well ahead 

of delivery. The buyers, hence, have to rely on the products' information provided by 

sellers. However, after receiving the purchased product, the buyer may find that the seller 

has provided asymmetric information of the products. In such scenario seller reputation 

becomes an important means of reliance [35, 38] before outcome of the transaction. 

Based on his/her reputation, a seller may or may not add some extra money to the cost of 

the product. We can find enormous examples on online where two sellers with different 

43 



reputation values offering distinct prices for a similar product. For example, at eBay a 

BL-4C battery for Nokia 6100 cell phone is offered at two distinct prices by two sellers 

of different reputation (Figure 13). A seller with 99.1% users' positive feedback asks 

little higher price (CDN 3.51) than a price (CDN 2.93) offered by a seller with 98.5% 

users' affirmative feedback [41]. Like all other input units, the fifth input unit, us, of our 

network accepts product price based on sellers reputation as input, <xj. 
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Figure 13: Price offered for a BL-4C cell by two sellers of different reputation at eBay. 

In a nutshell, the input layer of our model consists of separate units for the five purchase 

attributes of product, namely product price, product quality, delivery time, after sales 

service and sellers' reputation. Based on each purchase attribute, we provide the selling 

price of a particular product as input to the corresponding unit. 

Please note that our model can accept more attributes. One additional unit in the input 

layer needs to be added for each new attribute. On the other hand, in order to remove an 

attribute from the network the corresponding unit from the input layer, along with all the 
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links that are connected to the unit, has to be eliminated. This implies that our model will 

work for any number of attributes. In addition, our model is not limited to these five 

attributes. The model can accept any other attributes as input. We have taken these five 

attributes to present a clear concept about how an attribute would look like. 

3.3.3 Units of the Hidden and Output layer 

The number of units in the hidden layer cannot be well defined in advance. The number 

keeps changing from one network configuration to another. In our model we used three 

units in the hidden layer. From our experimental evaluation we found that the outputs are 

relatively the same for the network with three hidden units and four hidden units; 

however, the evaluation with four hidden units takes more execution time than that with 

three hidden units. On the other hand, network with three hidden units performed better 

than network with two hidden units. Therefore, we chose three hidden units in our 

experimental evaluation. We may increase/decrease the number of hidden units based on 

the performance of our experimental evaluation. The output layer of our model consists 

of a single unit which provides a competitive price of the product as output. 
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Figure 14: A three-layered feed-forward Neural Network for price determination. 

3.4 Dynamic Pricing Algorithm 

The price of the product determined by our network (Figure 14) can be found by using 

the final output a.9. As indicated in Section 2.1.1, we use the logistic sigmoid function as 

the activation function and the final output ag can be calculated with the aid of equation 

(1) as follows: 

a9 = f(W6,9a6 + Wl,9a7 + WgfOg) (6). 

where, 

a7 = f(W07a0 +WiJal +W2Ja2 +W3Ja3 +W41a4+W5Ja5) 

«8 = f(W0,$a0 +WlSai +^2 ,8«2 +WX$a3+WWa4+W5,Sa5) 

46 



and the logistic sigmoid function/, as the activation function, is given by: 

A*) = 7-^7 l + e 

Equation (6) can be represented pictorially as Figure 14 where bias unit is set as the 

production cost of the product. Initially, we assume that the buyers have equal preference 

on all the five attributes that we are considering. Since there are five links between the 

input layer's units (except bias unit) and hidden layer's units; we set 0.2 as weight of the 

links between the input units and the hidden units (5 x 0.2 = 1.0). Similarly, 0.33 is set as 

weight of the links between the hidden units and the output units; as there are three links 

between the layers (3 x 0.33 ~ 1.0). 

We sub-divide the process of dynamic pricing of our model using neural network into 

two phases: training phase and price determination phase. In the training phase we train 

our network with a set of training patterns. A training pattern consists of a set of inputs 

and a desired output. The desired output indicates what the output of a model of neural 

network ought to be when a specific set of input is given to the network. A typical set of 

training patterns for our model is depicted in Table 2. 

Table 2: General set of training pattern of our model 

Product 
Price 

Inputi i 
Input2i 
Input3i 

Product 
Quality 

Inputs 
Input22 
Input32 

Delivery 
Time 

Input 13 
Input23 
Input33 

Sellers' 
Reputation 

Input H 
Input24 
Input34 

After Sales 
Service 

Inputs 
Input25 
Input35 

Desired 
Output 

Outputi 
OutpUt2 
OutpUt3 
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Each row of Table 2 represents a training pattern which contains a set of inputs and a 

corresponding desired output. The purpose of the training process is to adjust the weights 

between the links such that the errors are minimized. To obtain this goal we feed units of 

the input layer of our network with the corresponding input values (Inputtj) from each 

training pattern. We then determine the output from our network and compare it with the 

corresponding desired output (Output,) of the training pattern to calculate error. Finally, 

we update weights between the links depending on the calculated errors. In our model, 

during the process of training, the errors between the links are minimized by using back-

propagation technique. The training process can be portrayed by the following steps: 

i) Input values from a training pattern to units of the input layer of the network, 

ii) If the current training pattern is the first training pattern of the training set, 

then associate the links between input units and hidden units with equal 

weight, i.e., 0.2. Also, associate the links between hidden units and output unit 

equally, i.e., 0.33. 

iii) Determine the value from the output layer, 

iv) Compute the error, i.e., the difference between desired output of the training 

pattern and the value obtained in step iii. 

v) If the error is more than zero then go to step viii. 

vi) If the error is approximately zero and there is more training pattern left, then 

take the next training pattern and go to step i. 
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vii) If the error is approximately zero and there is no more training pattern left, 

then terminate the training process, 

viii) Update the weights of the links using back-propagation technique to minimize 

the error, 

ix) Go to step Hi. 

The training phase updates weights between the links of the network as needed so that it 

can provide better output. Once the training process is complete, our model of network is 

ready to determine a competitive price for a product, P, from the price determination 

phase as follows: 

i) Set the production cost of the product, P, as the input to bias unit of the input 

layer and set the weights of the links associated with bias unit to 1. 

ii) Set the values (a,) of the input units for the corresponding purchase attributes 

of product (as mentioned in Section 3.1) by using prior knowledge about the 

prices of product offered by other competing sellers. 

iii) Run the network and derive the price from the output layer. 

iv) Set the price from the output layer as the product price. 

3 As mentioned in Section 2.1.1, every product has its own production cost below which sellers are 
unwilling to sell the product. Therefore, we are setting the production cost of the product as the output of 
the bias unit. In addition, we set the numerical weight of the links associated with the bias unit to 1 such 
that our model would never provide the price of a product below its production cost. 
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In step ii while setting the values of input units for the corresponding attributes, we 

assume that the sellers use their prior knowledge about the prices offered by other 

competitive sellers. A seller may employ a web crawler or a web-spider that browse the 

World Wide Web in methodical, automated manner to harvest up-to-date information 

about the price offered by other competitive sellers in the market. Search engines like 

Google make use of web-spidering for providing up-to-date data. We kept the inclusion 

of such a web-crawler to our model as a future work. 

3.5 Error Minimization and Price Determination 

Initially, the error size may be large depending on how the initial weights of the links and 

the values of the input units are chosen. The error is minimized at each iteration from step 

Hi through step ix of the training phase. Once the price of a specific product is determined 

from the output layer from step iv of the price determination phase, the weights of the 

links remain unchanged. In step ii of price determination phase we assume that sellers use 

their prior knowledge of price offered by other sellers in the market. This indicates that 

our model keep an eye on the competitive price set by other sellers in the competing 

market. 

In dynamic online economy, the price of products keeps on changing with the tick of 

clock. In order to sustain in the competitive online economy a seller needs to update 

his/her price in response to price fluctuation by other competing sellers in the market. 
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While updating the price by using our model, we go through the training and price 

determination phases of our model to recalculate the price. Before recalculating the price 

we analyze the revenue earned by using the selling price, Pr, for the product, P, that was 

generated from our model. 

If the revenue earned is greater than zero, i.e., if the seller earned at-least some revenue 

by using Pr, then in step ii of training phase instead of taking 0.2 as the weight, Wy, 

between the input units and the hidden units, we use the weights, W(</, that were 

determined during the last iteration of the training phase at the time of determining Pr 

and go through the process again. For instance, assume that the value of W/,,$ was 0.38 

when the product price was determined from step iv of price determination phase. In such 

scenario, we would like to set the value of W/,6 to 0.38 instead of 0.2 in step // of training 

phase and run the process again. Moreover, at the time of determining Pr we store the 

values of input units from step / and values of output unit from step iv of price 

determination phase as the historical data. We use this historical data as an additional 

training set during the training phase. We assume that all the training patterns used in the 

training phase are derived from historical data. 

On the other hand, if there was no revenue earned then the entire process is run by 

providing a new set of inputs in step ii of price determination phase. In providing new set 

of inputs, we suggest that a seller choose slightly lower values than the set of inputs that 

were used most recently. 
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3.6 Implementation of the Algorithm 

For implementing the algorithm described in section 3.2, C++ programming language has 

been used. As described in the earlier subsections of 3.1, our model contains five input 

units in the input layer including a bias unit, three units in the hidden layer and one unit 

in the output layer. 

3.6.1 Structure of Each Unit 

A unit of each layer consists of three properties. They are: 

1. Number of input links from previous layer (N), 

2. Weight of incoming links (W) and 

3. Activation value (AV). 

"Number of input links from previous layer (N)" of a unit u indicates the total number of 

incoming units from immediate previous layer of the network that is connected to u. Each 

of these incoming units is associated with some weight value which is denoted by 

"weight of incoming links (Wf\ The "activation value (A V)" implies net output of the 

unit. 

The following is a snapshot of the structure of a unit or node of each layer in our model. 
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class TNode{ 

int nlnputLinks; // number of input links from previous layer 

float *weights; // weights of incoming links 

float aValue; // activation value 

public: 

TNode(); 

-TNode(); 

void setNumlnputLinks(int num) ; 

int getNumlnputLinks(); 

void setWeights(std::vector<float> wts) ; 

float* getWeights(); 

void setValue(float val); 

float getValue(); 

}; 

3.6.2 Generation of the Network 

Our model contains five input units, three hidden units and a single output unit. We 

generate the network of our model as follows: 

genLayer(nlnputNodes,nHiddenNodes,nOutputNodes,epochs, lRate ,epsi lon) ; 

The first three parameters of the function indicate the number units in the input layer, 

hidden layer and output layer respectively. The fourth parameter {epochs) is the number 
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of iteration that will be carried out while training the network. Epoch is the maximum 

number of times the complete data set of training pattern can be used by the network for 

training. We will discuss about the training pattern in the following chapter. The fifth 

parameter tells about the learning rate of the network. The learning rate determines by 

what amount the weights between the links are updated at each step of iteration during 

training period. The last parameter specifies the amount of error that can be tolerated by 

our network in the learning phase. 

3.6.3 Initialization of Weights Vector 

At the initial stage of training the network, we set the weights between the links of the 

layers equally. We had the intention to give even priority to all the attributes that we 

discussed. Since there are five input units and three hidden units, each hidden unit is 

connected to five of the units from the previous layer (input layer). Consequently, we 

associate each link between input units and hidden units with equal weights, i.e., 0.2. 

Similarly, the single unit of the output layer is linked to three of the units from hidden 

layer hence we associate an equal amount of 0.33 as weight to each link between hidden 

units and out unit. 
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The content of initial weights vector looks as follows: 

0.20 
0.20 
0.20 
0.20 
0.20 
0.33 
0.33 
0.33 

The initial weights vector contains weights of the links between input units and hidden 

units followed by weights of the links between hidden units and output unit. The contents 

of the weights vector are then distributed among appropriate links between the layers as 

follows: 

void TLayer : : se tHiddenLayerWeigh ts ( s td : :vec tor<f loa t> wts){ 

f o r ( i n t i = 0; i < nlnputNodes; i++) 

HLW.push_back(wts .a t ( i ) ) ; 

} 

void TLayer : : se tOutpu tLayerWeigh t s ( s td : :vec to r<f loa t> wts){ 

f o r ( i n t i = nlnputNodes; i < w t s . s i z e ( ) ; i++) 

OLW.push_back(wts .a t ( i ) ) ; 

} 

Here, both the functions taking initial weights vector (wts) as input parameter. The initial 

weights of the links between input units and hidden units are stored in HLW vector, 
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whereas, the weights of the links between hidden units and output unit are located in 

OLW vector. 

3.6.4 Activation Function 

Identity function, step function, logistic sigmoid function and symmetric sigmoid 

function are some of the well known activation function that is being used in neural 

network. Among these functions, symmetric sigmoid provides higher range of output. 

However, it provides negative values. Since our model of neural network produces a 

competitive price of a product as output of the network and the price of a product cannot 

accept any negative value, we have chosen logistic sigmoid function as the activation 

function. 

float TLayer::sigmoid(float x){ 

return 1/(l+exp(-x)); 

} 

3.6.5 Train Network 

The goal of our model is to provide a competitive price for the products so that the 

revenue earned by the sellers is increased. Setting the correct weights of each link among 

different units of all the layers plays the most vital role in neural networks. Therefore, the 

objective here is to choose weights for each link as accurately as possible such that the 
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network performance is optimized. This can be done by training the network by a set of 

predefined training pattern. A training pattern consists of a set of inputs with desired 

output. We train the network by using same sets of training patterns over and over again. 

After each iteration in training the network, we evaluate the errors by finding the 

difference between desired output and actual output of the network during that specific 

iteration. A sample code of error evaluation is given below. 

void TLayer::evaluateErrors(float targetVal){ 

float error; 

// update output layer weights 

oError.clear(); 

for(int i = 0; i < nOutputNodes; i++){ 

error = (sigmoid(targetVal - prCost) -

output[i].getValue()) * output[i].getValue() * (1 -

output[i].getValue()); 

oError.push_back(error); 

} 

// update hidden layer weights 

float eSum =0.0; // sum of errors 

hError.clear(); 

for(i = 0 ; i < nHiddenNodes; i++){ 

for(int j = 0; j < nOutputNodes; j++) 

eSum += oError.at(j) * OLW.at(i); 
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e r r o r = eSum * h i d d e n [ i ] . g e t V a l u e ( ) * (1 -

h i d d e n [ i ] . g e t V a l u e ( ) ) ; 

h E r r o r . p u s h _ b a c k ( e r r o r ) ; 

} 

} 

We first calculate the amount of errors in output layer by calculating the difference 

between final output of output layer and target output of the training sets. Since the single 

unit of output layer is connected to each of the unit of hidden layer, hidden layer units are 

partially responsible for the errors found in output layer. We, therefore, propagate the 

calculated error of output layer back to hidden layer units to figure out the errors 

presented in the hidden layer. The errors in output layer and hidden layer are stored in 

oError and hError error vectors respectively. 

These calculated errors are used to update the weights of all the links to minimize the 

errors. The errors calculated in the output layer are utilized to update the weights of the 

links between hidden units and output unit. The updated weights are then stored in OLW 

vector. The errors found in hidden layer are used to update the weights of the links 

between input units and hidden units. Consequently, the content of HLW vector is 

updated. 
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void TLayer:rupdateWeights(){ 

// update output layer weights 

for(int i = 0; i < nOutputNodes; i++){ 

forfint j = 0 ; j < nHiddenNodes; j++) 

OLW.at(j) = OLW.at(j) + lRate * oError.at(i) * 

hidden[j].getValue(); 

} 

// update hidden layer weights ei * wij 

for(i = 0 ; i < nHiddenNodes; i++){ 

for(int j = 0; j < nlnputNodes; j++) 

HLW.at(j) = HLW.at(j) + lRate * hError.at(i) * 

input[j].getValue(); 

} 

} 

After updating the weights of all the links, the network is run again. We keep on running 

the network over and over again to train the network until the errors found in the output 

layer is below some threshold value specified by epsilon. Following is a snapshot of train 

network function. 

void TLayer::trainNetwork(){ 

std::vector<float> trainingSetVal; 

float targetVal; 

std::fstream inputTrainingSet; 
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inputTrainingSet.open("trainingSet.txt"); 

if(!inputTrainingSet) 

std: :cout«"ERROR: Training set file named trainingSet.txt 

not found.\n"; 

else{ 

float t; 

while(true){ 

for(int i = 0; i < epochs; i++){ 

while(!inputTrainingSet.eof()){ 

for(int j = 0; j < nlnputNodes + 1; j++){ 

inputTrainingSet>>t; 

trainingSetVal.push_back(t); 

} 

inputTrainingSet»targetVal ; 

setlnputLayerlnputs(trainingSetVal); 

runNetwork(); 

evaluateErrors(targetVal); 

updateWeights(); 

trainingSetVal.clear(); 

} // end while 

inputTrainingSet.clear() ; 

inputTrainingSet.seekg(0,std::ios::beg); 

} // end for 

if(oError.at(0) < epsilon) 

break; 

}// end while 
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} / / end e l s e 

i n p u t T r a i n i n g S e t . c l o s e ( ) ; 

} 

3.6.6 Set Input Layer Units 

Once the training of the network is done we are ready to run the network to provide a 

competitive selling price of the products for the sellers. The first step to run the network 

is to set input to the units of input layer. 

void T L a y e r : : s e t l n p u t L a y e r l n p u t s ( s t d : : v e c t o r < f l o a t > inputVal){ 

prCost = i n p u t V a l . a t ( 0 ) ; 

f o r ( i n t i = 0; i < nlnputNodes; i++) 

i n p u t [ i ] . s e t V a l u e ( i n p u t V a l . a t ( i + 1 ) ) ; 

} 

The function accepts a vector of input values as an input parameter which contains the 

input values of each units of the input layer. 

3.6.7 Run Network 

After setting input values to all units of the input layer we run the network to calculate 

the outputs of each unit of the hidden layer. The output from the units of hidden layer is 
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then used to derive the final output of the network. This final output represents the selling 

price of the products determined by the network. The following is the sample code for 

running the network. 

void TLayer: :runNetwork(){ 

/ / h idder l aye r 

f l o a t n e t l n p u t ; 

f o r ( i n t i = 0; i < nHiddenNodes; i++){ 

n e t l n p u t = prCost ; 

f o r ( i n t j = 0 ; j < nlnputNodes; j++){ 

n e t l n p u t += s i g m o i d ( i n p u t [ j ] . g e t V a l u e ( ) ) * HLW.at(j); 

} 

hidden[i].setValue(sigmoid(netlnput - prCost)); 

} 

// output layer 

for(i = 0 ; i < nOutputNodes; i++){ 

netlnput = prCost; 

for(int j = 0; j < nHiddenNodes; j++){ 

netlnput += hidden[j].getValue() * OLW.at(j); 

} 

output[i].setValue(sigmoid(netlnput - prCost)); 

} 

} 
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3.6.8 Get Product Price 

The aim of our model was to determine a competitive selling price for the products that 

enable sellers to increase their revenue. The final output of the network provides the 

competitive price of the products. In calculating the product price our model considered 

five attributes that would determine buyers purchase decision. As mentioned before, our 

model is general enough to work for any number of attributes. 

float TLayer::getProductPrice(){ 

std: :cout«output [0] .getValue () « " \n" ; 

return - log(1/output[0].getValue() - 1) + prCost; 

} 
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Chapter 4: Test Application and Experimental Evaluation 

In this thesis a test application is implemented to experiment the applicability and 

performance of the designed model. The implemented system is divided into two 

subsystems. 

1. Agent module - for training the network. 

2. Client module - to receive competitive price of a product from the network. 

The agent module is intended for the system. The agent module is responsible for the 

following: 

• Setting up the neural network by determining 

i. Number of input units in the input layer, 

ii. Number of hidden units in the hidden layer, 

iii. Number of output units in the output layer, 

iv. Number of iteration (epochs) used in training the network, 

v. Amount of errors (epsilon) allowed during training and 

vi. Learning rate of the network while training. 

• Generate the network by using the above six information pieces. 

• Set the weights of the links between input layer and hidden layer. 
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• Set the weights of the links between hidden layer and output layer. 

• Train the network by using a set of training patterns. 

The client module is meant for sellers. The sellers are sole user of the client module. The 

client module is responsible for the following: 

• Set the inputs for all the units of input layer. 

o It is assumed that sellers use their prior knowledge of the product price set 

by other competitive sellers, 

o By using the prior knowledge they set inputs to all the units of input layer 

as described in section 3.1.1. 

• Receive a competitive price of the product given by the network. 

4.1 Design of the Test Application 

Since the system is divided into two subsystems, the design of the test application 

consists of use cases and sequence diagram for both agent and client. The design also 

includes class diagram of the application. 
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4.1.1 Use-Cases of Agent Module 

System 

Figure 15: Use-Case diagram for Agent module of test application. 

The use-cases are described below: 

Use-case: Set Network Properties. 

Actor: System. 

Description: The system prepare the initial setting of the network by determining the 

number of input units, hidden units and output units in the input layer, hidden layer and 
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output layer respectively. In addition, how much iteration would be carried out during 

training the network is also defined. The system also identifies the tolerable errors by the 

network. Finally, during the training process what would be the learning rate of the 

network is classified. 

Use-case: Generate Network. 

Actor: System. 

Description: The system generates the network by following the initial set up of the 

network. 

Use-case: Set Input-Hidden Weights. 

Actor: System. 

Description: The system initializes the weights of each link between input layer and 

hidden layer. The weights among the links are distributed equally during initialization. 

Use-case: Set Hidden-Output Weights. 

Actor: System. 

Description: The system initializes the weights of each link between hidden layer and 

output layer. The weights among the links are distributed equally during initialization. 

Use-case: Train Network. 

Actor: System. 
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Description: The system trains the network with the help of a set of training pattern. The 

weights of the links are updated in the training process in order to minimize the errors. 

4.1.2 Use-Cases of Client Module 

Sellers 

Figure 16: Use-Case diagram for Client module of test application. 

The use-cases are described below: 

Use-case: Set Network Inputs. 

Actor: Sellers. 

Description: The sellers set the initial inputs to the network by assigning each unit of the 

input layer with a value. In setting the initial values, sellers use their prior knowledge of 

how other competitive seller set the price of the product. 
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Use-case: Receive Price. 

Actor: Sellers. 

Description: The sellers receive a competitive price from the network. 

4.1.3 Sequence Diagram of Agent Module 

Figure 17 portrays the sequence diagram for Agent module of the application. The main 

objective of the system is to train the network. The system first sets the configuration of 

the network by determining number of units in different layers, tolerable errors (epsilon), 

learning rate and number of epochs used in learning phase. The network is then generated 

by following the given configuration. After creation of the network, the system initializes 

weights of all the links between the layers. As a final step, the system trains the network 

by using a set of training patterns. The same set of training patterns are run for several 

iterations. The amount of errors is calculated at each iteration. The weights of the links 

are then updated depending on the calculated errors. The training process continues until 

the amount errors do not fall under the specified tolerable errors. 
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System 

Loop J 

Configure Network 

Configure Input, Hidden and Output Layer 

Set epsilon, epochs and learning rate 

Network Configured 

Initialize Links Weights 

Set Weights 

Set Weights 

^ 

Train Network 

[untiH calculated error < epsilon] Train Network 

Send Calculated Error 

fc--

Minimize Errors and Update Weigths 

Figure 17: Sequence Diagram for Agent Module. 

4.1.4 Sequence Diagram of Client Module 

Figure 18 illustrates the sequence diagram for Client module of the application. Once the 

network has been trained by the system, the sellers are ready to request a competitive 

price of the products from the system. The sellers first set the initial price of the product 

based on different attributes as described in section 3.1.1. The sellers then request the 

system for a competitive price of the product. Based on the initial price set by the sellers, 

the system computes a price for the product. The computed price is then sent to the 

sellers. 
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Sellers 

i 

Set Inputs System 

Initialize Inputs of the Network 

Request for Price ' 

Send Price 
K~" ~* ™" ' 

Figure 18: Sequence Diagram for Client Module. 

4.1.5 Class Diagram 

As mentioned earlier, the test application consists of two subsystems: Agent and Client. 

The system is the sole user of the Agent module, whereas, the sellers are the only user of 

the Client module. Figure 19 demonstrates the class diagram of the test application. 

The main purpose of the system is to train the network in order to minimize the errors 

such that a competitive price of the products can be obtained by using the network. In 

training the network the system first set the configuration of the network by 

Utility: :main() Once configuring the network, the system calls TLayer::TLayer(...) to 

generate the network. The method accepts configuration of the network as input 

parameters. The weights of the links between input layer and hidden layer is then 

initialized by using TLayer::setHiddenLayerWeights(...). Similarly, 

TLayer::setHiddenLayerWeights(...) is called to initialize the weights of the links 
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between hidden layer and output layer. After all the initialization has been done, the 

system starts training the network with the aid of TLayer::trainNetworkQ. 

TNode 
-nlnputLinks: int 
-weights : float * 
-aValue : float 

+TNode() 
+~-TNode() 
T-setNumlnputLinks(in num ; int) 
•rgetNumlnputLinksO : int 
*setWeights(in wts : vector<float>) 
+*getWeights(): float * 
-s-setValue(in va l : float) 
4-getValue(): float 

* 

External Classes::sid 

# 

1 

« 

'I'Layer 
-epochs : int 
-epsilon : float 
-IRate: float 
-nlnputNodes: int 
-nHiddenNodes: int 
-nOutpufNodes : int 
-prCost: float 
-input: TNode * 
-hidden : TNode * 
-output: TNode * 
-HLW ; vector<f1oat> 
-OLW : vector<float> 
-hError: vector<float> 
-oError : vector<float> 
+TLayer(in nlnNodes : int, in nHidNodes : int, in nOutNodes 
•<-setlnputLayerInputs(in input : vector<float>) 
+setHiddenLayerWeights(in wts : vector<float>) 
-h»etOutputLayerWeights(in wts : vector<float>) 
+-getHiddenLayerWeights() : vector<float> 
+getOutputLayerWeights() : vector<float> 
+signioid(in x : float) : float 
-HranNetworkO 
+trainNetwork() 
+evaluateErrors(in targetVal : float) 
-Hipdate Wei ghtsO 
-t-getProductPrice() : float 
-t-print() 

* 

«utility» 
Utility 

• 4 - r v i Q i n M » i « * 
' i j . iMi . i ty / , n i t 

* 

1 

int, in itr : int, in Ir : float, in ep : float) 

Figure 19: Class Diagram of the application. 
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After the network has been trained by the system, the network is in a position to generate 

a competitive price for the products. Before making a request to the system for a price, 

the sellers first set the initial price of the product by calling 

TLayer::setInputLayerInputs(...). At this point the sellers call 

TLayer::getProductPrice() to ask the system for generating a competitive price of the 

product based on the given initial values. The system then calculate a price by using 

TLayer::runNetwork() and return the price to the sellers. 

4.2 Experimental Results 

For evaluating the performance of the application, the test application has been run on a 

desktop computer with the following configuration: 

Operating System: Microsoft Windows XP version 2002 SP2 

Processor: AMD Athlon™, 1.10 GHz 

RAM: 512MB 

Our network is run with five input units, three hidden units and one output unit. We have 

gone through an experimental evaluation of our model in an e-commerce market place to 

examine if the model performs better than the simple pricing algorithm outlined in 

Section 3.1. We also analyzed if a seller earns more revenue by employing our model 

instead of the Derivative-Following (DF) strategy proposed in [9]. In derivative following 
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(DF) strategy, initially, product prices are set randomly and profitability is observed. The 

product prices are increased in the same direction unless the observed profitability falls. 

If the observed profitability falls then product prices are decreased as long as profit is 

encountered. It requires keeping track of past average profit of each state, and increases 

the prices till the profitability level falls [9]. In other words, DF follows a strategy of 

changing the price in same direction if revenue earned by following previous price 

change is high. The direction of changing price is reversed otherwise. 

4.2.1 Train Network 

We assume that sellers use their historical data as the training patterns to the network. We 

began our experimental evaluation by training the network of our model with 10 sets of 

training patterns. A training pattern consists of a set of inputs with desired output. We 

used the following sets of training patterns from Table 3 to train our network so that 

errors can be minimized as much as possible by using back propagation algorithm. We 

obtained the values in Table 3 by using prices offered by Future Shop and Best Buy 

based on different attributes of distinct electronic goods as of November 16, 2009. This 

implies that all the patterns are not of same product. For instance, the first row represents 

the price offered by Future Shop for a Nikon D5000 12.3MP Digital SLR Camera", 

whereas, second row shows the price for a "Samsung 22" LCD HDTV" offered by Best 

Buy. From our daily life example we cay say that the preference of purchase attributes 

varies from product to product. For example, we always look for quality of product 
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before buying any food item. On the other hand, preference is given to after sales service 

(extended warranty period etc.) when a buyer purchases any electronic goods. By keeping 

this fact in mind we have chosen training pattern from diverse products so that different 

purchase attributes are covered by the training patterns. From each training pattern values 

that we obtained as shown in Table 3 we can see that among other attributes, price 

offered based on "Product Price" is the lowest. Since no seller would like to sell his/her 

product less than the production cost, the prices offered based on different attributes must 

be greater than production cost. However, Production cost of a product is not revealed by 

any online seller. Therefore, for the value of production cost of each training pattern we 

used 1% less value of the price offered based on "Product Price" attribute. In addition, we 

used a random number generator to obtain a number greater than the production cost of 

the product in a training pattern and use this number as value of desired output of the 

corresponding pattern. In generating the value we restrict the random number generator 

in producing any value which is 25% greater than the production cost. The constraint is 

used such that the random number generator does not breed a number that is much 

greater than the production cost which would not be realistic. Mention to be made that in 

the following table the value of price offered based on "Sellers' Reputation" is not taken 

from Future Shop or Best Buy as it was not available on the websites. Hence, we took the 

average value of prices of all other four attributes to populate this particular column. 
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Table 3: Sets of training patterns used to train the model. 

Production 
Cost 

871.1901 
296.9901 
118.7901 
791.9901 
989.9901 
178.1901 

1187.9901 
326.6505 
128.6901 
1038.51 

Product 
Price 

879.99 
299.99 
119.99 
799.99 
999.99 
179.99 

1199.99 
329.95 
129.99 
1049 

Product 
Quality 

1139.99 
329.95 
159.99 
949.99 
1099.99 
199.99 

1299.99 
349.99 
149.99 
1147 

Delivery 
Time 

895.13 
329.73 
129.26 
810.68 
1054.99 
198.95 

1254.99 
340.37 
139.26 
1104 

After 
Sales 

Service 

1029.98 
334.99 
149.98 
979.98 
1169.98 
209.98 
1529.98 
389.95 
169.99 
1248 

Sellers' 
Reputation 

986.2725 
323.665 
139.805 
885.16 

1081.2375 
197.2275 

1321.2375 
352.565 
147.3075 

1137 

Desired 
Output 
(Selling 
Price) 
1066 
321 
138 
966 
1128 
203 
1233 
375 
146 
1211 

Initially, we intend to give identical preference to all the five considered attributes. 

Therefore, we distributed the weights of links between the layers equally. Since, there are 

five links between the input layer's units (except bias unit) and hidden layer's units; we 

set 0.2 as weight of the links between the input units and the hidden units (5 x 0.2 = 1.0). 

Similarly, 0.33 is set as weight of the links between the hidden units and the output units; 

as there are three links between the layers (3 x 0.33 ~ 1.0). We trained our network for 

nine different numbers of epochs4 as mentioned in Table 4. 

Table 4: Number of epochs used to train network. 

Epochs| 10 | 50 | 100 | 500 | 1000 | 5000 | 10000 | 50000 | 100000 

4 Epoch is the maximum number of times a complete data set of training patterns can be used by a network 
for training. 
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As the training continues, after each epoch, the network calculates amount of error. The 

calculated error is then used to update the weights of the links by using back propagation 

algorithm so that error is minimized in the next iteration. Practically the value of error 

never becomes zero, but approaches zero. We let our network to tolerate an error of 

amount 0.01 and 0.001. In other words the training phase terminate when the calculated 

error after an epoch is equal to or less than the value of tolerated error by the network. 

We run our network with five different learning rates as shown in Table 5. 

Table 5: Learning rates used to train network. 

Learning Rate | 0.01 | 0.005 | 0.001 | 0.0005 | 0.0001 

Analysis of the training process in the following section indicates that the model 

performs better if we use 50000 epochs with 0.005 learning rate during training the 

network. 

4.2.2 Determine Training Parameters 

The purpose of the model is to generate a competitive price for a product with respect to 

the price offered by other competing sellers in the market. The more number of training 

patterns are used to train the network in training phase, the better knowledge the model 

will contain. This would lead to generate a more competitive price. Hence, the 
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performance of the model depends on the training phase. Besides number of training 

patterns used, the training process is dependent on three parameters: 

1. number of epochs used 

2. Learning rate 

3. Error tolerance 

The better the model is trained, the better performance it provides. Therefore, use of 

proper values for the above three mentioned parameters plays a vital role in the model's 

performance. We trained our model by using different values (as mentioned in Section 

4.2.1) for these parameters with 10 sets of training patterns (Table 3). Once training 

process is complete, our model is ready to determine a selling price for a product. We 

used our trained network to determine the price of a product (lets call it P). We then 

derive suitable values for the parameters by analyzing performance of the model through 

investigating the experimental results shown later in this section. 

Since our model requires initial selling price of the product to be set by the seller, we 

used the prices of Table 6 as initial selling price based on five different attributes of the 

product. We studied the price offered by Future Shop and Best Buy (as on November 17, 

2009) for a Sony Vaio 15.4" (VGNNS330DT) Laptop and used their offered price 

information based on different purchase attributes of the product to populate Table 6. We 

assumed the production cost of the laptop is 645.00. 
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Table 6: Initial Price of Product P. 

Production Cost 
Product Price 
Product quality 
Delivery time 
After Sales Service 
Sellers' Reputation 

645.00 
648.99 
745.99 
670.34 
805.99 
718.99 

According to our model, the output produced from the output layer of our model is 

considered as the selling price, Pr, at which a sellers, S, would be selling P. If there are M 

out of N buyers in the market willing to buy P at a cost of Pr, then the revenue earned by 

S can be calculated as the product of M and Pr. 

Figure 20 portrays the amount of revenue earned after selling a product P to a single 

buyer at the determined price given by the network while the network is allowed to 

accept an error tolerance of 0.01 during training phase. We also trained our network with 

an error tolerance of 0.001. Figure 21 depicts the network performance in case of 0.001 

tolerable error. 
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Figure 20: Network performance in terms of revenue earned (Err = 0.01) 
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Figure 21: Network performance in terms of revenue earned (Err = 0.001) 
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While training our model, we can see that the amount of revenue earned per product after 

selling it to a single buyer is closely identical to each other for different learning rates 

when lower number of epochs is used. Amount of revenue earned is increased gradually 

with higher number of epochs used. It can also be noticed that the model performs better 

if 0.01 is chosen as learning rate compared to other four learning rates of Table 5. Here, 

one of our objectives was to identify the learning rate by using which a seller can earn 

more revenue after selling a single product. We figured out that, compared to other four 

learning rates, if 0.01 is used then better revenue can be earned after selling a single 

product. 

Figure 22: Network performance in terms of elapsed time (Err = 0.01) 
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Figure 22 indicates that the elapsed time for training our model increases gradually with 

increasing number of epochs. However, there is a rapid increase in elapsed time after 

100,000 epochs. Therefore, we would not like to use more than 100,000 epochs during 

simulating an e-commerce market place in the following section. While training our 

model, we let our model to accept an error tolerance of 0.01 and 0.001. It is generally 

known that a neural network works better if less error tolerance is used [4]. However, 

using lower than 0.001 of error tolerance makes our training process more time 

consuming. Moreover, Figure 20 and Figure 21 indicate that from 5000 number of 

epochs onwards the model delivers similar output for error tolerance of 0.01 and 0.001. 

Under the above circumstances of analysis, for training our model during simulating an e-

commerce market place in the following section we would like to use 100,000 epochs, 

0.01 learning rate and 0.01 error tolerance with 10 sets of training patterns shown in 

Table 3. Mention to be made that the order of using 10 sets of training patterns has no 

impact on the result. 

Table 7: Training Parameters 

Number of Epochs 
Learning rate 
Error tolerance 

100000 
0.01 
0.01 

While performing experimental evaluation, we figured out that our model consumes 

nearly similar execution time for two hidden units and three hidden units (Figure 22); 
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however, our model performs better when, instead of two hidden units, three hidden units 

are used (Figure 21). On the other hand, compared to elapsed time, the margin of 

difference in our model's outputs for the network with three hidden units and four hidden 

units are relatively small. Therefore, we chose three hidden units in our experimental 

evaluation. 
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Figure 23: Revenue earned based on number of hidden layers used 
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Figure 24: Elapsed time based on number of hidden layers used 

4.2.3 Marketplace Setup 

We performed an experimental evaluation of our model in an e-commerce market place 

to evaluate performance of our model. We consider a market place where three sellers 

(namely, Seller_simple, Seller_DF and Seller_om) wish to sell a product P to 200 

different buyers with distinct preferable purchase attributes of products described in 

Section 3.3.2. Seller_simple employs a simple pricing algorithm described in Section 

1.3.1. Seller_DF uses derivative-following (DF) strategy that was described in Section 

4.2 and Seller_om follows our model. 

We run the market for ten rounds, with twenty buyers in each round. After each round we 

calculate the revenue earned by each seller. We then compare it with the revenue earned 
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by the corresponding seller in previous round to determine the direction of revenue 

earned. If the total revenue earned at the end of current round is strictly greater than the 

total revenue earned in previous round, then direction of revenue earned is positive. On 

the other hand, we consider the direction of revenue earned as negative. 

At the end of each round, we allow the sellers to update their selling prices. In DF 

strategies, the price of product is updated, by some amount, in the direction of revenue 

earned. We consider that Seller_DF updates his/her selling price by a random amount 

between 0.00% and 5.00% of the current selling price. 

On the other hand, Seller_simple updates the selling price either by using direction of 

revenue earned or by using information of prices set by other two sellers in the market 

during one of the previous rounds. We made an assumption that simple pricing algorithm 

performs manual search, which is time consuming, to gather information regarding other 

sellers' selling price. Therefore, the information may not be available to Sellersimple at 

the end of each round. In addition, we assume that if the information is available, then 

due to manual slow searching process the information of the immediate previous round is 

not available to Seller_simple. For simplicity, we consider that if the information is 

available, then Seller_simple updates the selling price of P by using average value of the 

prices set by other two sellers during the (r-2)' round where r is the current round. In 

contrary, if the information is not available, Sellersimple uses direction of revenue to 

update the price. In this case we assume that he/she add/subtract some random value 
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between 0.00% and 5.00% of the production cost to the current selling price based on 

direction of revenue earned. In the experimental evaluation we used a randomly-

generated probability to determine if the information is available to Seller_simple. If the 

randomly generated probability is greater than 0.5 then information regarding other 

sellers' selling price is available to Sellersimple or vice-versa. We populate Table 8 by 

using this strategy. We then use values of Table 8 regarding information availability of 

other sellers' selling price to Seller_simple during simulating the market for 10 rounds. 

Table 8: Information availability to Sellersimple at the end of each round 

Rounds 
Information Available 

1 
No 

2 
No 

3 
Yes 

4 
Yes 

5 
No 

6 
No 

7 
No 

8 
Yes 

9 
No 

10 
Yes 

Seller_om always uses our model to update the price. While updating the selling price, 

we assume that a seller's price of the current round is invisible to other sellers in the 

market. However, sellers' price of previous round may be visible to SellerDF and 

Seller_om. 

There are five attributes of the product P based on which a seller can set a selling price 

for it. Depending on the price offered by the sellers, a buyer chose a seller to purchase the 

product P. For example, let us say the three sellers offer the prices as shown in Table 9 

for a product P. If a buyer wishes to buy P and he/she is looking for a higher quality of 

product, then according to the offered prices, since Seller_simple offers the lowest price 

86 



for the product P when "Product Quality" is chosen as preferred attribute, the buyer 

would purchase the product from Seller_simple. 

Table 9: Sample Price offered by different sellers. 

Product Price 
Product Quality 
Delivery Time 
After Sale Service 
Sellers' Reputation 

Seller simple 
50 
55 
60 
65 
70 

Seller DF 
70 
65 
60 
55 
50 

Seller om 
63 
63 
63 
63 
63 

For simplicity we assume that in all ten rounds of the market there are equal numbers of 

buyers for each given five attributes. 

Table 10: Number of buyers based on preferred attributes. 

Product Price 
Product Quality 
Delivery Time 
After Sale Service 
Sellers' Reputation 

Number of Buyers 
4 
4 
4 
4 
4 

4.2.4 Results 

We begin our experimental evaluation of the market by assuming that at the beginning of 

the first round Seller_simple and SellerJDF use data from Table 6 to set their selling 

87 



price of the product P whose production cost is 645.00 and our model uses information 

from Table 6 and Table 7 to generate a selling price (650.49) for P. 

Table 11: Selling price offered by sellers in round 1. 

Product Price 
Product Quality 
Delivery Time 
After Sale Service 
Sellers' Reputation 

Seller simple 
648.99 
745.99 
670.34 
805.99 
718.99 

Seller DF 
648.99 
745.99 
670.34 
805.99 
718.99 

Seller om 
650.49 
650.49 
650.49 
650.49 
650.49 

From Table 11 we can see that the seller employing our model (Sellerom) attracts 16 

buyers by the price offered for P. The remaining 4 buyers whose preferred attribute is 

"Product Price" would either purchase P from Seller_simple or SellerDF. For simplicity, 

we assume that each of them attract two of the remaining buyers. At the end of round 1 

we calculate the revenue earned by the sellers. We then determine the direction (positive 

or negative) of revenue earned compared to previous revenue. 

Table 12: Total Revenue earned after round 1. 

Seller Name 

Seller simple 
Seller DF 
Seller om 

Total Revenue 
earned 

1297.98 
1297.98 

10407.80 

Direction of Revenue 
earned 
Positive 
Positive 
Positive 

Now, before beginning round 2, we allow all the sellers to update their price. At the end 

of round 1, since direction of revenue earned for Seller_DF is positive, he/she updates 
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his/her price by adding 0.02% value of current selling price. From values of Table 8 we 

can see that at the end of first round the Seller_simple has no information regarding 

selling price set by other sellers. Hence, we add a randomly generated value between 0.0 

and 5.0 percent of the production cost (here, 2.17%) to the current price. However, our 

model does not update the price at the end of round 1, because, at the end of round 1 our 

model finds that the initial price used to train the model is similar to the price offered by 

other two sellers in the market. This is due to our assumption that at the beginning of first 

round Sellersimple and SellerDF uses data from Table 6 to set their selling price of the 

product P. In addition, our model uses same set of information from Table 6 to generate a 

selling price for P at the beginning of first round. 

Table 13: Selling price offered by sellers in round 2. 

Product Price 
Product Quality 
Delivery Time 
After Sale Service 
Sellers' Reputation 

Seller simple 
(A ~ + 2.17%) 

662.99 
759.99 
684.34 
819.99 
732.99 

Seller DF 
(A ~ + 0.02%) 

650.29 
747.49 
671.69 
807.60 
720.43 

Seller_om 

650.49 
650.49 
650.49 
650.49 
650.49 

Table 13 indicates that the Sellerom offers the lowest price for all attributes except 

"Product Price". Again, Sellerom manages to attract 16 buyers in round 2. Compared to 

round 1, Sellersimple fails to sell any product in round 2. On the other hand, due to 

failure of Seller_simple, SellerJDF earned more revenue than that was earned in round 1. 
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Table 14: Total revenue earned after round 2. 

Seller Name 

Seller simple 
Seller DF 
Seller om 

Total Revenue 
earned 

1297.98 
3896.54 

20815.58 

Direction of Revenue earned 

Negative 
Positive 
Positive 

Table 8 indicates that at the end of second round Sellersimple is unaware of the 

information regarding selling price set by other sellers. Moreover, at the end of round 2, 

Seller_simple finds his/her direction of revenue earned as negative. Hence, he/she 

updates the selling price by subtracting a random value between 0.0% and 5.0% of the 

production cost (here, 1.58%) from his/her current selling price. However, SellerDF gets 

another chance to increase his/her selling price because of the positive direction of 

revenue earned in this round. This time he/she updates his/her price by adding a random 

value between 0.0% and 5.0% (here, 0.25%) of current selling price. As mentioned 

before, Sellerom updates the price by using our model. Before updating the price, we 

store the current pricing information for training purpose. As we described in Section 3.5, 

since Seller_om earned some revenue by using the current selling price that was 

determined by our model at the beginning of first round, we add current inputs and output 

of the network to the training set of Table 3 so that it can be used during the training 

process of the network, i.e., the following set is added at the last row of Table 3. 

645.00 648.99 745.99 670.34 805.99 718.99 650.49 
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After saving the current pricing information, Sellerom updates the price. Before 

providing initial input to the network of our model to derive a new updated selling price 

from the model, Sellerom analyzes the prices offered by other two competing sellers. 

Seller_om uses the information of Table 15 and Table 7 to determine the new 

selling price. We obtain the values of Table 15 by taking the minimum price offered by 

Sellersimple and SellerDF in previous round (Table 13). 

Table 15: Initial input to network in round 3. 

Production Cost 
Product Price 
Product quality 
Delivery time 
After Sales Service 
Sellers' Reputation 

645.00 
650.29 
747.49 
671.69 
807.60 
720.42 

The price offered by the three sellers during round 3 is given in Table 16. We can see that 

our model provide same price as the price of previous round. This is due to the 

insignificant difference between the initial input of the network used in previous round 

(Table 6) and current round ( Table 15). 

Table 16: Selling price offered by sellers in round 3. 

Product Price 
Product Quality 
Delivery Time 
After Sale Service 
Sellers' Reputation 

Seller simple 
(A ~ - 1.58%) 

652.78 
749.78 
674.13 
809.78 
722.78 

Seller DF 
(A « + 0.25%) 

666.5452 
766.169 

688.4727 
827.792 

738.4387 

Seller_om 

650.49 
650.49 
650.49 
650.49 
650.49 
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After end of round 3, we determine the revenue earned by each seller and then allows 

sellers to update their prices. As far information of Table 8, at the end of third round the 

information regarding other sellers' selling price is available to Sellersimple. As we 

mentioned earlier, due to manual slow searching process the information of the (r-2)th 

round is visible to Sellersimple, where r is the current round. Therefore, at the beginning 

of fourth round Seller_simple uses the prices offered by SellerDF and Seller_om during 

second round (Table 13) to update his/her price. In this case, Seller_simple calculates the 

average value of the prices offered by other two sellers from Table 13 and set the values 

as the selling prices for round 4. We run the remaining seven rounds in the similar 

fashion. 

Figure 25 summarizes the total revenue earned at the end of each round by the three 

different sellers who employed three distinct pricing algorithms. Initially, all the sellers 

managed to earn some revenue. Among the three sellers, the growth of revenue earned by 

Sellersimple was the slowest. Seller_simple failed to earn any revenue at the end of 

most of the rounds. Apart from first round, Sellersimple earned some revenue after the 

end of seventh and tenth round..The performace of Seller_DF in terms of earning revenue 

was better than Sellersimple, however, he/she could not beat Seller_om in any of the 

rounds. On the contrary, Seller_om, who employed our model, earned revenue at each 

round. Moreover, after each round, Seller_om earned higher revenue than that of revenue 

earned by other two sellers. At the end of tenth round, Seller_DF earned nearly 43% 
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more revenue than Seller_simple. On the other hand, Seller_om earned nearly eight times 

more revenue than Seller DF. 
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Figure 25: Total revenue earned by three sellers. 

In our experimental evaluation we showed that once the sellers set an initial price of the 

product based on five different attributes, our model adjusts the price of the product 

automatically with the help of neural network in order to increase revenue. In other 

words, our model considers five different attributes in generating a selling price for a 
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product such that it can attracts buyers with different preferred attributes which leads to 

capitalizing the revenue earned. In setting the initial price of a product, we assume that 

sellers use their prior knowledge about the prices of the product offered by other 

competing sellers. 

4.3 Enhanced Experimental Evaluation 

In Section 4.2.3 we demonstrated a market place where three sellers (namely, 

Sellersimple, Seller_DF and Seller_om) participate in selling a product P to 200 

different buyers with distinct preferable purchase attributes of products. In the 

experimental evaluation we considered that no seller has knowledge on the buyers 

preferred purchase attributes. Consequently, after each round the sellers have no clue on 

the earned revenue came from which of the five preferred purchase attributes. Therefore, 

we would like to perform another experimental evaluation of our model with the same 

market place described in Section 4.2.3. However, in this case we assume that 

Seller_simple and SellerDF aware of the preferred purchase attributes from which they 

made revenue. In other words, we presume that after each round Sellersimple and 

SellerDF can determine the direction of revenue (either positive or negative) earned for 

the five different attributes. These two sellers then update their selling price by using 

their knowledge of the attributes which was absent in our previous experimental 

evaluation. 
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We begin our experimental evaluation in the similar fashion that we demonstrated in 

Section 4.2.4. The first round of this evaluation is a carbon copy of the first round of 

previous evaluation. The difference between two versions of evaluation comes into scene 

at the time of updating selling price before beginning of the second round. At the end of 

round 1 we can find the revenue earned with its direction as shown in Table 12. Now, 

before beginning round 2, we allow all the sellers to update their price. At the end of 

round 1, SellerDF finds that he/she earned some revenue from the price he/she offered 

for "Product Price" attribute. Hence, Seller_DF updates his/her price for "Product Price" 

attribute by adding a random value between 0.0% and 5.0% (here 1.29%) of current 

selling price. However, since SellerDF did not earn anything from the price he/she 

offered for other four attributes, he/she update the prices for those attributes by 

subtracting 0.76% value of current selling price. From values of Table 8 we can see that 

at the end of first round the Sellersimple has no information regarding selling price set 

by other sellers. Hence, Sellersimple updates his/her selling price by adding/subtracting 

a randomly generated value to the current price. Since Sellersimple made some revenue 

from the price he/she offered for "Product Price" attribute, he/she adds a random value 

between 0.0% and 5.0% (here 1.93%) of the product cost for this attributes. As he/she 

failed to earn anything from the other four attributes, Seller_simple updates his/her 

selling price for those attributes by deducting 1.7% value of the production cost. On the 

other hand, our model follows the same technique for updating the selling price as 

portrayed in Section 4.2.4. 
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Table 17: Selling price offered by sellers in round 2. 

Product Price 
Product Quality 
Delivery Time 
After Sale Service 
Sellers' Reputation 

Sellersimple 
661.49 
735.03 
659.38 
795.06 
708.06 

Seller DF 
657.36 
740.32 
665.25 
799.87 
713.53 

Seller om 
650.49 
650.49 
650.49 
650.49 
650.49 

We then calculate the revenue earned by the three sellers and follow the same procedure 

in updating the selling price before going to the next round. 

Figure 26 summarizes the total revenue earned at the end of each round by the three 

different sellers. From this enhanced version of experimental evaluation we can see that 

Sellersimple and SellerDF performed much better in terms of revenue earned 

compared to the evaluation of Section 4.2.4. Figure 26 portrays that both Sellerom and 

Seller_DF maintained a steady growth in earning revenue over the ten rounds. As the 

evaluation progress from one round to another round, the difference in revenue earned by 

these two sellers decreased. In contrast, Seller_simple could not earn as much revenue as 

compared to other two sellers. However, Sellersimple managed to carry on the growth 

of revenue earned from one round to another. At the end of tenth round, Seller_om, who 

employed our model, earned higher revenue in comparison to SellerDF and 

Sellersimple. 
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Figure 26: Comparison of three sellers in terms of revenue earned. 

4.4 Discussion 

The experimental results show that our model can attract more buyers compared to other 

two sellers, because we have considered multiple attributes in determining a selling price 

for the product P. Attracting more buyers from wider range of preferred attributes implies 

that more revenue can be earned. 

Various pricing algorithms are followed in present online economy. Among them game-

theoric pricing (GT), myoptimal pricing (MY), derivative following (DF), and Q-learning 
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(Q) are practiced widely. Game-theoretic (GT) strategy makes an assumption that all 

other competing sellers use game-theoretic [31]. However, in present world different 

sellers employ distinct pricing strategies. GT uses complete information regarding buyer 

population. Moreover, it does not use any historical data. In contrast, historical data plays 

an important role in understanding changing behavior of the market. We used little 

historical data of the price offered by other competitive sellers. In addition, our model is 

not concerned about what strategies are being used by other competing sellers. Similarly, 

Myoptimal (MY) strategy does not dependant on whether other sellers employing 

different pricing strategies or not, but it is concerned about buyers demand curve and also 

the prices set by other sellers in the economy. MY also assumes that prices set by other 

competing sellers will remain unchanged [31]. In the contrary, sellers are always willing 

to change their offered price for the sake of sustaining in competing market. Hence, our 

model always keeps an eye on the random prices set by other sellers. Q-learning strategy 

is based on reinforcement learning called Q-learning. It finds optimal policy when the 

opponents use stationary Markovian strategies. It uses a lookup table representation of 

the Q-function. It requires extensive size of computational requirement. It makes use of 

both buyers' demand curve and knowledge about competitors pricing strategies. On the 

other hand, our model does not rely on buyer demand curve. 

In short, we attempt to address the problem of dynamic pricing in a competitive online 

economy, where a buyer's purchase decision is determined by multiple attributes. From 

the behavior of current market we can infer that buyer's purchase decision is no more 
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dependent solely on products price. Along with price, other attributes such as product 

quality, delivery time, after-sale service, and sellers' reputation also play vital role in 

determining customers' purchase decision. Hence, in our model we consider these 

mentioned five attributes so that we can attract more number of buyers which lead to 

earning more revenue. However, our model is general enough to work for any number of 

attributes. Our model requires initial price to be set by sellers by using their prior 

knowledge about the prices of the product offered by other competing sellers. Any other 

prior knowledge is not used by our model. In our experimental evaluation we showed that 

once the sellers set an initial price of the product, our model adjusts the price of the 

product automatically with the help of neural network in order to increase profits. 
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Chapter 5: Conclusions and Future Works 

5.1 Conclusions 

Dynamic pricing as a changing price in a marketplace is becoming characteristic of 

electronic commerce. Determining selling prices of products is a challenging task for the 

sellers to sustain in the market. The purpose of the dynamic pricing problem is to 

determine selling prices such that sellers receive better revenue. There exist intelligent 

agents to aid online sellers to dynamically calculate a competitive price for their products 

in online markets. However, these intelligent agents usually make a number of 

assumptions for dynamic pricing. Some intelligent agents assume that sellers consist of 

prior knowledge about the online market parameters, while other agents assume that price 

is the only attribute that determines consumers' purchase decision [2, 9, 10, 12, 22]. On 

the contrary, in real life sellers have limited or no prior knowledge about the market 

parameters. In addition, nowadays along with price other attributes such as after sale 

service, product quality etc. contribute in determining consumers' purchase decision. The 

proposed approach of dynamic pricing described in our work of this thesis used feed­

forward neural network to determine product price dynamically. We used back 

propagation algorithm to minimize the errors while training the network with 10 sets of 
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training patterns. We considered buyer preferences over multiple product attributes. 

Along with product price, we have taken product quality, delivery time, after-sale service 

and sellers' reputation into consideration. However, our model is general enough to work 

for any number of attributes. We also considered that sellers have limited prior 

knowledge about market parameters like how other competing sellers set the prices. Our 

model assumed no other information. Our model aids the sellers of competitive market in 

the automation of determining the price of a product in order to earn better revenue. The 

approach requires the sellers, by considering the five attributes, to set an initial price of 

the product by using their prior knowledge about the prices of the product offered by 

other competing sellers. Our approach adjusts the selling price of products automatically 

with the help of neural network in order to raise seller revenue. The experimental results 

portray the effect of considering the five attributes in earning revenue by the sellers. We 

performed an experimental evaluation of our model in an e-commerce market place with 

200 buyers, three sellers where all the sellers trying to sell a product P. The experimental 

results showed that the seller employing our model earned higher revenue than that of 

earned by other two sellers who followed simple pricing algorithm and derivative-

following (DF) strategies. The experimental results show that our model can attract more 

buyers compared to other two sellers, because we have considered multiple attributes in 

determining a selling price for the product P. Attracting more buyers from wider range of 

preferred attributes implies that more revenue can be earned. Partial work of this thesis 

has been published in the proceedings of 4th International MCETECH Conference on e-

Technologies, Ottawa, ON, Canada, May 2009. Furthermore, some work of this thesis 
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has appeared in Proceedings of the 28th Canadian Conference on Artificial Intelligence 

that has held in Ottawa, ON, Canada between May 31 and June 2, 2010. 

5.2 Future Works 

• We have made a comparison of our approach of dynamic pricing with simple 

pricing algorithm and derivative following (DF) strategies. We intend to compare 

our approach with some more complex pricing strategies. 

o We would like to compare our approach with other existing well known 

approach of dynamic pricing, like game-theoretic (GT), my-optimal (MY) 

etc. 

o We are planning to compare the total revenue earned by different sellers 

after selling the same product whose price is determined by different 

strategies (GT, MY and our designed approach), 

o In the comparison we will be considering each seller follows different 

pricing strategies. 

• Our model made an assumption that sellers use their limited prior knowledge of 

market parameters in setting the initial price of the products. We would like to 

eliminate the assumption from our model. 

o We may employ a web crawler tool in our application in order to learn the 

information on prices set by other competitive sellers in the market. 
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o Using the gathered information we may set the initial price of the products 

such that the sellers no need to initialize the product prices while using our 

model. 
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