
u Ottawa
L'Universite canadienne

Canada's university

nm
FACULTE DES ETUDES SUPERIEURES l ^ ^ l FACULTY OF GRADUATE AND

ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES
L'Universite canaiiienne

Canada's university

Tapu Kumar Ghose
AUTEUR DE LA THESE / AUTHOR OF THESIS

M.C.S.
GRADE/DEGREE

School of Information Technology and Engineering

Dynamic Pricing in Electronic Commerce Using Neural Network
TITRE DE LA THESE / TITLE OF THESIS

Thomas Tran

Liam Peyton Anil Somayaji

Gary W. Slater
Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies

Dynamic Pricing in Electronic Commerce usin

Neural Network.

by

Tapu "Kumar Cjhose

A thesis submitted to the

Faculty of Graduate and Postdoctoral studies

In partial fulfillment of the requirements for the degree

Masters in Computer Science

Ottawa-Carleton Institute for Computer Science

School of Information Technology and Engineering

University of Ottawa.

June, 2010

© Tapu Kumar Ghose, Ottawa, Canada, 2010.

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-69033-8
Our file Notre reference
ISBN: 978-0-494-69033-8

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extra its substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• • •

Canada

Abstract

There exist intelligent agents to aid online sellers to dynamically calculate a competitive

price for their products in online markets. However, these intelligent agents usually make

a number of assumptions for dynamic pricing. Some intelligent agents assume that sellers

consist of prior knowledge about the online market parameters. In other words, the agents

assume that the sellers are well aware of other competitors' pricing strategies, consumers

purchase preferences, consumers' reservation price, profit made by other competing

sellers etc. In addition, other agents assume that price is the only attribute that determines

consumers' purchase decision. On the contrary, in real life sellers have limited or no prior

knowledge about the market parameters. In addition, nowadays along with price other

attributes such as after sale service, product quality etc. contribute in determining

consumers' purchase decision. In this thesis, we propose an approach where sellers have

limited knowledge on market parameters. We also assume that buyers' purchase decisions

are based on multiple attributes. We are using a feed-forward neural network approach

for calculating a competitive price dynamically to increase the sellers' revenue. Product

price, product quality, delivery time, after sales service and seller's reputation are taken

into consideration while determining the competitive price of the product by our model.

In our experimental evaluation we showed that once the sellers, by considering the five

attributes, set an initial price of the product, our model adjusts the price of the product

ii

automatically with the help of neural network in order to raise the revenue. In setting the

initial price of a product, we assume that sellers use their prior knowledge about the

prices of the product offered by other competing sellers. Any other prior knowledge like

buyer demand or competitor's price setting behaviors is not used in our evaluation. The

experimental results portray the effect of considering the five attributes in earning

revenue by the sellers. Before concluding with directions for future works, we discuss the

value of our approach in contrast with related work.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Thomas T. Tran, for his patience and guidance

throughout my research. His extraordinary mentorship and encouragements lead to the

completion of the research work. I would also like to thank him for providing all the

necessary facilities and financial support required for this task. I take the opportunity to

thank my family members for their supports and inspiration without which it would not

be possible.

IV

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents v

List of Tables viii

List of Figures ix

Chapter 1: Introduction 1

1.1 Motivation 1

1.2 Research Problem 3

1.3 Thesis Contributions 5

1.4 Thesis Outline 6

Chapter 2: Background and Related Work 7

2.1 Neural Network 7

2.1.1 Framework of Neural Network 8

2.1.2 Feed-forward Neural Network 12

2.1.3 Back Propagation Algorithm 13

2.2 Literature Review 17

2.2.1 Monopolist Market and Single Purchase Attribute 18

2.2.2 Pricing for Products with Finite Time Horizon 20

2.2.3 Kephart in Dynamic Pricing 24

2.2.4 Overview of Our Approach 27

v

Chapter 3: Design and Implementation of Proposed Model using Feed-Forward

Neural Network 29

3.1 Introduction 29

3.2 Purchase Attributes 32

3.3 Structure of the Proposed Model 34

3.3.1 Units of the Input Layer 35

3.3.2 Inputs of the model 37

3.3.3 Units of the Hidden and Output layer 45

3.4 Dynamic Pricing Algorithm 46

3.5 Error Minimization and Price Determination 50

3.6 Implementation of the Algorithm 52

3.6.1 Structure of Each Unit 52

3.6.2 Generation of the Network 53

3.6.3 Initialization of Weights Vector 54

3.6.4 Activation Function 56

3.6.5 Train Network 56

3.6.6 Set Input Layer Units 61

3.6.7 Run Network 61

3.6.8 Get Product Price 63

Chapter 4: Test Application and Experimental Evaluation 64

4.1 Design of the Test Application 65

4.1.1 Use-Cases of Agent Module 66

4.1.2 Use-Cases of Client Module 68

4.1.3 Sequence Diagram of Agent Module 69

4.1.4 Sequence Diagram of Client Module 70

4.1.5 Class Diagram 71

4.2 Experimental Results 73

4.2.1 Train Network 74

VI

4.2.2 Determine Training Parameters 77

4.2.3 Marketplace Setup 84

4.2.4 Results 87

4.3 Enhanced Experimental Evaluation 94

4.4 Discussion 97

Chapter 5: Conclusions and Future Works 100

5.1 Conclusions 100

5.2 Future Works 102

References 104

vii

List of Tables

Table 1: Price offered by different sellers for a product, P, based on different attributes 29

Table 2: General set of training pattern of our model 47

Table 3: Sets of training patterns used to train the model 76

Table 4: Number of epochs used to train network 76

Table 5: Learning rates used to train network 77

Table 6: Initial Price of Product P 79

Table 7: Training Parameters 82

Table 8: Information availability to Sellersimple at the end of each round 86

Table 9: Sample Price offered by different sellers 87

Table 10: Number of buyers based on preferred attributes 87

Table 11: Selling price offered by sellers in round 1 88

Table 12: Total Revenue earned after round 1 88

Table 13: Selling price offered by sellers in round 2 89

Table 14: Total revenue earned after round 2 90

Table 15: Initial input to network in round 3 91

Table 16: Selling price offered by sellers in round 3 91

Table 13: Selling price offered by sellers in round 2 96

viii

List of Figures

Figure 1: A general Neural Network 9

Figure 2: A simple Neuron 9

Figure 3: Neural Network with additional Bias Unit 11

Figure 4: Block diagram of the proposed model 35

Figure 5: Units of Input Layer of the proposed model 36

Figure 6: Price offered by Best Buy for Sony Vaio (VGNNS330DS) laptop 37

Figure 7: Price offered by Future Shop for Sony Vaio (VGNNS330DS) laptop 38

Figure 8: Price offered by Dell for a Latitude E5500 laptop with low quality of battery. 39

Figure 9: Price offered by Dell for a Latitude E5500 laptop with high quality of battery.

39

Figure 10: Future Shop charges additional price for faster delivery 41

Figure 11: Price offered by Future Shop for a Sony Vaio (VGNNW130DT) laptop 42

Figure 12: Additional price charged by Future Shop for a Sony Vaio (VGNNW130DT)

laptop with two years service plan 43

Figure 13: Price offered for a BL-4C cell by two sellers of different reputation at eBay. 44

Figure 14: A three-layered feed-forward Neural Network for price determination 46

Figure 15: Use-Case diagram for Agent module of test application 66

Figure 16: Use-Case diagram for Client module of test application 68

Figure 17: Sequence Diagram for Agent Module 70

Figure 18: Sequence Diagram for Client Module 71

Figure 19: Class Diagram of the application 72

Figure 20: Network performance in terms of revenue earned (Err = 0.01) 80

Figure 21: Network performance in terms of revenue earned (Err = 0.001) 80

Figure 22: Network performance in terms of elapsed time (Err = 0.01) 81

ix

Figure 23: Revenue earned based on number of hidden layers used 83

Figure 24: Elapsed time based on number of hidden layers used 84

Figure 25: Total revenue earned by three sellers 93

Figure 26: Comparison of three sellers in terms of revenue earned 97

x

Chapter l: Introduction

1.1 Motivation

In today's sophisticated world's competitive online market, buyers take the aid of

shopbots in determining which seller to select for purchasing any product. In the words of

Greenwald et al. [31], "Shopbots are helping more and more buyers minimize

expenditure and maximize satisfaction". A traditional shopbot is an online comparison

service that filters products information based on different dimensions, such as price,

product quality, sellers' reputation etc. According to Kephart and Greenlawald [26],

shopbots are internet agents that search information regarding price, quality of goods and

other attributes along with services by searching different vendors. Shopbots, by

providing valuable information, assist buyers in making purchase decision. Markopoulos

and Kephart [25] analyzed the importance of price information provided by shopbots to

the buyers. They figured out that price information of a product is 6% to 10% as valuable

as the product itself.

The buyers in the online economy take the aid of shopbots to minimize their expenditure.

Along with the existence of multiple competitive sellers, the appearance of shopbots

turned the task of setting a dynamic selling price for products by a seller into a

challenging one. Similar to shopbots, pricebots entered the market to aid sellers in the

online economy in setting a selling price for products. Sellers make use of pricebots to

maximize their profits. Greenwald and Kephart [28] described pricebot as an agent that

employ automated pricing algorithm.

In dynamic pricing products prices always respond to the fluctuation of the market and

hence the prices keep on changing with the tick of a clock. Every seller wants to set the

selling price of their products so that their revenue is increased.

If a seller X sets the price of a product too high (say, Ph) then he/she could make greater

profit from buyers. However, the number of buyers purchasing the product at price Ph

would be zero or very few, because buyers would prefer to purchase the product from a

different seller Y if that seller offers the same product at a lower price. Moreover, when

the buyers, who bought the product from seller X at price Ph, realize that seller X has set

the price too high compared to other sellers in the market then the buyers would be much

less likely come back to seller X for purchasing any products in future. Ultimately, the

seller X would not be able to make satisfactory revenue due to setting the price of the

product too high.

On the other hand, if seller X sets the price of the product too low (say, Pi) then he/she

might attract a greater number of buyers. However, since Pi is too low, seller X would not

make as much revenue as expected. In such case, seller X could increase the price of the

2

product by a certain amount in order to lift up his/her revenue. In addition, setting the

product price too low might have some negative psychological impact on buyers'

purchasing behavior. Some buyers may think that because of the low quality of the

product seller X has set the price of the product too low compared to other competing

sellers in the market.

Therefore, determining selling prices of products is a challenging task for the sellers to

sustain in the market. The purpose of the dynamic pricing problem is to determine selling

prices such that sellers receive satisfactory revenue. Dynamic pricing, or personalized

pricing, has been defined as estimating a shopper's desire, measuring his/her means, and

then charging accordingly [1]. The motivation of this thesis lies here with the

development of an algorithm to dynamically determine selling prices of products such

that sellers earn better revenue compared to revenue earned by using traditional pricing

algorithm.

1.2 Research Problem

Usually, a customer before buying a product selects a store/seller for the purchase. The

selection may be done under multiple attributes (preferences), such as best price offered,

after-sale services, product quality, delivery time, sellers' reputation etc. Therefore, the

sellers have to provide a competitive price for a product in response to variation in the

market parameters such as competitors' prices and consumers purchase preferences.
3

There exist intelligent agents, called pricebots, which enable online sellers to dynamically

calculate a competitive price for a product. According to Dasgupta et al. [2], "these

intelligent agents provide a convenient mechanism for implementing automated dynamic

pricing algorithms for the sellers in an online economy". However, some intelligent

agents use a number of assumptions for the dynamic pricing in online markets. Some

intelligent agents assume that sellers are provided with complete knowledge of market

parameters, while some other agents consider product price as the only attribute that

determines consumers' purchase decision [2, 9, 10, 12, 22]. In recent decades extensive

research has been done in dynamic pricing. Some of the research made an assumption

that there is only one seller in the market [17]. The authors, in their model, assumed a

market with imperfect competition such as a monopolist market. Their main concern was

to maximize sellers revenue by dynamically pricing the products where products were

supposed to be sold within a given time horizon. However, in real life sellers have limited

or no prior knowledge about the market parameters (e.g., buyer's reservation price,

competitive sellers' price and profit etc). In addition, in reality there exist several

competitive sellers in online market. The goal of this work is to address the problem of

dynamic pricing in a competitive online economy, where sellers have limited or no prior

knowledge about the market parameters and where a buyer's purchase decision is

determined by multiple attributes.

4

1.3 Thesis Contributions

• In this thesis, we propose an approach of dynamic pricing using feed-forward neural

network where buyers purchase decision is dependent on multiple preferred purchase

attributes. As discussed in Section 1.2, some of existing intelligent agents for

dynamic pricing make an assumption that price is the only attribute that a buyer

would be interested before making any purchase. On the contrary, in present days

besides price other attributes such as after sale service, product quality etc. contribute

in determining consumers' purchase decision. In our approached model of dynamic

pricing we considered five attributes namely product price, product quality, delivery

time, after sales service and sellers' reputation. However, our model is general

enough to work for any number of attributes. Some agents assume that there exists

only one seller in the market. In contrast, we can see multiple sellers competing in

today's competitive market of online economy. Our model expects that there will be

multiple competing sellers in the market. The approach requires the sellers, by

considering the five attributes, to set an initial price of the product by using their prior

knowledge about the prices of the product offered by other competing sellers. Our

approach adjusts the selling price of products automatically with the help of neural

network in order to raise seller revenue. The experimental results portray the effect of

considering the five attributes in earning revenue by the sellers.

5

• Partial work of this thesis has been published in MCeTech'09 conference: Tapu

Kumar Ghose and Thomas T. Tran. "Dynamic Pricing for Electronic Commerce

using Neural Network", Proc. 4' International MCETECH Conference on e-

Technologies, Ottawa, ON, Canada, May 2009.

• The work of this thesis has appeared in AI'2010 conference: Tapu Kumar Ghose and

Thomas T. Tran. "A Dynamic Pricing Approach in E-Commerce based on Multiple

Purchase Attributes", Proc. The 28' Canadian Conference on Artificial Intelligence,

Ottawa, ON, Canada, May 31 - June 2, 2010.

1.4 Thesis Outline

The remaining of the thesis is organized as follows: Chapter 2 provides the background

information on neural network and back propagation technique followed by related work.

Chapter 3 presents our proposed approach for dynamic pricing using neural networks.

Chapter 4 represents results and analysis from our experimental evaluation followed by a

brief discussion on our model. Finally, chapter 5 concludes the thesis with future research

directions.

6

Chapter 2: Background and Related Work

2.1 Neural Network

Neural network is a mathematical model which is composed of a large number of highly

interconnected groups of artificial neurons that are used to process information [19].

Generally, neural network is an adaptive system that learns from example [5]. The

structure of the neural network is based on the information flowing through the network.

The complexity of the structure can be determined by the connection between the

neurons [19].

The market of the present world is very competitive. This fact makes the sellers to change

their offered prices of products frequently in order to sustain in competitive online

economy. In other words, products prices always respond to the fluctuation of the market

and hence the prices keep on changing with the tick of a clock. Therefore, in establishing

a dynamic price our model employs an algorithm whose output changes with time for a

given scenario. Since traditional programming methods always provide the same output

for a given problem, they do not work in our case. In the traditional programming, we

code line by line, instruction by instruction how the program should perform a calculation

7

or task. Hence, a traditional programming always leads to one specific output for a

specific input. In contrast, our model employs an algorithm where the output is not static.

Therefore, we aim to use an adaptive method where instead of telling the program how to

do something, we show it examples of what we want to be done. We provide it with data

on inputs and show it what outputs we want and the adaptive system builds the actual

function autonomously. There exist several randomized and adaptive methods. Among

them we choose feed-forward neural network to address the problem as it has the ability

to determine trends and extract patterns from imprecise data and provides output

depending on the determined trends.

2.1.1 Framework of Neural Network

Neural Networks consist of a set of nodes and links. Generally, all nodes fall under one of

the three layers: input layer, hidden layer and output layer. The nodes in input layer

accept information from outside the network, while the nodes in output layer send

information outside the network. Each node, also known as unit, is connected to one or

more other nodes by directed links. Each link contains a numerical weight, for instance

Wy indicates the strength of the connection between unit i and unity, where the link is

directed from unit /' (u,) to unity (u7). The numerical weight, Wy, ranges from 0 to 1.

8

Input Layei Hidden Ljyei Output Layer

Figure 1: A general Neural Network.

Each unit u, has an activation value at which acts as output of the unit. The activation

values of the units of the input layer are set to some predefined values. A link from u, to

uy serves to propagate the activation a, from u, to u,. Each unit u, first computes a

weighted sum of its input. The computed sum is then passed as parameter to an activation

function/to derive output a* of the unit as follows:

M

7=0
(1)

;-l
where, 'YWjflj is the weighted sum of the inputs to unit u, and / is the activation

7=0

function applied to the weighted sum. This can be summarized by the following figure:

i - i

• > 3j-

Figure 2: A simple Neuron.
9

The activation function/controls the amplitude of the output of the units. In the simplest

case/is the identity function, f(x) = x, and the unit's output is just its net input [19]. Step

function, logistic sigmoid and symmetric sigmoid can also be used as activation function.

Step function gives 0 or 1 as output, whereas, the range of output for symmetric sigmoid

function varies from -1 to 1. On the other hand, the output of logistic sigmoid function

ranges from 0 to 1. Among these functions, symmetric sigmoid provides higher range of

output. However, it provides negative values too. Our approached model of neural

network produces a competitive price of a product as output of the network. Since the

price of a product cannot be a negative value, we have chosen logistic sigmoid function

as the activation function. The function is as follows:

\ + e

In worst case scenario, assume that all the numerical weights of the links between the

input layer and the hidden layer of Figure 1 are zeroes. In such case if identity function is

used as the activation function, according to equation 1, the activation value or output of

each unit of the hidden layer would be zero. Consequently, the output of the entire

network would be zero. However, the aim of our network is to produce a competitive

price of a product in order to increase the sellers' revenue. To overcome this problem we

include a bias unit in our network.

10

A bias unit is connected to any unit of the input layer. We assume that the bias unit is

connected to unit Uo of the input layer. Every product has its own production cost below

which sellers are unwilling to sell the product. Therefore, we are setting the production

cost of the product as the output of the bias unit. In addition, we set the numerical weight

of the links associated with the bias unit to 1. With the help of the additional bias unit we

can ensure that our network will never provide the price of a product below its production

cost.

Input Layei HiidenLayei Output Layer

Figure 3: Neural Network with additional Bias Unit.

In our model of neural network, a unit is activated when the weighted sum of the inputs

exceed the input of the bias unit. The weighted sum of the inputs also includes the bias

unit's input.

11

2.1.2 Feed-forward Neural Network

There are three types of units that can be found in the neural network: input units, hidden

units and output units (Figure 1). Input units receive data from outside of neural network.

Output units send data outside the neural network. The input and output data of hidden

units are remained within the network. Neural network can be divided into two major

categories: feed-forward network and feed-back network. Feed-back network feeds its

output back into its own inputs. In feed-forward network each unit in a specific layer

receives input only from the units in the immediately preceding layer. Unlike feed-back

networks, there is no loop in the feed-forward networks, i.e., the output of any layer does

not affect the same layer [4].

The most common feed-forward network consists of three layers: input layer, hidden

layer and output layer. Every unit of the input layer is connected to one or more units of

the hidden layer, and every unit of the hidden layer is connected to one or more units of

the output layer.

The advantage of adding the hidden layer is that it enlarges the space of hypothesis that

the network can represent. Any continuous activation function of inputs with arbitrary

accuracy can be represented with a single hidden layer [21]. If two hidden layers are used

then discontinuous functions can also be represented. The problem of choosing the right

number of hidden layers is still not well understood [4, 20].

12

2.1.3 Back Propagation Algorithm

The selection of links among the units in neural networks plays an important role in

performing any specific task. The assignments of the weights to the links must be done

appropriately such that the networks produce a better approximation of the desired

output. The objective behind most algorithms for neural networks is to adjust the weight

of each link of the networks to minimize some measure of the errors on the training set

[4].

In order to train a neural network to perform a specific task, the weights of each unit must

be adjusted in such a way that the error between the desired output and actual output is

reduced. This requires neural network to calculate rate of change of errors with respect to

weights, i.e., how errors change as weights are changed.

The back-propagation algorithm is the most widely used method for determining the error

derivative of the weights, denoted by AE. AE can be computed as follows [4]:

Error, E = Vi Err2 ~ XA (X - Y)2, where X = desired output, Y = actual output

The squared error can be reduced by calculating partial derivative of error E with respect

to every weight W,,,.
13

8E 8 A 2 dErr
AE = = {—Err) = Errx

dWUi dWj, 2 dWLi

= Errx-^—(X-Y)
aw..

From equation (1), we know the actual output of each unit is represented by

7 - 1

fC^WjPj). Therefore, by substituting the value of actual output Y from equation (1)
7=0

we get,

AE = Errx-^-iX-fCZW^.))
J.'

<-l
= Errx(0-(aJxf'(YJWuaJ)))

7=0

i - l

-Errxajxf(£wjjaj) (2).
7=0

The algorithm computes the error derivative of the weights, AE, by computing the

amount of error at each unit. AE gives the direction in which the weight, W, has its

steepest slope. Therefore, in order to reduce error we move a small step in the opposite

direction of AE (i.e., - AE). The small step is determined by a constant called learning

rate, a. By using equation (2), the error E can be reduced by updating the weights as

follows:

14

W = W + a x (- AE), where a is the learning rate

= W - a x M (3).

The learning rate, a, is a constant value (real number) which ranges from 0 to 1. It

determines by what amount we change the weights W at each step.

The error, Err* for the output units u* is simply the difference between desired output (X)

and actual output (Y).

Enk=(X-Y)

Substituting the value of Err* into equation (2), we get

AE* =-(X-Y)xajX / ' (I X * a ,) (4).
7=0

Using equation 3 and 4, the weights W7,* for the links between hidden layer units u7 and

output layer units u* are then updated as follows:

W/,* = W,,* - a x AEk, where a is the learning rate.

15

Since the units ut of the output layer are connected to the units uy of the hidden layer, the

units u, have influence for some fraction of the error AE*. Therefore, the error AE^ is

divided according to the weights of the links between the units u7 and the units u*. The

divided error is then propagated back to determine the errors Err, for each unit Uy of the

hidden layer. This is accomplished by multiplying the weights Wy,* of each link between

uy and Uk with AE* and then summing up the products.

Err;=iXtA£t

Substituting the value of Erryinto equation 2, we get

AE, =- ^WJJAE, xa.xfifptja,) (5).
>=0 1=0

Using equation 3 and 5, the weights Wy for the links between hidden layer units and

input layer units are then updated as follows:

Wy = Wy - a x AEj, where a is the learning rate.

In summary, the process of training the three-layered network using back-propagation

algorithm to reduce the errors at each layer by updating the weights is as follows:

16

i. Compute the errors AE* at the output units which is simply the difference between

desired output (X) and actual output (Y).

ii. Update the weights between the hidden layer and the output layer by using the

errors AE*.

iii. Propagate the errors AE* back to the hidden layer to find the errors AE,- at the

hidden layer units,

iv. Update the weights between the input layer and the hidden layer by using the

errors AE, determined in step (iii).

2.2 Literature Review

Over the past few years there can be observed a noticeable rise in interest of dynamic

pricing in commercial and research communities. Several analytical models have been

developed for dynamic pricing in online economies [1, 16, 22, 9, 11, 2]. The main aim

behind dynamic pricing is to adjust the product price in order to capitalize sellers'

revenue. In spite of rich literatures in the field, majority of the research works do not

consider the competition markets where there exist multiple sellers for selling the same

product. [12].

17

2.2.1 Monopolist Market and Single Purchase Attribute

Setting the exact price of a product that would maximize revenue is one of the most

challenging tasks for the sellers. Li et al. [24] studied the enterprises' dynamic decision

problem on price strategies (dynamic pricing decision) in duopolistic retailing market

under uncertain market state. They assumed that two enterprises simultaneously choose

their strategic variable in each period to maximize their expected revenue. They used

Markov stochastic game frame to build up their model. In their design they showed two

distinct type of reinforcement learning methods, Nash Q-learning and Best-response Q-

learning, in their simulation. Their numerical study concluded that the Best-response Q-

learning method outperformed the Nash Q-learning method in dynamic pricing decision

in duopolistic retailing market.

Chinthalapati et al. [9] used machine learning based approach to study price dynamics in

an electronic retail market. The paper gave an overview on what steps the sellers might

take in order to attract the customers to buy goods. Volume discount, consumer

segmentation and sales promotion can be some of them. In the study they considered a

multi seller environment which consisted of two competitive sellers. In addition, the

authors have taken price attributes into consideration that would determine a customer's

buying decision. The study was carried on two scenarios. First, "no information case"

where none of the sellers had any information about customer queue levels, inventory

levels, or prices at the competitors. Second, "partial information case" where all the
18

sellers had information about the customer queue levels and inventory levels of the

competitors. The authors demonstrated a Reinforcement Learning (RL) based pricing

algorithm to reset the prices at random intervals with the aim of maximizing discounted

cumulative profit. The resetting of prices based on few factors such as number of back

orders, inventory levels, and replenishment lead times. The authors discussed about two

types of consumers: captives and shoppers. Captives are not price sensitive and buy the

product at per unit cost. They get preference over the shoppers with regard to supply of

items in the absence of stock. Shoppers receive their products only after delivering the

goods to the captives. Shoppers are price sensitive. They are willing to bear with the

waiting based inconveniences imposed by the sellers. In a nutshell, the authors

considered two competitive sellers in the markets. They also assumed price as the only

attributes of the product in determining customers' buying decisions.

In derivative following (DF) strategy, initially, product prices are set randomly and

profitability is observed. The product prices are increased in the same direction unless the

observed profitability falls. If the observed profitability falls then product prices are

decreased as long as profit is encountered. It requires keeping track of past average profit

of each state, and increases the prices till the profitability level falls [9]. Dasgupta et al.

[10] studied dynamic pricing in a multi-agent economy which consisted of buyers and

competing sellers. They divided buyers into two categories: bargain hunting buyers and

random selecting buyers. Each buyer has a valuation price Pvai below which he/she

unwilling to pay for a product. A bargain hunting buyer employs a shopbot to select the

19

seller that offers the lowest price and purchases the good if the price offered by the seller

is below PVai- A random selecting buyer selects a seller at random and purchases the good

if the price offered by the seller is below Pvai. They had taken price as the only attribute

which take part in buyers purchase decision. They considered that each seller had limited

information about the competitors' prices. In their work, they refined the DF algorithm

and introduced a model optimizer (MO) algorithm that re-estimates a relationship

between price and profit for a seller at every interval more efficiently and builds an

internal model by nonlinear regression of historical data with time-discounted weighting.

The simulations showed that MO outperforms DF even though it has no additional

information about the market. C. Brooks et al. used neural network for dynamic pricing

where a monopolist market has been considered [7, 8].

In contrast, our model considers four more attributes (product quality, delivery time, after

sale service and sellers' reputation) other than price. In fact our model is general enough

to work for any number of attributes. Moreover, our model is not limited to two

competitive sellers. Our model is general enough to work for both monopolist market and

a competitive market with multiple sellers.

2.2.2 Pricing for Products with Finite Time Horizon

Dimicco et. al [34], by using Learning Curve Simulator, analyzed performance of two

adaptive pricing algorithms: Goal-Directed (GD) and Derivative-Following (DF). They
20

considered both monopoly and competitive economy of finite markets where goods like

airlines ticket, sport events ticket, perishable goods have to be sold by finite time horizon.

The goal of the GD strategy is to sell entire inventory by a given finite time period. It

follows a strategy of lowering the prices when sales are low and raising prices when sales

are high. In contrast, DF relies on historical data. It adjusts price based on revenue earned

on previous day due to previous days price change. It follows a strategy of changing the

price in same direction if revenue earned by following previous days price change is less.

The direction of changing price is reversed otherwise. The authors found that GD

outperforms DT for slower moving markets, whereas, DF is superior when there is an

early demand peak in the market. Moreover, in monopoly condition, it is recommended

by the authors to use similar strategies like GD since its goal is to sell the entire

inventory. Another finding is that when GD and DF co-exist, GD success is detrimented

by DF strategies. However, adaptive pricing strategies result in price war if buyers are too

pricing sensitive.

Alexandre et. al [13] discussed on the problems of dynamic pricing in finite time horizon.

They considered a retailer who has to set the price of a good to optimize the total

expected revenues over a period of time T. Their model is dependent on demand curve of

the products. They assumed both demand and price were to be continuous variables.

They studied the problems of optimizing sales revenues based on a parametric model in

which the parameters were unknown. The sellers had to set the price at a level in order to

maximize current revenue and at the same time learn about the parameter values in order

21

to increase the future revenues. It has been showed that among different strategies for

learning, one-step look-ahead rule produced good short term performance.

Kong [11], in his paper, examined seller strategies for dynamic pricing in a market for

which a seller has finite time horizon to sell its inventory. For this purpose a dynamic

pricing strategy is developed using neural network based on online learning (called

SDNN strategy, Sales-Directed Neural Network). The SDNN strategy takes in account

the dynamics and resulting uncertainties of the market place. Neural network used here

consists of three layers: input, hidden and output layer. The only unit of the input layer

takes real price of the product as input, whereas, output is the sales quantity. The SDDN

strategy continually used the observed sales to calculate the error between the current sale

and desired sale. The error is then propagated backward through the network and small

changes are made to the weights in each layer. The strategy did not use any information

regarding buyer population or competitor's pricing strategies. The only knowledge

included in the SDNN strategy was the demand curve. Here, the functionality relationship

between price and sales quantity was represented by the demand curve.

Dasgupta et. al [14], in their paper, employed push strategies mechanism for dynamic

pricing. The authors considered time-limited goods in a supplier driven marketplace

where goods are sold by maintaining strict deadline. These goods become nominal after a

certain deadline. Examples of such goods include electricity, airline tickets, goods with

expiry date like dairy products etc. In their paper the authors had considered dynamic

22

pricing in two scenarios. In the first case they assumed that seller were unable to sample

buyers' demand curve. In such scenario the sellers used a heuristic dynamic pricing

technique called Maximum Return Algorithm to estimate and refine the demand curve of

goods at each buyer. The supplier then offers a price at every buyer that maximizes the

sum of the immediate profit to the supplier for the currently estimated demand curve, and

the estimated value of the surplus stock that the supplier is unable to sell in the market. In

the second case, the authors studied a scenario where the deadline to sell the products is

not strict. In such case, the authors showed that the sellers sample the buyer demand and

use it to dynamically negotiate an exchange point for the good which simultaneously

improves both the sellers' profits and buyers' utility, as compared to trading without

negotiation. The authors used price and quantity of the products as the only criterion that

determine buyer's purchase decision.

In contrary, our model is not dependent on buyer's population in the market, which is

why we did not consider demand curve in the model, because demand curve cannot be

produced without the buyer's population. Therefore, our model of dynamic pricing does

not require the sellers to figure out the demand curve of the products. In our approach of

dynamic pricing our objective is to aid the online sellers in determining a selling price for

the products. In the approach we are not concerned whether the products are perishable or

not. In other words, our model is not limited to goods with finite time horizon.

23

2.2.3 Kephart in Dynamic Pricing

Kephart et al. [27], for their work, considered a picture where a monopolist seller willing

to maximize his/her revenue, provided buyers demand curve is random and

unpredictable. The authors, in their model, employed a trial and error technique to

optimize sellers' revenue. They claimed that fixed pricing or two-parameter dynamic

pricing technique are preferred when demand curve is unpredictable. According to them,

trial and error technique, besides providing satisfactory revenue, helps in enriching

underlying consumer preferences information which could turn out to be handy for the

sellers if they want to receive higher profits by capitalizing on the information. Their

model did not take demand curve of consumers into consideration. Instead, the model

uses historic information regarding profits earned while different price schedules are

practiced by the sellers. With the aid of this information, the model attempts to learn the

most profitable price schedule. To accomplish this task the authors employed a

modification of the amoeba algorithm. In their simulation, the authors worked with five

different price schedules, namely, pure bundling, linear pricing, two part tariff, mixed

bundling and non linear pricing. The authors have related sellers' response to topography

of profit landscape, degree of exploration and frequency of shocks. They showed that

non-linear pricing schedule work best when the demand shock is very infrequent. Among

the five price schedules two-part tariff and mixed bundling are less complex and they can

be learn quicker than other price schedules.

24

Greenwald and Kephart [28] explored no-regret learning for probabilistic pricing

algorithm. They examined both high information and low-information settings. The goal

of their work is to identify most profitable pricebot algorithms by investigating dynamics

of interaction among different pricebot algorithms. They made an assumption that buyers

follow two strategies (Bargain Hunter and Any Seller) for selecting a seller to purchase

the goods. Buyers practicing Bargain Hunter select the seller who offers lowest price

compared to other sellers. Buyers of this category usually take the aid of shopbots. On the

other hand, buyers practicing Any Seller strategy select any random seller provided that

seller offers less prices than buyer's valuation. Buyers of this category usually prefer

product quality or other attributes over product price. The authors, in their work, studied

two typed of pricebot algorithms: informed and naive. An informed algorithm requires

relevant profits information as input, whereas, naive algorithm functions need no

information. They run simulations with two to five adaptive pricebots algorithm that

employ no regret pricing strategies. They found that, for both informed and naive, No

Internal Regret (NIR) and No External Regret (NER) pricebots converge closely to Nash

equilibrium. In their model they considered an economy for single homogeneous goods.

On the contrary, our model is not restricted to homogeneous goods.

Tesauro and Kephart [30] showed that unaccepted behaviors of pricebots such as eternal

price war can be avoided by introducing foresight in the pricing algorithm. For this task

they proposed two heuristic approaches based on adaption of classic minimax fixed-depth

search algorithims and dynamic programming (DP) style algorithms. For the first

25

approach they found that it is adequate to curtail price war by using any amount of look-

ahead in the pricing algorithms. For the second approach the authors used three versions

of DP algorithms: synchronous, asynchronous and incremental. The incremental version

is an extension of asynchronous version where a random element is adjusted by a small

increment towards the calculated optimal price. Their experimental results portrayed that,

among the three versions, incremental version converge to a unique self-consistent

solution. Our model is not concerned about how many sellers are there in the market,

whereas, in their experiment they assumed that there are only two competing sellers

participating in the economy who alternatively take turns in adjusting their prices at each

time step.

Greenwald et. al [31] studied four different price-setting strategies: game-theoric pricing

(GT), myoptimal pricing (MY), derivative following (DF), and Q-learning (Q). These

strategies are different from each other in terms of infomational and computational

requirements. They analyzed their results for both homogeneous and heterogeneous

settings. They found that when all pricebots use same pricing strategy (homogeneous

setting), DF outperforms MY and GT. In contrast, Q strategy demonstrate superior

performance over all strategies when different pricing algorithms are practiced

(heterogeneous setting). Kephart and Tesauro [29] studied nature and behavior of Q-

learning in a model market in which two interacting agents co-exit. They analyzed

symmetric and asymmetric solutions for the model. They found that, between symmetric

and asymmetric, choice of solution obtained by Q-learning depends on discount

26

parameter and on randomness of exploration. The trend is that with increasing discount

parameter, asymmetric solution is preferred over symmetric solution. However, there are

some limitations in GT, MY, DF and Q-learning. GT strategy makes an assumption that

all other competing sellers use game-theoretic [31], however, in present world different

sellers employ distinct pricing strategies. In comparison, our model is not concerned

about what strategies are being used by other competing sellers. MY strategy assumes

that prices set by other competing sellers will remain unchanged [31]. In the contrary,

sellers are always willing to change their offered price for the sake of sustaining in

competing market. Hence, our model always keeps an eye on the random prices set by

other sellers. Q-learning strategy uses a lookup table representation of the Q-function and

requires extensive size of computational requirement. It makes use of both buyers'

demand curve and knowledge about competitors pricing strategies. On the other hand,

our model does not rely on buyer demand curve.

2.2.4 Overview of Our Approach

In our proposed approach, the dynamic pricing described uses feed-forward neural

network to determine a competitive selling price for the products and use little prior

knowledge about market parameters. Moreover, instead of taking only price attribute, we

took five different attributes based on which a customer's purchase decision can be made.

However, our model is general enough to work for any number of attributes. For

instance, if a seller wish to determine a competitive price for his/her product without
27

considering sellers reputation attribute, then he/she can use our model by deleting the

corresponding input unit from the input layer of our network. On the other hand, if a

seller plan to derive his/her product's price by taking another additional attribute into

consideration, then our model can be used by adding an extra input unit into the input

layer. In a word, our model is suitable for flexible number of attributes.

28

Chapter 3: Design and Implementation of Proposed Model
using Feed-Forward Neural Network

3.1 Introduction

In present days the customers' buying decision is not only determined by the product

price. Along with the product price, customers purchase decision is also triggered by

other attributes such as product quality, delivery time, after sale service, sellers'

reputation etc. The preferable purchase attributes of product may vary from buyers to

buyers. To demonstrate this, let us assume that the price for a product, P, based on

different attributes is offered by three different sellers according to Table 1. If a buyer BA

is concerned with the quality of products, then he/she may prefer to buy the product, P,

from the seller SB who offers the best price amongst the three sellers when price is set

based on product quality. Similarly, a buyer Be would choose seller SA when he/she wish

to enjoy after sale service.

Table 1: Price offered by different sellers for a product, P, based on different attributes

Seller

SA

SB

Sc

Product
Price

10.50
11.50
10.25

Product
Quality

10.75
10.65
10.95

Delivery
Time

12.25
12.85
12.50

After Sale
Service

11.52
11.54
11.61

Seller's
Reputation

11.98
11.62
11.25

29

In order to increase the revenue, a seller has to set the selling price of products in such a

way that the price is capable of attracting as many buyers as possible, provided that there

are enough inventories for the products. Since buyers preferred purchase attributes of a

product vary, in order to attract buyers from wider range the sellers have to consider

multiple purchase attributes in setting the product price. For instance, the seller SA from

the above example could have attracted both the buyers BA and Be if SA would have

considered both product quality and after sales service attributes while setting selling

price for the product P. Moreover, sometimes it may happen that a buyer is appearing

with more than one preferred purchase attributes, or in other words, a buyer may wish to

enjoy multiple preferred purchase attributes before making any purchase decision.

Therefore, in order to attract greater number of buyers, instead of providing different

selling prices based on different attributes, the sellers can provide a single price that has

been set by considering multiple purchase attributes. Under the above circumstances, we

propose a model for dynamic pricing which takes multiple purchase attributes into

consideration and provide a single price that covers all the considered attributes. As

discussed in the following subsections, our model takes five purchase attributes of

products into consideration in providing a selling price for a product, namely product

price, product quality, delivery time, after sales service and seller's reputation.

Once the sellers set an initial price of the product, our model adjusts the price of the

product automatically with the help of neural network in order to increase the revenue

earned. In setting the initial price of a product, we assume that sellers use their prior

30

knowledge about the prices of the product offered by other competing sellers. No other

prior knowledge is used in the evaluation. In the following chapter we simulate an e-

commerce market place with three different sellers. The sellers employ three distinct

pricing techniques: our model, simple pricing algorithm and derivative-following (DF).

From the experimental evaluation demonstrated in Section 4.2.4 and Section 4.3 we can

see that our approach performs better than a traditional simple pricing algorithm. A seller,

by taking five attributes of our model into consideration, could employ a simple pricing

algorithm to determine a competitive price of products. A simple pricing algorithm may

take at least the production cost of a product as initial selling price of the product. If a

buyer prefers to enjoy any additional attributes such as after sale service, then the

algorithm may wish to add some additional price for each supplementary attributes.

Finally, the algorithm would provide a selling price of the product. Since in online

economy prices of products do not remain static, a seller has to frequently update his/her

offered price of the products. While updating the prices, there can arrive two different

scenarios for a seller who employs the simple pricing algorithm. First, the algorithm,

while updating the price by adding extra amounts for additional attributes, does not use

any information on how other competing sellers in the market set their selling price.

Since the algorithm has no knowledge about market parameters, it uses some random

extra prices for additional attributes. Hence, the price can be too low or too high which

may lead to inadequate revenue for a seller. In other words, sellers employing a simple

pricing algorithm run a risk of earning less revenue. In the second scenario let us assume

31

that a seller who employed the simple algorithm, do some manual search on the prices

offered by other vendors. The algorithm uses information obtained from the seller's

search to determine a selling price for products. However, the manual search could be

time consuming. It might take from hours to days or even longer to gather information by

manual search. Since prices change within very short span of time in online market, the

information acquired by manual search during relatively large span of time might become

outdated. Consequently, the algorithm would be using obsolete information which may

lead to inappropriate output. In contrary, our model outputs a competitive selling price of

products by providing importance to the five attributes based on historical data, which

implies it does not rely on any manual search. In addition, our technique, while

determining competitive selling price, considers the sellers make use of their prior

knowledge of the prices set by other competing sellers in providing initial input to the

model. This indicates that our model keep an eye on the competitive price set by other

sellers in competing market and utilizes fresh information of price. In other words, our

technique performs better than manual search in terms of time and non-obsolete

information.

3.2 Purchase Attributes

Best Buy and Future Shop are the largest retailers of electronic goods in the United States

and Canada respectively. By analysing the prices offered by them, we found that their

prices are set based on product price, delivery time, after sales service and product quality
32

(e.g., sealed products vs. opened box products). They offer different price for the same

product based on different purchase attributes. For instance, if a buyer prefers to receive

the purchased product earlier then they add some additional value to the selling price on

the basis of faster delivery time. Similarly, a buyer is asked with higher selling price than

the usual selling price if he/she wants to enjoy after sales services like warranty.

According to a quarterly survey that was conducted on October 2008 in United States,

eBay was ranked as No. 1 online retailer [43]. Besides product price and product quality,

eBay also makes use of sellers' reputation in setting selling price of a product. In online

shopping transaction it is difficult for a buyer to measure quality of the purchased goods

well ahead of delivery. The buyers, hence, have to rely on the products' information

provided by sellers. In such scenario seller reputation becomes an important means of

reliance [35] before the outcome of the transaction. Chen et al. [37] studied the attributes

or factors of e-commerce website that have effect on cosumers' on-line shopping

preference and figured out that, beside other attributes, trust and delivery would play role

in buyers purchase satisfaction. In the words of Dasgupta et al. [2], "micro-economic

literature and online consumer surveys suggest that a consumer's purchase decision is

determined by multiple product attributes including price, delivery time, seller reputation,

product quality and after-sale service". From information of above mentioned literature

review, the most common attributes that can play vital role in determining customers'

purchase decision would include product price, product quality, delivery time, after-sale

service, and sellers' reputation.

33

Under the above circumstances, in our model we choose to include product price, product

quality, delivery time, after-sale service, and sellers' reputation as the purchase attributes

of product in setting a selling price for a product, P. However, our model is not restricted

to these five attributes. For simplicity we have chosen the said attributes. Our model is

general enough to work for any number of attributes. We use feed-forward neural

network to determine a competitive price for the products in order to raise sellers'

revenue. The prices of products do not remain constant. It varies with time. Since

traditional programming methods always provide the same output for a given problem,

they do not work in our case. As discussed in Section 2.1, we choose feed-forward neural

network to address the problem as it has the ability to determine trends and extract

patterns from imprecise data and provides output depending on the determined trends.

3.3 Structure of the Proposed Model

The objective of the thesis is to determine a competitive price for a product such that the

number of buyers willing to buy the product at the determined price is increased and

hence the sellers' revenue is raised. In our model, for determining the price, we used a

feed-forward neural network which contains three layers: input layer, hidden layer and

output layer.

34

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Figure 4: Block diagram of the proposed model.

3.3.1 Units of the Input Layer

In our model we are considering five important attributes which contribute in buyers'

purchase decisions. These attributes are product price, product quality, delivery time,

after sale service, and sellers' reputation. As discussed in Section 3.2 we believe that

these are the most common attributes that buyers would consider to make purchase

decisions. Therefore, the network we designed consists of five units in the input layer,

one for each attribute. Each attribute can be assigned to any of the five units of the

network if the unit is still unoccupied by any attribute. In our case, we are assigning

product price, product quality, delivery time, after sale service and sellers reputation to

ui, U2, U3, U4 and U5, respectively.

35

ao "0

ai ui

a2 112

34 114

a5 Ug

Figure 5: Units of Input Layer of the proposed model.

The input layer also consists of one extra unit u0 as the bias unit as explained in Section

2.1.1. We set the value of ao to the production cost of the product. Usually, sellers are not

willing to sell their products below the production cost of the corresponding products.

Hence, we considered the production cost of the product as the output of the bias unit.

Initially, all the values ai, a2, a3j a4 and as of the input units are set by the sellers. These

values represent input to the five units of input layer ui, U2, U3, U4 and U5 respectively. In

setting these values, we assume that sellers use their prior knowledge about the prices of

the product offered by other competing sellers in the market. No other prior knowledge is

used in our model.

HIDDEN LAYER OUTPUT LAYER

36

3.3.2 Inputs of the model

All the units of the input layer accept numerical values as input, i.e., we provide a

numerical value of the product based on different purchase attributes.

Product price: Different sellers offer different prices for an identical product in the online

economy. A brand new "Sony Vaio (VGNNS330DS)" laptop of same configuration is

offered at CDN 699.99 and CDN 679.95 by Best Buy1 and Future Shop2 respectively, as

shown by Figure 6 and 7 below [40, 39].

,.:,,;;.;%..&;' | [| i f ^ . l ^9 te i i i r iA^ l3^ j

1 Sony VAI015.4" Laptop featuring Intel Pentium T4200
' (VGHNS330DS)-Silver
UPDATE

«£''Mz&i"'"'

I I2 I1 IS5 j lPite ,

BShip J699-99

D Pick up r

Sî î ri

to

1699.99

Figure 6: Price offered by Best Buy for Sony Vaio (VGNNS330DS) laptop.

United States largest electronics retailer that also operates in Canada, Mexico, and China.
! Canada's largest electronic retailer.

37

®@g£[Ffl(p88®G&-. ^QDgMSfij? 4 QJteiBQ; Pofle© '-G¥ite©

Sony VAIO 15.4" Intel Pentium T4200
2GHz Laptop (VGNNS330PS) - Silver

a Product Availability:

Eg] Ship M Pick up

a Add Product Service Plan t'lJM?

• View Accessories

k
$679.95 $679.95

Total Before Taxes and Shipping $679.95

Figure 7: Price offered by Future Shop for Sony Vaio (VGNNS330DS) laptop.

Usually a consumer would like to buy a product from the lowest price offered seller.

Therefore, when a buyer purchase decision is made by the product price offered, the

buyer would choose Future Shop to purchase the laptop. The first unit, uj, of the input

layer of our network takes price of the product as input, aj, based on the "product price"

attribute. The sellers study the price offered by other competitive sellers in the market

before providing an input to the first input unit, uj.

Product quality: Vendors offer different prices for same product with different qualities.

For instance, a consumer can get a laptop (Latitude E5500) from Dell at two different

prices as portrayed in Figure 8 and Figure 9. Dell offers a Latitude E5500 laptop at CDN

1160.00 [41]. However, the same laptop with higher battery quality or battery life time

can be bought from Dell at CDN 1258.00 [41]. A businessman, who travels more

compared to a student, would prefer to pay more for the sake of better battery life time.

38

The second input unit, 112, of our network accepts product price based on product quality

as the input, 02.

Latitude E5500 M$v« tan t»Dfy Swot
tens i RMXW*

to

WeWCflre™12 0u& P960B C2.44IGH2.3M12 C«K»e. lOEaMK; FSB5. Oeni** Wnctow*
VfStrt*l»BB5WSM,WlhfllHfe

) Adjust System

Oly

l|siaieT«d

thiit Price

!l,t:S0OO

PROCESSOR
OPERATING SYSTEM
LCD DISPLAY
MEMORY
HARD DRIVE
OPTICAL DRIVE

<gjTTERY OPTIONS
INTERNAL KEYBOARD

Intel® Core™ 2 Duo P8600 (2.40GHz, 3M L2 Cache, 1066MHz FSB)
Genuine Windows Vista® Home Basic SP1, With media
15.4 inch Wide Screen WXGA Anti-glare LCD Panel
2.0GB, DDR2-800 SDRAM, 2 DIMMS
80GB Hard Drive, 5400 RPM
8X DVD with Cyberlink PowerDVD™

B C e l l B a t t e n O
Internal English Single Pointing Keyboard

Figure 8: Price offered by Dell for a Latitude E5S00 laptop with low quality of battery.

Latitude E5SO0 m Rons left Oty

l!
Latitude E55M
HeWCrae™ 2©uoPSSCQ(2.4QOHx,3<f L2Cache, tOS6MHiFSB).gemme Windows !"
Vfe*i«HorneBs»eSP1,W*hm*fei q o « e & *
• maA System

UMr Price

PROCESSOR
OPERATING SYSTEM
LCD DISPLAY
MEMORY
HARD DRIVE
OPTICAL DRIVE

TERY OPTIONS
INTERNAL KEYBOARD

Intel® Core™ 2 Duo P8600 (2.40GHz, 3M L2 Cache, 1066MHz FSB)
Genuine Windows Vista® Home Basic SP1, With media
15.4 inch Wide Screen WXGA Anti-glare LCD Panel
2.0GB, DDR2-800 SDRAM, 2 DIMMS
80GB Hard Drive, 5400 RPM
8XDVD with Cyberlink PowerDVD™
9 Cell B a t t e Q
Internal English Single Pointing Keyboard

Figure 9: Price offered by Dell for a Latitude E5500 laptop with high quality of battery.

39

Delivery time: If a buyer's preferred attribute is delivery time, then the seller would

deliver the product as soon as possible. In such case the sellers might have to go for

express mail option in sending the desired product to the buyer. Therefore, the seller may

add some extra money to the cost of the product so that the expense of the express mail

does not affect the sellers' revenue. Since the "delivery time" attribute is taken care of by

the third input unit, wj, the seller would set the value of a,?, to some price x such that the

revenue is not affected by the extra cost of express mailing service. For instance, the

price of a Nikon D3000 DSLR camera set by Future Shop is CDN 799.98. However, the

vendor charge an additional cost of CDN 14.87 (Figure 10) if a consumer wishes the

product to be mailed in faster means (air) so that it can be delivered in less time. The

third input unit, U3, of our network receives price of the product based on delivery time.

40

cmvm ©@3£iHra(i5®5)
'-i&*.hi^i^tfJ>/ti';ix&4v-s&<£ii&x,^t

• . ••• . 7 — — 7 - . :•'• . - • — 1 . - . - • • • .

D

Nikon D3000 10.2MP DSLR Camera
With 1 8 - 5 5 m m Lens Kit & 5 5 - 2 0 0 m r
Lens Package

D In Stock: Usually ships next
business day,

D Product Availability:

El Ship M Pick up

• Add Product Service Plan

Nikon D3000 10.2MP Digital SLR
Camera With 18-55mm Lens Kit
Nikon 55-200mm Compact
Telephoto Zoom Lens With
Vibration Reduction (AF-S DX VR)

$799.98 $799.98

Total Before Taxes and Shipping $ 7 9 9 . 9 8

Ytsu want easy re-tarts.
m.

t^^M^^^'M^^^-'M^-'^^'i^m^i&iS^Mij^M-
K1G3P4 ' 'Sffiv IM^fe^afe"
Shipping Service Del ivery Date'1'

Ground September 30, 2009

Air September 28, 2009

Shipping C h a r g e *

$0.00

$14.87

* Estimate only; Applies to "In-stock" products only, Does not apply for products listed as "Special
Delivery".

* Estimate only. Actual charges will appear when selecting shipping service in check-out.

Figure 10: Future Shop charges additional price for faster delivery.

After sales service: To facilitate a buyer with after sales services it is a common practice

for the vendors to charge a specific amount in addition to the selling price of a product.

For example, as shown in Figure 11 the price of a "Sony Vaio (VGNNW130DT)" laptop

offered by Future Shop is CDN 979.99 [39].

~ " . i. • • ; • • . I m

Sony VAIO 15.5" Intel Core 2 Duo
T6500 2.1GHz Laptop (VGNNW130PT)

a Product Availability:

a ship a pick UP

n Add Product Service Plan

• View Accessories

Total Before Taxes and Shipping $979.99

Figure 11: Price offered by Future Shop for a Sony Vaio (VGNNW130DT) laptop.

However, if a consumer would like to enjoy warranty for additional two years, then

Future Shop charges additional CDN 274.99 for adding on-site product service plan for

two years (Figure 12). That is, total price of the laptop including the mentioned after sale

service would be CDN 1254.98 [39]. The fourth input unit, U4, of our network accepts a

price of a product based on after sale service attribute as input, 04.

42

1
1 ,

• 1 - t

Sony VAIO 15.5" I n te l Core 2 Duo
T6500 2.1GHz LaDtoD fVGNNW130DT)

n Product Availability:

D ShiD H Pick UD

• View Accessories

2 - Year(s) Product Service
Plan f o r Sony VAIO 15.5" In te l

^jgg&t Core 2 Duo T6500 2.1GHz
| p l | | Laptop (VGNNW130DT)
^ S I S * Chanae Product Service Plan

• Product Availability:
Q ShiD M Pick UD

1

1

i

$979.99

$274.99

$979.99

$274.99

Tota l Before Taxes and Shipping $1,254.98

Figure 12: Additional price charged by Future Shop for a Sony Vaio (VGNNW130DT)

laptop with two years service plan.

Seller's reputation: Product price may vary with a particular seller's reputation. In online

market since buyers have to pay the fare of purchased product before delivery, they run a

risk of trusting seller's integrity. Before purchasing a product, a consumer carries a

certain level of expectations regarding the products quality [38]. In online shopping

transaction it is difficult for a buyer to measure quality of the purchased goods well ahead

of delivery. The buyers, hence, have to rely on the products' information provided by

sellers. However, after receiving the purchased product, the buyer may find that the seller

has provided asymmetric information of the products. In such scenario seller reputation

becomes an important means of reliance [35, 38] before outcome of the transaction.

Based on his/her reputation, a seller may or may not add some extra money to the cost of

the product. We can find enormous examples on online where two sellers with different

43

reputation values offering distinct prices for a similar product. For example, at eBay a

BL-4C battery for Nokia 6100 cell phone is offered at two distinct prices by two sellers

of different reputation (Figure 13). A seller with 99.1% users' positive feedback asks

little higher price (CDN 3.51) than a price (CDN 2.93) offered by a seller with 98.5%

users' affirmative feedback [41]. Like all other input units, the fifth input unit, us, of our

network accepts product price based on sellers reputation as input, <xj.

Ftatuntd t t n w

1

i

•MM»
.>**-• •&m 1
mm 1

DL,4^**v.
Jim

$̂ F.....

OEM Isltery IL--SC Neta S1806I26 H60SI31 §300 7W
Locitss: Hihif K#fcj

Ftti)b*tkr 13,*$+ t $»,5»

fi Enltiat

?€W OEM Ball *.7 ft? N0KIA61O5 61SC0 31C0 ?2TO 63SO 61 ftl
l*««*«n: torts KQIHI
F**«lb.l€k,! 10,084 1 99,1%

^%#*W

z&yilfr

SWpptngto
Prtct K16JP-*

CSMJ '—

CSJ.Il ! —

Figure 13: Price offered for a BL-4C cell by two sellers of different reputation at eBay.

In a nutshell, the input layer of our model consists of separate units for the five purchase

attributes of product, namely product price, product quality, delivery time, after sales

service and sellers' reputation. Based on each purchase attribute, we provide the selling

price of a particular product as input to the corresponding unit.

Please note that our model can accept more attributes. One additional unit in the input

layer needs to be added for each new attribute. On the other hand, in order to remove an

attribute from the network the corresponding unit from the input layer, along with all the

44

links that are connected to the unit, has to be eliminated. This implies that our model will

work for any number of attributes. In addition, our model is not limited to these five

attributes. The model can accept any other attributes as input. We have taken these five

attributes to present a clear concept about how an attribute would look like.

3.3.3 Units of the Hidden and Output layer

The number of units in the hidden layer cannot be well defined in advance. The number

keeps changing from one network configuration to another. In our model we used three

units in the hidden layer. From our experimental evaluation we found that the outputs are

relatively the same for the network with three hidden units and four hidden units;

however, the evaluation with four hidden units takes more execution time than that with

three hidden units. On the other hand, network with three hidden units performed better

than network with two hidden units. Therefore, we chose three hidden units in our

experimental evaluation. We may increase/decrease the number of hidden units based on

the performance of our experimental evaluation. The output layer of our model consists

of a single unit which provides a competitive price of the product as output.

45

ao 110

a i (u i

a2 U2

ag

a3 «3

34

35

u<

«7

im

ae

"\w«
&7 \ .--

• yh_a._.. b&

as

U9

U4

»S

Figure 14: A three-layered feed-forward Neural Network for price determination.

3.4 Dynamic Pricing Algorithm

The price of the product determined by our network (Figure 14) can be found by using

the final output a.9. As indicated in Section 2.1.1, we use the logistic sigmoid function as

the activation function and the final output ag can be calculated with the aid of equation

(1) as follows:

a9 = f(W6,9a6 + Wl,9a7 + WgfOg) (6).

where,

a7 = f(W07a0 +WiJal +W2Ja2 +W3Ja3 +W41a4+W5Ja5)

«8 = f(W0,$a0 +WlSai +^2 ,8«2 +WX$a3+WWa4+W5,Sa5)

46

and the logistic sigmoid function/, as the activation function, is given by:

A*) = 7-^7 l + e

Equation (6) can be represented pictorially as Figure 14 where bias unit is set as the

production cost of the product. Initially, we assume that the buyers have equal preference

on all the five attributes that we are considering. Since there are five links between the

input layer's units (except bias unit) and hidden layer's units; we set 0.2 as weight of the

links between the input units and the hidden units (5 x 0.2 = 1.0). Similarly, 0.33 is set as

weight of the links between the hidden units and the output units; as there are three links

between the layers (3 x 0.33 ~ 1.0).

We sub-divide the process of dynamic pricing of our model using neural network into

two phases: training phase and price determination phase. In the training phase we train

our network with a set of training patterns. A training pattern consists of a set of inputs

and a desired output. The desired output indicates what the output of a model of neural

network ought to be when a specific set of input is given to the network. A typical set of

training patterns for our model is depicted in Table 2.

Table 2: General set of training pattern of our model

Product
Price

Inputi i
Input2i
Input3i

Product
Quality

Inputs
Input22
Input32

Delivery
Time

Input 13
Input23
Input33

Sellers'
Reputation

Input H
Input24
Input34

After Sales
Service

Inputs
Input25
Input35

Desired
Output

Outputi
OutpUt2
OutpUt3

47

Each row of Table 2 represents a training pattern which contains a set of inputs and a

corresponding desired output. The purpose of the training process is to adjust the weights

between the links such that the errors are minimized. To obtain this goal we feed units of

the input layer of our network with the corresponding input values (Inputtj) from each

training pattern. We then determine the output from our network and compare it with the

corresponding desired output (Output,) of the training pattern to calculate error. Finally,

we update weights between the links depending on the calculated errors. In our model,

during the process of training, the errors between the links are minimized by using back-

propagation technique. The training process can be portrayed by the following steps:

i) Input values from a training pattern to units of the input layer of the network,

ii) If the current training pattern is the first training pattern of the training set,

then associate the links between input units and hidden units with equal

weight, i.e., 0.2. Also, associate the links between hidden units and output unit

equally, i.e., 0.33.

iii) Determine the value from the output layer,

iv) Compute the error, i.e., the difference between desired output of the training

pattern and the value obtained in step iii.

v) If the error is more than zero then go to step viii.

vi) If the error is approximately zero and there is more training pattern left, then

take the next training pattern and go to step i.

48

vii) If the error is approximately zero and there is no more training pattern left,

then terminate the training process,

viii) Update the weights of the links using back-propagation technique to minimize

the error,

ix) Go to step Hi.

The training phase updates weights between the links of the network as needed so that it

can provide better output. Once the training process is complete, our model of network is

ready to determine a competitive price for a product, P, from the price determination

phase as follows:

i) Set the production cost of the product, P, as the input to bias unit of the input

layer and set the weights of the links associated with bias unit to 1.

ii) Set the values (a,) of the input units for the corresponding purchase attributes

of product (as mentioned in Section 3.1) by using prior knowledge about the

prices of product offered by other competing sellers.

iii) Run the network and derive the price from the output layer.

iv) Set the price from the output layer as the product price.

3 As mentioned in Section 2.1.1, every product has its own production cost below which sellers are
unwilling to sell the product. Therefore, we are setting the production cost of the product as the output of
the bias unit. In addition, we set the numerical weight of the links associated with the bias unit to 1 such
that our model would never provide the price of a product below its production cost.

49

In step ii while setting the values of input units for the corresponding attributes, we

assume that the sellers use their prior knowledge about the prices offered by other

competitive sellers. A seller may employ a web crawler or a web-spider that browse the

World Wide Web in methodical, automated manner to harvest up-to-date information

about the price offered by other competitive sellers in the market. Search engines like

Google make use of web-spidering for providing up-to-date data. We kept the inclusion

of such a web-crawler to our model as a future work.

3.5 Error Minimization and Price Determination

Initially, the error size may be large depending on how the initial weights of the links and

the values of the input units are chosen. The error is minimized at each iteration from step

Hi through step ix of the training phase. Once the price of a specific product is determined

from the output layer from step iv of the price determination phase, the weights of the

links remain unchanged. In step ii of price determination phase we assume that sellers use

their prior knowledge of price offered by other sellers in the market. This indicates that

our model keep an eye on the competitive price set by other sellers in the competing

market.

In dynamic online economy, the price of products keeps on changing with the tick of

clock. In order to sustain in the competitive online economy a seller needs to update

his/her price in response to price fluctuation by other competing sellers in the market.
50

While updating the price by using our model, we go through the training and price

determination phases of our model to recalculate the price. Before recalculating the price

we analyze the revenue earned by using the selling price, Pr, for the product, P, that was

generated from our model.

If the revenue earned is greater than zero, i.e., if the seller earned at-least some revenue

by using Pr, then in step ii of training phase instead of taking 0.2 as the weight, Wy,

between the input units and the hidden units, we use the weights, W(</, that were

determined during the last iteration of the training phase at the time of determining Pr

and go through the process again. For instance, assume that the value of W/,,$ was 0.38

when the product price was determined from step iv of price determination phase. In such

scenario, we would like to set the value of W/,6 to 0.38 instead of 0.2 in step // of training

phase and run the process again. Moreover, at the time of determining Pr we store the

values of input units from step / and values of output unit from step iv of price

determination phase as the historical data. We use this historical data as an additional

training set during the training phase. We assume that all the training patterns used in the

training phase are derived from historical data.

On the other hand, if there was no revenue earned then the entire process is run by

providing a new set of inputs in step ii of price determination phase. In providing new set

of inputs, we suggest that a seller choose slightly lower values than the set of inputs that

were used most recently.

51

3.6 Implementation of the Algorithm

For implementing the algorithm described in section 3.2, C++ programming language has

been used. As described in the earlier subsections of 3.1, our model contains five input

units in the input layer including a bias unit, three units in the hidden layer and one unit

in the output layer.

3.6.1 Structure of Each Unit

A unit of each layer consists of three properties. They are:

1. Number of input links from previous layer (N),

2. Weight of incoming links (W) and

3. Activation value (AV).

"Number of input links from previous layer (N)" of a unit u indicates the total number of

incoming units from immediate previous layer of the network that is connected to u. Each

of these incoming units is associated with some weight value which is denoted by

"weight of incoming links (Wf\ The "activation value (A V)" implies net output of the

unit.

The following is a snapshot of the structure of a unit or node of each layer in our model.

52

class TNode{

int nlnputLinks; // number of input links from previous layer

float *weights; // weights of incoming links

float aValue; // activation value

public:

TNode();

-TNode();

void setNumlnputLinks(int num) ;

int getNumlnputLinks();

void setWeights(std::vector<float> wts) ;

float* getWeights();

void setValue(float val);

float getValue();

};

3.6.2 Generation of the Network

Our model contains five input units, three hidden units and a single output unit. We

generate the network of our model as follows:

genLayer(nlnputNodes,nHiddenNodes,nOutputNodes,epochs, lRate ,epsi lon) ;

The first three parameters of the function indicate the number units in the input layer,

hidden layer and output layer respectively. The fourth parameter {epochs) is the number

53

of iteration that will be carried out while training the network. Epoch is the maximum

number of times the complete data set of training pattern can be used by the network for

training. We will discuss about the training pattern in the following chapter. The fifth

parameter tells about the learning rate of the network. The learning rate determines by

what amount the weights between the links are updated at each step of iteration during

training period. The last parameter specifies the amount of error that can be tolerated by

our network in the learning phase.

3.6.3 Initialization of Weights Vector

At the initial stage of training the network, we set the weights between the links of the

layers equally. We had the intention to give even priority to all the attributes that we

discussed. Since there are five input units and three hidden units, each hidden unit is

connected to five of the units from the previous layer (input layer). Consequently, we

associate each link between input units and hidden units with equal weights, i.e., 0.2.

Similarly, the single unit of the output layer is linked to three of the units from hidden

layer hence we associate an equal amount of 0.33 as weight to each link between hidden

units and out unit.

54

The content of initial weights vector looks as follows:

0.20
0.20
0.20
0.20
0.20
0.33
0.33
0.33

The initial weights vector contains weights of the links between input units and hidden

units followed by weights of the links between hidden units and output unit. The contents

of the weights vector are then distributed among appropriate links between the layers as

follows:

void TLayer : : se tHiddenLayerWeigh ts (s td : :vec tor<f loa t> wts){

f o r (i n t i = 0; i < nlnputNodes; i++)

HLW.push_back(wts .a t (i)) ;

}

void TLayer : : se tOutpu tLayerWeigh t s (s td : :vec to r<f loa t> wts){

f o r (i n t i = nlnputNodes; i < w t s . s i z e () ; i++)

OLW.push_back(wts .a t (i)) ;

}

Here, both the functions taking initial weights vector (wts) as input parameter. The initial

weights of the links between input units and hidden units are stored in HLW vector,

55

whereas, the weights of the links between hidden units and output unit are located in

OLW vector.

3.6.4 Activation Function

Identity function, step function, logistic sigmoid function and symmetric sigmoid

function are some of the well known activation function that is being used in neural

network. Among these functions, symmetric sigmoid provides higher range of output.

However, it provides negative values. Since our model of neural network produces a

competitive price of a product as output of the network and the price of a product cannot

accept any negative value, we have chosen logistic sigmoid function as the activation

function.

float TLayer::sigmoid(float x){

return 1/(l+exp(-x));

}

3.6.5 Train Network

The goal of our model is to provide a competitive price for the products so that the

revenue earned by the sellers is increased. Setting the correct weights of each link among

different units of all the layers plays the most vital role in neural networks. Therefore, the

objective here is to choose weights for each link as accurately as possible such that the

56

network performance is optimized. This can be done by training the network by a set of

predefined training pattern. A training pattern consists of a set of inputs with desired

output. We train the network by using same sets of training patterns over and over again.

After each iteration in training the network, we evaluate the errors by finding the

difference between desired output and actual output of the network during that specific

iteration. A sample code of error evaluation is given below.

void TLayer::evaluateErrors(float targetVal){

float error;

// update output layer weights

oError.clear();

for(int i = 0; i < nOutputNodes; i++){

error = (sigmoid(targetVal - prCost) -

output[i].getValue()) * output[i].getValue() * (1 -

output[i].getValue());

oError.push_back(error);

}

// update hidden layer weights

float eSum =0.0; // sum of errors

hError.clear();

for(i = 0 ; i < nHiddenNodes; i++){

for(int j = 0; j < nOutputNodes; j++)

eSum += oError.at(j) * OLW.at(i);

57

e r r o r = eSum * h i d d e n [i] . g e t V a l u e () * (1 -

h i d d e n [i] . g e t V a l u e ()) ;

h E r r o r . p u s h _ b a c k (e r r o r) ;

}

}

We first calculate the amount of errors in output layer by calculating the difference

between final output of output layer and target output of the training sets. Since the single

unit of output layer is connected to each of the unit of hidden layer, hidden layer units are

partially responsible for the errors found in output layer. We, therefore, propagate the

calculated error of output layer back to hidden layer units to figure out the errors

presented in the hidden layer. The errors in output layer and hidden layer are stored in

oError and hError error vectors respectively.

These calculated errors are used to update the weights of all the links to minimize the

errors. The errors calculated in the output layer are utilized to update the weights of the

links between hidden units and output unit. The updated weights are then stored in OLW

vector. The errors found in hidden layer are used to update the weights of the links

between input units and hidden units. Consequently, the content of HLW vector is

updated.

58

void TLayer:rupdateWeights(){

// update output layer weights

for(int i = 0; i < nOutputNodes; i++){

forfint j = 0 ; j < nHiddenNodes; j++)

OLW.at(j) = OLW.at(j) + lRate * oError.at(i) *

hidden[j].getValue();

}

// update hidden layer weights ei * wij

for(i = 0 ; i < nHiddenNodes; i++){

for(int j = 0; j < nlnputNodes; j++)

HLW.at(j) = HLW.at(j) + lRate * hError.at(i) *

input[j].getValue();

}

}

After updating the weights of all the links, the network is run again. We keep on running

the network over and over again to train the network until the errors found in the output

layer is below some threshold value specified by epsilon. Following is a snapshot of train

network function.

void TLayer::trainNetwork(){

std::vector<float> trainingSetVal;

float targetVal;

std::fstream inputTrainingSet;

59

inputTrainingSet.open("trainingSet.txt");

if(!inputTrainingSet)

std: :cout«"ERROR: Training set file named trainingSet.txt

not found.\n";

else{

float t;

while(true){

for(int i = 0; i < epochs; i++){

while(!inputTrainingSet.eof()){

for(int j = 0; j < nlnputNodes + 1; j++){

inputTrainingSet>>t;

trainingSetVal.push_back(t);

}

inputTrainingSet»targetVal ;

setlnputLayerlnputs(trainingSetVal);

runNetwork();

evaluateErrors(targetVal);

updateWeights();

trainingSetVal.clear();

} // end while

inputTrainingSet.clear() ;

inputTrainingSet.seekg(0,std::ios::beg);

} // end for

if(oError.at(0) < epsilon)

break;

}// end while

60

} / / end e l s e

i n p u t T r a i n i n g S e t . c l o s e () ;

}

3.6.6 Set Input Layer Units

Once the training of the network is done we are ready to run the network to provide a

competitive selling price of the products for the sellers. The first step to run the network

is to set input to the units of input layer.

void T L a y e r : : s e t l n p u t L a y e r l n p u t s (s t d : : v e c t o r < f l o a t > inputVal){

prCost = i n p u t V a l . a t (0) ;

f o r (i n t i = 0; i < nlnputNodes; i++)

i n p u t [i] . s e t V a l u e (i n p u t V a l . a t (i + 1)) ;

}

The function accepts a vector of input values as an input parameter which contains the

input values of each units of the input layer.

3.6.7 Run Network

After setting input values to all units of the input layer we run the network to calculate

the outputs of each unit of the hidden layer. The output from the units of hidden layer is

61

then used to derive the final output of the network. This final output represents the selling

price of the products determined by the network. The following is the sample code for

running the network.

void TLayer: :runNetwork(){

/ / h idder l aye r

f l o a t n e t l n p u t ;

f o r (i n t i = 0; i < nHiddenNodes; i++){

n e t l n p u t = prCost ;

f o r (i n t j = 0 ; j < nlnputNodes; j++){

n e t l n p u t += s i g m o i d (i n p u t [j] . g e t V a l u e ()) * HLW.at(j);

}

hidden[i].setValue(sigmoid(netlnput - prCost));

}

// output layer

for(i = 0 ; i < nOutputNodes; i++){

netlnput = prCost;

for(int j = 0; j < nHiddenNodes; j++){

netlnput += hidden[j].getValue() * OLW.at(j);

}

output[i].setValue(sigmoid(netlnput - prCost));

}

}

62

3.6.8 Get Product Price

The aim of our model was to determine a competitive selling price for the products that

enable sellers to increase their revenue. The final output of the network provides the

competitive price of the products. In calculating the product price our model considered

five attributes that would determine buyers purchase decision. As mentioned before, our

model is general enough to work for any number of attributes.

float TLayer::getProductPrice(){

std: :cout«output [0] .getValue () « " \n" ;

return - log(1/output[0].getValue() - 1) + prCost;

}

63

Chapter 4: Test Application and Experimental Evaluation

In this thesis a test application is implemented to experiment the applicability and

performance of the designed model. The implemented system is divided into two

subsystems.

1. Agent module - for training the network.

2. Client module - to receive competitive price of a product from the network.

The agent module is intended for the system. The agent module is responsible for the

following:

• Setting up the neural network by determining

i. Number of input units in the input layer,

ii. Number of hidden units in the hidden layer,

iii. Number of output units in the output layer,

iv. Number of iteration (epochs) used in training the network,

v. Amount of errors (epsilon) allowed during training and

vi. Learning rate of the network while training.

• Generate the network by using the above six information pieces.

• Set the weights of the links between input layer and hidden layer.

64

• Set the weights of the links between hidden layer and output layer.

• Train the network by using a set of training patterns.

The client module is meant for sellers. The sellers are sole user of the client module. The

client module is responsible for the following:

• Set the inputs for all the units of input layer.

o It is assumed that sellers use their prior knowledge of the product price set

by other competitive sellers,

o By using the prior knowledge they set inputs to all the units of input layer

as described in section 3.1.1.

• Receive a competitive price of the product given by the network.

4.1 Design of the Test Application

Since the system is divided into two subsystems, the design of the test application

consists of use cases and sequence diagram for both agent and client. The design also

includes class diagram of the application.

65

4.1.1 Use-Cases of Agent Module

System

Figure 15: Use-Case diagram for Agent module of test application.

The use-cases are described below:

Use-case: Set Network Properties.

Actor: System.

Description: The system prepare the initial setting of the network by determining the

number of input units, hidden units and output units in the input layer, hidden layer and

66

output layer respectively. In addition, how much iteration would be carried out during

training the network is also defined. The system also identifies the tolerable errors by the

network. Finally, during the training process what would be the learning rate of the

network is classified.

Use-case: Generate Network.

Actor: System.

Description: The system generates the network by following the initial set up of the

network.

Use-case: Set Input-Hidden Weights.

Actor: System.

Description: The system initializes the weights of each link between input layer and

hidden layer. The weights among the links are distributed equally during initialization.

Use-case: Set Hidden-Output Weights.

Actor: System.

Description: The system initializes the weights of each link between hidden layer and

output layer. The weights among the links are distributed equally during initialization.

Use-case: Train Network.

Actor: System.

67

Description: The system trains the network with the help of a set of training pattern. The

weights of the links are updated in the training process in order to minimize the errors.

4.1.2 Use-Cases of Client Module

Sellers

Figure 16: Use-Case diagram for Client module of test application.

The use-cases are described below:

Use-case: Set Network Inputs.

Actor: Sellers.

Description: The sellers set the initial inputs to the network by assigning each unit of the

input layer with a value. In setting the initial values, sellers use their prior knowledge of

how other competitive seller set the price of the product.

68

Use-case: Receive Price.

Actor: Sellers.

Description: The sellers receive a competitive price from the network.

4.1.3 Sequence Diagram of Agent Module

Figure 17 portrays the sequence diagram for Agent module of the application. The main

objective of the system is to train the network. The system first sets the configuration of

the network by determining number of units in different layers, tolerable errors (epsilon),

learning rate and number of epochs used in learning phase. The network is then generated

by following the given configuration. After creation of the network, the system initializes

weights of all the links between the layers. As a final step, the system trains the network

by using a set of training patterns. The same set of training patterns are run for several

iterations. The amount of errors is calculated at each iteration. The weights of the links

are then updated depending on the calculated errors. The training process continues until

the amount errors do not fall under the specified tolerable errors.

69

System

Loop J

Configure Network

Configure Input, Hidden and Output Layer

Set epsilon, epochs and learning rate

Network Configured

Initialize Links Weights

Set Weights

Set Weights

^

Train Network

[untiH calculated error < epsilon] Train Network

Send Calculated Error

fc--

Minimize Errors and Update Weigths

Figure 17: Sequence Diagram for Agent Module.

4.1.4 Sequence Diagram of Client Module

Figure 18 illustrates the sequence diagram for Client module of the application. Once the

network has been trained by the system, the sellers are ready to request a competitive

price of the products from the system. The sellers first set the initial price of the product

based on different attributes as described in section 3.1.1. The sellers then request the

system for a competitive price of the product. Based on the initial price set by the sellers,

the system computes a price for the product. The computed price is then sent to the

sellers.
70

Sellers

i

Set Inputs System

Initialize Inputs of the Network

Request for Price '

Send Price
K~" ~* ™" '

Figure 18: Sequence Diagram for Client Module.

4.1.5 Class Diagram

As mentioned earlier, the test application consists of two subsystems: Agent and Client.

The system is the sole user of the Agent module, whereas, the sellers are the only user of

the Client module. Figure 19 demonstrates the class diagram of the test application.

The main purpose of the system is to train the network in order to minimize the errors

such that a competitive price of the products can be obtained by using the network. In

training the network the system first set the configuration of the network by

Utility: :main() Once configuring the network, the system calls TLayer::TLayer(...) to

generate the network. The method accepts configuration of the network as input

parameters. The weights of the links between input layer and hidden layer is then

initialized by using TLayer::setHiddenLayerWeights(...). Similarly,

TLayer::setHiddenLayerWeights(...) is called to initialize the weights of the links

71

between hidden layer and output layer. After all the initialization has been done, the

system starts training the network with the aid of TLayer::trainNetworkQ.

TNode
-nlnputLinks: int
-weights : float *
-aValue : float

+TNode()
+~-TNode()
T-setNumlnputLinks(in num ; int)
•rgetNumlnputLinksO : int
*setWeights(in wts : vector<float>)
+*getWeights(): float *
-s-setValue(in va l : float)
4-getValue(): float

*

External Classes::sid

1

«

'I'Layer
-epochs : int
-epsilon : float
-IRate: float
-nlnputNodes: int
-nHiddenNodes: int
-nOutpufNodes : int
-prCost: float
-input: TNode *
-hidden : TNode *
-output: TNode *
-HLW ; vector<f1oat>
-OLW : vector<float>
-hError: vector<float>
-oError : vector<float>
+TLayer(in nlnNodes : int, in nHidNodes : int, in nOutNodes
•<-setlnputLayerInputs(in input : vector<float>)
+setHiddenLayerWeights(in wts : vector<float>)
-h»etOutputLayerWeights(in wts : vector<float>)
+-getHiddenLayerWeights() : vector<float>
+getOutputLayerWeights() : vector<float>
+signioid(in x : float) : float
-HranNetworkO
+trainNetwork()
+evaluateErrors(in targetVal : float)
-Hipdate Wei ghtsO
-t-getProductPrice() : float
-t-print()

*

«utility»
Utility

• 4 - r v i Q i n M » i « *
' i j . iMi . i ty / , n i t

*

1

int, in itr : int, in Ir : float, in ep : float)

Figure 19: Class Diagram of the application.
72

http://ij.iMi.ity/

After the network has been trained by the system, the network is in a position to generate

a competitive price for the products. Before making a request to the system for a price,

the sellers first set the initial price of the product by calling

TLayer::setInputLayerInputs(...). At this point the sellers call

TLayer::getProductPrice() to ask the system for generating a competitive price of the

product based on the given initial values. The system then calculate a price by using

TLayer::runNetwork() and return the price to the sellers.

4.2 Experimental Results

For evaluating the performance of the application, the test application has been run on a

desktop computer with the following configuration:

Operating System: Microsoft Windows XP version 2002 SP2

Processor: AMD Athlon™, 1.10 GHz

RAM: 512MB

Our network is run with five input units, three hidden units and one output unit. We have

gone through an experimental evaluation of our model in an e-commerce market place to

examine if the model performs better than the simple pricing algorithm outlined in

Section 3.1. We also analyzed if a seller earns more revenue by employing our model

instead of the Derivative-Following (DF) strategy proposed in [9]. In derivative following
73

(DF) strategy, initially, product prices are set randomly and profitability is observed. The

product prices are increased in the same direction unless the observed profitability falls.

If the observed profitability falls then product prices are decreased as long as profit is

encountered. It requires keeping track of past average profit of each state, and increases

the prices till the profitability level falls [9]. In other words, DF follows a strategy of

changing the price in same direction if revenue earned by following previous price

change is high. The direction of changing price is reversed otherwise.

4.2.1 Train Network

We assume that sellers use their historical data as the training patterns to the network. We

began our experimental evaluation by training the network of our model with 10 sets of

training patterns. A training pattern consists of a set of inputs with desired output. We

used the following sets of training patterns from Table 3 to train our network so that

errors can be minimized as much as possible by using back propagation algorithm. We

obtained the values in Table 3 by using prices offered by Future Shop and Best Buy

based on different attributes of distinct electronic goods as of November 16, 2009. This

implies that all the patterns are not of same product. For instance, the first row represents

the price offered by Future Shop for a Nikon D5000 12.3MP Digital SLR Camera",

whereas, second row shows the price for a "Samsung 22" LCD HDTV" offered by Best

Buy. From our daily life example we cay say that the preference of purchase attributes

varies from product to product. For example, we always look for quality of product

74

before buying any food item. On the other hand, preference is given to after sales service

(extended warranty period etc.) when a buyer purchases any electronic goods. By keeping

this fact in mind we have chosen training pattern from diverse products so that different

purchase attributes are covered by the training patterns. From each training pattern values

that we obtained as shown in Table 3 we can see that among other attributes, price

offered based on "Product Price" is the lowest. Since no seller would like to sell his/her

product less than the production cost, the prices offered based on different attributes must

be greater than production cost. However, Production cost of a product is not revealed by

any online seller. Therefore, for the value of production cost of each training pattern we

used 1% less value of the price offered based on "Product Price" attribute. In addition, we

used a random number generator to obtain a number greater than the production cost of

the product in a training pattern and use this number as value of desired output of the

corresponding pattern. In generating the value we restrict the random number generator

in producing any value which is 25% greater than the production cost. The constraint is

used such that the random number generator does not breed a number that is much

greater than the production cost which would not be realistic. Mention to be made that in

the following table the value of price offered based on "Sellers' Reputation" is not taken

from Future Shop or Best Buy as it was not available on the websites. Hence, we took the

average value of prices of all other four attributes to populate this particular column.

75

Table 3: Sets of training patterns used to train the model.

Production
Cost

871.1901
296.9901
118.7901
791.9901
989.9901
178.1901

1187.9901
326.6505
128.6901
1038.51

Product
Price

879.99
299.99
119.99
799.99
999.99
179.99

1199.99
329.95
129.99
1049

Product
Quality

1139.99
329.95
159.99
949.99
1099.99
199.99

1299.99
349.99
149.99
1147

Delivery
Time

895.13
329.73
129.26
810.68
1054.99
198.95

1254.99
340.37
139.26
1104

After
Sales

Service

1029.98
334.99
149.98
979.98
1169.98
209.98
1529.98
389.95
169.99
1248

Sellers'
Reputation

986.2725
323.665
139.805
885.16

1081.2375
197.2275

1321.2375
352.565
147.3075

1137

Desired
Output
(Selling
Price)
1066
321
138
966
1128
203
1233
375
146
1211

Initially, we intend to give identical preference to all the five considered attributes.

Therefore, we distributed the weights of links between the layers equally. Since, there are

five links between the input layer's units (except bias unit) and hidden layer's units; we

set 0.2 as weight of the links between the input units and the hidden units (5 x 0.2 = 1.0).

Similarly, 0.33 is set as weight of the links between the hidden units and the output units;

as there are three links between the layers (3 x 0.33 ~ 1.0). We trained our network for

nine different numbers of epochs4 as mentioned in Table 4.

Table 4: Number of epochs used to train network.

Epochs| 10 | 50 | 100 | 500 | 1000 | 5000 | 10000 | 50000 | 100000

4 Epoch is the maximum number of times a complete data set of training patterns can be used by a network
for training.

76

As the training continues, after each epoch, the network calculates amount of error. The

calculated error is then used to update the weights of the links by using back propagation

algorithm so that error is minimized in the next iteration. Practically the value of error

never becomes zero, but approaches zero. We let our network to tolerate an error of

amount 0.01 and 0.001. In other words the training phase terminate when the calculated

error after an epoch is equal to or less than the value of tolerated error by the network.

We run our network with five different learning rates as shown in Table 5.

Table 5: Learning rates used to train network.

Learning Rate | 0.01 | 0.005 | 0.001 | 0.0005 | 0.0001

Analysis of the training process in the following section indicates that the model

performs better if we use 50000 epochs with 0.005 learning rate during training the

network.

4.2.2 Determine Training Parameters

The purpose of the model is to generate a competitive price for a product with respect to

the price offered by other competing sellers in the market. The more number of training

patterns are used to train the network in training phase, the better knowledge the model

will contain. This would lead to generate a more competitive price. Hence, the

77

performance of the model depends on the training phase. Besides number of training

patterns used, the training process is dependent on three parameters:

1. number of epochs used

2. Learning rate

3. Error tolerance

The better the model is trained, the better performance it provides. Therefore, use of

proper values for the above three mentioned parameters plays a vital role in the model's

performance. We trained our model by using different values (as mentioned in Section

4.2.1) for these parameters with 10 sets of training patterns (Table 3). Once training

process is complete, our model is ready to determine a selling price for a product. We

used our trained network to determine the price of a product (lets call it P). We then

derive suitable values for the parameters by analyzing performance of the model through

investigating the experimental results shown later in this section.

Since our model requires initial selling price of the product to be set by the seller, we

used the prices of Table 6 as initial selling price based on five different attributes of the

product. We studied the price offered by Future Shop and Best Buy (as on November 17,

2009) for a Sony Vaio 15.4" (VGNNS330DT) Laptop and used their offered price

information based on different purchase attributes of the product to populate Table 6. We

assumed the production cost of the laptop is 645.00.

78

Table 6: Initial Price of Product P.

Production Cost
Product Price
Product quality
Delivery time
After Sales Service
Sellers' Reputation

645.00
648.99
745.99
670.34
805.99
718.99

According to our model, the output produced from the output layer of our model is

considered as the selling price, Pr, at which a sellers, S, would be selling P. If there are M

out of N buyers in the market willing to buy P at a cost of Pr, then the revenue earned by

S can be calculated as the product of M and Pr.

Figure 20 portrays the amount of revenue earned after selling a product P to a single

buyer at the determined price given by the network while the network is allowed to

accept an error tolerance of 0.01 during training phase. We also trained our network with

an error tolerance of 0.001. Figure 21 depicts the network performance in case of 0.001

tolerable error.

79

Learning rate

-•—0.01 •*• 0.005 0.001 —X- 0.0005 — * — 0.0001

1
I

651

650.5

650

649.5

649

648.5

648

647.5

647 J R — = = * =

10 50 100 500 1000 5000 10000 50000 100000

Epochs

Figure 20: Network performance in terms of revenue earned (Err = 0.01)

•o
<D
C

CO
<D
<D
3
C

>
<u
IT

651

650.5

650

649.5

649

648.5

648

647.5

647

Learning rate

• 0.01 -*~- 0.005 0.001 — X — 0.0005 — * — 0.0001

* ^K w "~T«-jir

10 50 100 500 1000 5000 10000 50000 100000

Epochs

Figure 21: Network performance in terms of revenue earned (Err = 0.001)

80

While training our model, we can see that the amount of revenue earned per product after

selling it to a single buyer is closely identical to each other for different learning rates

when lower number of epochs is used. Amount of revenue earned is increased gradually

with higher number of epochs used. It can also be noticed that the model performs better

if 0.01 is chosen as learning rate compared to other four learning rates of Table 5. Here,

one of our objectives was to identify the learning rate by using which a seller can earn

more revenue after selling a single product. We figured out that, compared to other four

learning rates, if 0.01 is used then better revenue can be earned after selling a single

product.

Figure 22: Network performance in terms of elapsed time (Err = 0.01)

81

Figure 22 indicates that the elapsed time for training our model increases gradually with

increasing number of epochs. However, there is a rapid increase in elapsed time after

100,000 epochs. Therefore, we would not like to use more than 100,000 epochs during

simulating an e-commerce market place in the following section. While training our

model, we let our model to accept an error tolerance of 0.01 and 0.001. It is generally

known that a neural network works better if less error tolerance is used [4]. However,

using lower than 0.001 of error tolerance makes our training process more time

consuming. Moreover, Figure 20 and Figure 21 indicate that from 5000 number of

epochs onwards the model delivers similar output for error tolerance of 0.01 and 0.001.

Under the above circumstances of analysis, for training our model during simulating an e-

commerce market place in the following section we would like to use 100,000 epochs,

0.01 learning rate and 0.01 error tolerance with 10 sets of training patterns shown in

Table 3. Mention to be made that the order of using 10 sets of training patterns has no

impact on the result.

Table 7: Training Parameters

Number of Epochs
Learning rate
Error tolerance

100000
0.01
0.01

While performing experimental evaluation, we figured out that our model consumes

nearly similar execution time for two hidden units and three hidden units (Figure 22);

82

however, our model performs better when, instead of two hidden units, three hidden units

are used (Figure 21). On the other hand, compared to elapsed time, the margin of

difference in our model's outputs for the network with three hidden units and four hidden

units are relatively small. Therefore, we chose three hidden units in our experimental

evaluation.

650.6

* 650.5
c
| 650.4
a>
= 650.3
<u

| 650.2

650.1 -

2 3

Number of Hidden Units

4

——

Figure 23: Revenue earned based on number of hidden layers used

83

Figure 24: Elapsed time based on number of hidden layers used

4.2.3 Marketplace Setup

We performed an experimental evaluation of our model in an e-commerce market place

to evaluate performance of our model. We consider a market place where three sellers

(namely, Seller_simple, Seller_DF and Seller_om) wish to sell a product P to 200

different buyers with distinct preferable purchase attributes of products described in

Section 3.3.2. Seller_simple employs a simple pricing algorithm described in Section

1.3.1. Seller_DF uses derivative-following (DF) strategy that was described in Section

4.2 and Seller_om follows our model.

We run the market for ten rounds, with twenty buyers in each round. After each round we

calculate the revenue earned by each seller. We then compare it with the revenue earned

84

by the corresponding seller in previous round to determine the direction of revenue

earned. If the total revenue earned at the end of current round is strictly greater than the

total revenue earned in previous round, then direction of revenue earned is positive. On

the other hand, we consider the direction of revenue earned as negative.

At the end of each round, we allow the sellers to update their selling prices. In DF

strategies, the price of product is updated, by some amount, in the direction of revenue

earned. We consider that Seller_DF updates his/her selling price by a random amount

between 0.00% and 5.00% of the current selling price.

On the other hand, Seller_simple updates the selling price either by using direction of

revenue earned or by using information of prices set by other two sellers in the market

during one of the previous rounds. We made an assumption that simple pricing algorithm

performs manual search, which is time consuming, to gather information regarding other

sellers' selling price. Therefore, the information may not be available to Sellersimple at

the end of each round. In addition, we assume that if the information is available, then

due to manual slow searching process the information of the immediate previous round is

not available to Seller_simple. For simplicity, we consider that if the information is

available, then Seller_simple updates the selling price of P by using average value of the

prices set by other two sellers during the (r-2)' round where r is the current round. In

contrary, if the information is not available, Sellersimple uses direction of revenue to

update the price. In this case we assume that he/she add/subtract some random value

85

between 0.00% and 5.00% of the production cost to the current selling price based on

direction of revenue earned. In the experimental evaluation we used a randomly-

generated probability to determine if the information is available to Seller_simple. If the

randomly generated probability is greater than 0.5 then information regarding other

sellers' selling price is available to Sellersimple or vice-versa. We populate Table 8 by

using this strategy. We then use values of Table 8 regarding information availability of

other sellers' selling price to Seller_simple during simulating the market for 10 rounds.

Table 8: Information availability to Sellersimple at the end of each round

Rounds
Information Available

1
No

2
No

3
Yes

4
Yes

5
No

6
No

7
No

8
Yes

9
No

10
Yes

Seller_om always uses our model to update the price. While updating the selling price,

we assume that a seller's price of the current round is invisible to other sellers in the

market. However, sellers' price of previous round may be visible to SellerDF and

Seller_om.

There are five attributes of the product P based on which a seller can set a selling price

for it. Depending on the price offered by the sellers, a buyer chose a seller to purchase the

product P. For example, let us say the three sellers offer the prices as shown in Table 9

for a product P. If a buyer wishes to buy P and he/she is looking for a higher quality of

product, then according to the offered prices, since Seller_simple offers the lowest price

86

for the product P when "Product Quality" is chosen as preferred attribute, the buyer

would purchase the product from Seller_simple.

Table 9: Sample Price offered by different sellers.

Product Price
Product Quality
Delivery Time
After Sale Service
Sellers' Reputation

Seller simple
50
55
60
65
70

Seller DF
70
65
60
55
50

Seller om
63
63
63
63
63

For simplicity we assume that in all ten rounds of the market there are equal numbers of

buyers for each given five attributes.

Table 10: Number of buyers based on preferred attributes.

Product Price
Product Quality
Delivery Time
After Sale Service
Sellers' Reputation

Number of Buyers
4
4
4
4
4

4.2.4 Results

We begin our experimental evaluation of the market by assuming that at the beginning of

the first round Seller_simple and SellerJDF use data from Table 6 to set their selling

87

price of the product P whose production cost is 645.00 and our model uses information

from Table 6 and Table 7 to generate a selling price (650.49) for P.

Table 11: Selling price offered by sellers in round 1.

Product Price
Product Quality
Delivery Time
After Sale Service
Sellers' Reputation

Seller simple
648.99
745.99
670.34
805.99
718.99

Seller DF
648.99
745.99
670.34
805.99
718.99

Seller om
650.49
650.49
650.49
650.49
650.49

From Table 11 we can see that the seller employing our model (Sellerom) attracts 16

buyers by the price offered for P. The remaining 4 buyers whose preferred attribute is

"Product Price" would either purchase P from Seller_simple or SellerDF. For simplicity,

we assume that each of them attract two of the remaining buyers. At the end of round 1

we calculate the revenue earned by the sellers. We then determine the direction (positive

or negative) of revenue earned compared to previous revenue.

Table 12: Total Revenue earned after round 1.

Seller Name

Seller simple
Seller DF
Seller om

Total Revenue
earned

1297.98
1297.98

10407.80

Direction of Revenue
earned
Positive
Positive
Positive

Now, before beginning round 2, we allow all the sellers to update their price. At the end

of round 1, since direction of revenue earned for Seller_DF is positive, he/she updates

88

his/her price by adding 0.02% value of current selling price. From values of Table 8 we

can see that at the end of first round the Seller_simple has no information regarding

selling price set by other sellers. Hence, we add a randomly generated value between 0.0

and 5.0 percent of the production cost (here, 2.17%) to the current price. However, our

model does not update the price at the end of round 1, because, at the end of round 1 our

model finds that the initial price used to train the model is similar to the price offered by

other two sellers in the market. This is due to our assumption that at the beginning of first

round Sellersimple and SellerDF uses data from Table 6 to set their selling price of the

product P. In addition, our model uses same set of information from Table 6 to generate a

selling price for P at the beginning of first round.

Table 13: Selling price offered by sellers in round 2.

Product Price
Product Quality
Delivery Time
After Sale Service
Sellers' Reputation

Seller simple
(A ~ + 2.17%)

662.99
759.99
684.34
819.99
732.99

Seller DF
(A ~ + 0.02%)

650.29
747.49
671.69
807.60
720.43

Seller_om

650.49
650.49
650.49
650.49
650.49

Table 13 indicates that the Sellerom offers the lowest price for all attributes except

"Product Price". Again, Sellerom manages to attract 16 buyers in round 2. Compared to

round 1, Sellersimple fails to sell any product in round 2. On the other hand, due to

failure of Seller_simple, SellerJDF earned more revenue than that was earned in round 1.

89

Table 14: Total revenue earned after round 2.

Seller Name

Seller simple
Seller DF
Seller om

Total Revenue
earned

1297.98
3896.54

20815.58

Direction of Revenue earned

Negative
Positive
Positive

Table 8 indicates that at the end of second round Sellersimple is unaware of the

information regarding selling price set by other sellers. Moreover, at the end of round 2,

Seller_simple finds his/her direction of revenue earned as negative. Hence, he/she

updates the selling price by subtracting a random value between 0.0% and 5.0% of the

production cost (here, 1.58%) from his/her current selling price. However, SellerDF gets

another chance to increase his/her selling price because of the positive direction of

revenue earned in this round. This time he/she updates his/her price by adding a random

value between 0.0% and 5.0% (here, 0.25%) of current selling price. As mentioned

before, Sellerom updates the price by using our model. Before updating the price, we

store the current pricing information for training purpose. As we described in Section 3.5,

since Seller_om earned some revenue by using the current selling price that was

determined by our model at the beginning of first round, we add current inputs and output

of the network to the training set of Table 3 so that it can be used during the training

process of the network, i.e., the following set is added at the last row of Table 3.

645.00 648.99 745.99 670.34 805.99 718.99 650.49

90

After saving the current pricing information, Sellerom updates the price. Before

providing initial input to the network of our model to derive a new updated selling price

from the model, Sellerom analyzes the prices offered by other two competing sellers.

Seller_om uses the information of Table 15 and Table 7 to determine the new

selling price. We obtain the values of Table 15 by taking the minimum price offered by

Sellersimple and SellerDF in previous round (Table 13).

Table 15: Initial input to network in round 3.

Production Cost
Product Price
Product quality
Delivery time
After Sales Service
Sellers' Reputation

645.00
650.29
747.49
671.69
807.60
720.42

The price offered by the three sellers during round 3 is given in Table 16. We can see that

our model provide same price as the price of previous round. This is due to the

insignificant difference between the initial input of the network used in previous round

(Table 6) and current round (Table 15).

Table 16: Selling price offered by sellers in round 3.

Product Price
Product Quality
Delivery Time
After Sale Service
Sellers' Reputation

Seller simple
(A ~ - 1.58%)

652.78
749.78
674.13
809.78
722.78

Seller DF
(A « + 0.25%)

666.5452
766.169

688.4727
827.792

738.4387

Seller_om

650.49
650.49
650.49
650.49
650.49

91

After end of round 3, we determine the revenue earned by each seller and then allows

sellers to update their prices. As far information of Table 8, at the end of third round the

information regarding other sellers' selling price is available to Sellersimple. As we

mentioned earlier, due to manual slow searching process the information of the (r-2)th

round is visible to Sellersimple, where r is the current round. Therefore, at the beginning

of fourth round Seller_simple uses the prices offered by SellerDF and Seller_om during

second round (Table 13) to update his/her price. In this case, Seller_simple calculates the

average value of the prices offered by other two sellers from Table 13 and set the values

as the selling prices for round 4. We run the remaining seven rounds in the similar

fashion.

Figure 25 summarizes the total revenue earned at the end of each round by the three

different sellers who employed three distinct pricing algorithms. Initially, all the sellers

managed to earn some revenue. Among the three sellers, the growth of revenue earned by

Sellersimple was the slowest. Seller_simple failed to earn any revenue at the end of

most of the rounds. Apart from first round, Sellersimple earned some revenue after the

end of seventh and tenth round..The performace of Seller_DF in terms of earning revenue

was better than Sellersimple, however, he/she could not beat Seller_om in any of the

rounds. On the contrary, Seller_om, who employed our model, earned revenue at each

round. Moreover, after each round, Seller_om earned higher revenue than that of revenue

earned by other two sellers. At the end of tenth round, Seller_DF earned nearly 43%

92

more revenue than Seller_simple. On the other hand, Seller_om earned nearly eight times

more revenue than Seller DF.

120000

100000

•o 80000
a>
c
a
a) 60000
3
C
0)

a. 40000

20000

-•— Round 1 - * Round 2

-•— Round 6 — i — Round 7

Round 3 —3*— Round 4 —*— Round 5

• Round 8 — — Round 9 Round 10

, '-;";--—•=!-——r-rr—-f

/

/ /
/ / /

/ / /

///x -y'

— r

/

/ /

/

Seller_simple Seller_DF

Sellers

Seller om

Figure 25: Total revenue earned by three sellers.

In our experimental evaluation we showed that once the sellers set an initial price of the

product based on five different attributes, our model adjusts the price of the product

automatically with the help of neural network in order to increase revenue. In other

words, our model considers five different attributes in generating a selling price for a

93

product such that it can attracts buyers with different preferred attributes which leads to

capitalizing the revenue earned. In setting the initial price of a product, we assume that

sellers use their prior knowledge about the prices of the product offered by other

competing sellers.

4.3 Enhanced Experimental Evaluation

In Section 4.2.3 we demonstrated a market place where three sellers (namely,

Sellersimple, Seller_DF and Seller_om) participate in selling a product P to 200

different buyers with distinct preferable purchase attributes of products. In the

experimental evaluation we considered that no seller has knowledge on the buyers

preferred purchase attributes. Consequently, after each round the sellers have no clue on

the earned revenue came from which of the five preferred purchase attributes. Therefore,

we would like to perform another experimental evaluation of our model with the same

market place described in Section 4.2.3. However, in this case we assume that

Seller_simple and SellerDF aware of the preferred purchase attributes from which they

made revenue. In other words, we presume that after each round Sellersimple and

SellerDF can determine the direction of revenue (either positive or negative) earned for

the five different attributes. These two sellers then update their selling price by using

their knowledge of the attributes which was absent in our previous experimental

evaluation.

94

We begin our experimental evaluation in the similar fashion that we demonstrated in

Section 4.2.4. The first round of this evaluation is a carbon copy of the first round of

previous evaluation. The difference between two versions of evaluation comes into scene

at the time of updating selling price before beginning of the second round. At the end of

round 1 we can find the revenue earned with its direction as shown in Table 12. Now,

before beginning round 2, we allow all the sellers to update their price. At the end of

round 1, SellerDF finds that he/she earned some revenue from the price he/she offered

for "Product Price" attribute. Hence, Seller_DF updates his/her price for "Product Price"

attribute by adding a random value between 0.0% and 5.0% (here 1.29%) of current

selling price. However, since SellerDF did not earn anything from the price he/she

offered for other four attributes, he/she update the prices for those attributes by

subtracting 0.76% value of current selling price. From values of Table 8 we can see that

at the end of first round the Sellersimple has no information regarding selling price set

by other sellers. Hence, Sellersimple updates his/her selling price by adding/subtracting

a randomly generated value to the current price. Since Sellersimple made some revenue

from the price he/she offered for "Product Price" attribute, he/she adds a random value

between 0.0% and 5.0% (here 1.93%) of the product cost for this attributes. As he/she

failed to earn anything from the other four attributes, Seller_simple updates his/her

selling price for those attributes by deducting 1.7% value of the production cost. On the

other hand, our model follows the same technique for updating the selling price as

portrayed in Section 4.2.4.

95

Table 17: Selling price offered by sellers in round 2.

Product Price
Product Quality
Delivery Time
After Sale Service
Sellers' Reputation

Sellersimple
661.49
735.03
659.38
795.06
708.06

Seller DF
657.36
740.32
665.25
799.87
713.53

Seller om
650.49
650.49
650.49
650.49
650.49

We then calculate the revenue earned by the three sellers and follow the same procedure

in updating the selling price before going to the next round.

Figure 26 summarizes the total revenue earned at the end of each round by the three

different sellers. From this enhanced version of experimental evaluation we can see that

Sellersimple and SellerDF performed much better in terms of revenue earned

compared to the evaluation of Section 4.2.4. Figure 26 portrays that both Sellerom and

Seller_DF maintained a steady growth in earning revenue over the ten rounds. As the

evaluation progress from one round to another round, the difference in revenue earned by

these two sellers decreased. In contrast, Seller_simple could not earn as much revenue as

compared to other two sellers. However, Sellersimple managed to carry on the growth

of revenue earned from one round to another. At the end of tenth round, Seller_om, who

employed our model, earned higher revenue in comparison to SellerDF and

Sellersimple.

96

• Seller_simple « Seller_DF Seller_om

70000

60000

50000

40000

•o
0)
c
w
IB
UJ
0)

S 30000

20000

10000
M

6

Rounds

10 12

Figure 26: Comparison of three sellers in terms of revenue earned.

4.4 Discussion

The experimental results show that our model can attract more buyers compared to other

two sellers, because we have considered multiple attributes in determining a selling price

for the product P. Attracting more buyers from wider range of preferred attributes implies

that more revenue can be earned.

Various pricing algorithms are followed in present online economy. Among them game-

theoric pricing (GT), myoptimal pricing (MY), derivative following (DF), and Q-learning

97

(Q) are practiced widely. Game-theoretic (GT) strategy makes an assumption that all

other competing sellers use game-theoretic [31]. However, in present world different

sellers employ distinct pricing strategies. GT uses complete information regarding buyer

population. Moreover, it does not use any historical data. In contrast, historical data plays

an important role in understanding changing behavior of the market. We used little

historical data of the price offered by other competitive sellers. In addition, our model is

not concerned about what strategies are being used by other competing sellers. Similarly,

Myoptimal (MY) strategy does not dependant on whether other sellers employing

different pricing strategies or not, but it is concerned about buyers demand curve and also

the prices set by other sellers in the economy. MY also assumes that prices set by other

competing sellers will remain unchanged [31]. In the contrary, sellers are always willing

to change their offered price for the sake of sustaining in competing market. Hence, our

model always keeps an eye on the random prices set by other sellers. Q-learning strategy

is based on reinforcement learning called Q-learning. It finds optimal policy when the

opponents use stationary Markovian strategies. It uses a lookup table representation of

the Q-function. It requires extensive size of computational requirement. It makes use of

both buyers' demand curve and knowledge about competitors pricing strategies. On the

other hand, our model does not rely on buyer demand curve.

In short, we attempt to address the problem of dynamic pricing in a competitive online

economy, where a buyer's purchase decision is determined by multiple attributes. From

the behavior of current market we can infer that buyer's purchase decision is no more

98

dependent solely on products price. Along with price, other attributes such as product

quality, delivery time, after-sale service, and sellers' reputation also play vital role in

determining customers' purchase decision. Hence, in our model we consider these

mentioned five attributes so that we can attract more number of buyers which lead to

earning more revenue. However, our model is general enough to work for any number of

attributes. Our model requires initial price to be set by sellers by using their prior

knowledge about the prices of the product offered by other competing sellers. Any other

prior knowledge is not used by our model. In our experimental evaluation we showed that

once the sellers set an initial price of the product, our model adjusts the price of the

product automatically with the help of neural network in order to increase profits.

99

Chapter 5: Conclusions and Future Works

5.1 Conclusions

Dynamic pricing as a changing price in a marketplace is becoming characteristic of

electronic commerce. Determining selling prices of products is a challenging task for the

sellers to sustain in the market. The purpose of the dynamic pricing problem is to

determine selling prices such that sellers receive better revenue. There exist intelligent

agents to aid online sellers to dynamically calculate a competitive price for their products

in online markets. However, these intelligent agents usually make a number of

assumptions for dynamic pricing. Some intelligent agents assume that sellers consist of

prior knowledge about the online market parameters, while other agents assume that price

is the only attribute that determines consumers' purchase decision [2, 9, 10, 12, 22]. On

the contrary, in real life sellers have limited or no prior knowledge about the market

parameters. In addition, nowadays along with price other attributes such as after sale

service, product quality etc. contribute in determining consumers' purchase decision. The

proposed approach of dynamic pricing described in our work of this thesis used feed­

forward neural network to determine product price dynamically. We used back

propagation algorithm to minimize the errors while training the network with 10 sets of

100

training patterns. We considered buyer preferences over multiple product attributes.

Along with product price, we have taken product quality, delivery time, after-sale service

and sellers' reputation into consideration. However, our model is general enough to work

for any number of attributes. We also considered that sellers have limited prior

knowledge about market parameters like how other competing sellers set the prices. Our

model assumed no other information. Our model aids the sellers of competitive market in

the automation of determining the price of a product in order to earn better revenue. The

approach requires the sellers, by considering the five attributes, to set an initial price of

the product by using their prior knowledge about the prices of the product offered by

other competing sellers. Our approach adjusts the selling price of products automatically

with the help of neural network in order to raise seller revenue. The experimental results

portray the effect of considering the five attributes in earning revenue by the sellers. We

performed an experimental evaluation of our model in an e-commerce market place with

200 buyers, three sellers where all the sellers trying to sell a product P. The experimental

results showed that the seller employing our model earned higher revenue than that of

earned by other two sellers who followed simple pricing algorithm and derivative-

following (DF) strategies. The experimental results show that our model can attract more

buyers compared to other two sellers, because we have considered multiple attributes in

determining a selling price for the product P. Attracting more buyers from wider range of

preferred attributes implies that more revenue can be earned. Partial work of this thesis

has been published in the proceedings of 4th International MCETECH Conference on e-

Technologies, Ottawa, ON, Canada, May 2009. Furthermore, some work of this thesis

101

has appeared in Proceedings of the 28th Canadian Conference on Artificial Intelligence

that has held in Ottawa, ON, Canada between May 31 and June 2, 2010.

5.2 Future Works

• We have made a comparison of our approach of dynamic pricing with simple

pricing algorithm and derivative following (DF) strategies. We intend to compare

our approach with some more complex pricing strategies.

o We would like to compare our approach with other existing well known

approach of dynamic pricing, like game-theoretic (GT), my-optimal (MY)

etc.

o We are planning to compare the total revenue earned by different sellers

after selling the same product whose price is determined by different

strategies (GT, MY and our designed approach),

o In the comparison we will be considering each seller follows different

pricing strategies.

• Our model made an assumption that sellers use their limited prior knowledge of

market parameters in setting the initial price of the products. We would like to

eliminate the assumption from our model.

o We may employ a web crawler tool in our application in order to learn the

information on prices set by other competitive sellers in the market.

102

o Using the gathered information we may set the initial price of the products

such that the sellers no need to initialize the product prices while using our

model.

103

References

[1] Anindya Ghose, Tridas Mukhopadhyay, Uday Raj an, Vidyanand Choudhary:

Dynamic Pricing: A Strategic advantage for electronin retailers. In: Twenty-Third

International Conference on Information Systems (2002)

[2] Prithviraj(Raj) Dasgupta and Yoshitsugu Hashimoto: Multi-attribute dynamic pricing

for online markets using intelligent agents. In: A AM AS (2004)

[3] J. Brown and A. Goolsbee: Does the Internet Make Markets More Competitive? In:

NBER Working Papers 7996, National Bureau of Economic Research (2000)

[4] Russell, J. Stuart, Peter Norvig: Artificial Intelligence: A modern Approach, Second

Edition, Prentice Hall (2005)

[5] Neural Networks,

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/csll/report.html

104

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/csll/report.html

[6] An Introduction to Neural Networks,

http ://www.cs. stir. ac.uk/~lss/NNIntro/InvSlides .html

[7] C. Brooks, R. Gazzale, J. MacKie-Mason, E. Durfee: Improving learning performance

by applying economic knowledge. In: Proc. of the 3rd ACM Conference on Electronic

Commerce (2003)

[8] C. Brooks, S. Fay, R. Das, J. MacKie-Mason, J. Kephart, E. Durfee: Automated

strategy searches in an electronic goods market: learning and complex price schedules.

St

In: Proc. of 1 ACM Conference on E-Commerce (1999)

[9] V. L. Raju Chinthalapati, Narahari Yadati, and Ravikumar Karumanchi: Learning

Dynamic Prices in MultiSeller Electronic Retail Markets With Price Sensitive Customers,

Stochastic Demands, and Inventory Replenishments. In: IEEE (2006)

[10] Prithviraj Dasgupta, Rajarshi Das: Dynamic Service Pricing for Brokers in a Multi-

Agent Economy. In: IEEE (2000)

[11] Danxia Kong: One Dynamic Pricing Strategy in Agent Economy Using Neural

Network Based on Online Learning. In: Proceedings of the IEEE/WIC/ACM

International Conference on Web Intelligence (2004)

105

http://www.cs
http://ac.uk/~lss/NNIntro/InvSlides

[12] Li Luo, Baichun Xiao, Jiejun Deng: Dynamic pricing decision analysis for parallel

flights in competitive markets. In: IEEE, pp. 327-312 (2005)

[13] Alexandre X. Carvalho, Martin L. Puterman: Dynamic pricing and reinforcement

learning. In: IEEE (2003)

[14] Prithviraj Dasgupta, Louise E. Moser, P. Michael Melliar-Smith: Dynamic Pricing

for Time-Limited Goods in a Supplier-Driven Electronic Marketplace. In: Electronic

commerce research (2005)

[15] Joan Morris Dimicco, Pattie Maes and Amy Greenwald: Learning Curve: A

Simulation-Based Approach to Dynamic Pricing. In: Electronic Commerce research

(2003)

[16] Gerald Tesauro and Jeffrey O. Kephart: Pricing in Agent-Economies using Multi-

agent Q-learning. In: AAMAS (2002)

[17] G. Gallego and G. van Ryzin: Optimal dynamic pricing of inventories with

stochastic demand over finite horizons. In: Manage. Sci., vol. 40, no. 8, pp. 999-1020

(1994)

[18] CS-449: Neural Networks, http://www.willamette.edu/~gorr/classes/cs449/intro.html

106

http://www.willamette.edu/~gorr/classes/cs449/intro.html

[19] Artificial Neural Network, http://en.wikipedia.org/wiki/Artificial_neural_network

[20] Statistical Learning Methods, http://aima.cs.berkeley.edu/newchap20.pdf

[21] Module: Neural Networks, Multi-Layer-Perceptron. CS 4700: Foundations of

Artificial Intelligence, http://www.cs.cornell.edu/Courses/cs4700/2008fa/PPT/CS4700-

ANN4.ppt#374,l,CS 4700: Foundations of Artificial Intelligence

[22] J. Kephart, J. Hanson and A. Greenwald: Dynamic Pricing by Software Agents. In:

Computer Networks, vol 32, no 6, pp. 731-752 (2000)

[23] Training the Neural Network using Back Propagation,

http://richardbowles.tripod.com/neural/backprop/backprop.htm

[24] Li, C , Wang, H and Zhang, Y. "Dynamic pricing decision in a duopolistic retailing

market", Proceedings of the 6th World Congress on Intelligent Control and Automation,

June 2006, Dalian, China.

[25] Panos M. Markopoulos, Jeffrey O. Kephart: How valuable are shopbots? AAMAS

2002: 1009-1016

107

http://en.wikipedia.org/wiki/Artificial_neural_network
http://aima.cs.berkeley.edu/newchap20.pdf
http://www.cs.cornell.edu/Courses/cs4700/2008fa/PPT/CS4700-
http://richardbowles.tripod.com/neural/backprop/backprop.htm

[26] Jeffrey O. Kephart, Amy R. Greenwald: Shopbot Economics. Autonomous Agents

and Multi-Agent Systems 5(3): 255-287 (2002)

[27] Jeffrey O. Kephart, Christopher H. Brooks, Rajarshi Das: Pricing information

bundles in a dynamic environment. ACM Conference on Electronic Commerce 2001:

180-190

[28] Amy R. Greenwald, Jeffrey O. Kephart: Probabilistic pricebots. Agents 2001: 560-

567

[29] Jeffrey O. Kephart, Gerald Tesauro: Pseudo-convergent Q-Learning by Competitive

Pricebots. ICML 2000: 463-470

[30] Gerald Tesauro, Jeffrey O. Kephart: Foresight-based pricing algorithms in agent

economies. Decision Support Systems 28(1-2): 49-60 (2000)

[31] Amy R. Greenwald, Jeffrey O. Kephart, Gerald Tesauro: Strategic pricebot

dynamics. ACM Conference on Electronic Commerce 1999: 58-67

[32] Amy R. Greenwald, Jeffrey O. Kephart: Shopbots and Pricebots. Agent Mediated

Electronic Commerce (IJCAI Workshop) 1999: 1-23 (look at

http://www.research.ibm.com/infoecon/paps/html/amec99_shopbot/shopbot.html)

108

http://www.research.ibm.com/infoecon/paps/html/amec99_shopbot/shopbot.html

[33] Jeffrey O. Kephart, Amy R. Greenwald: Shopbot Economics. Agents 1999: 378-379

[34] Joan Morris DiMicco, Amy R. Greenwald, Pattie Maes: Dynamic pricing strategies

under a finite time horizon. ACM Conference on Electronic Commerce 2001: 95-104

[35] Heski Bar-Isaac and Steven Tadelis: Seller Reputation. In: Foundations and Trends

in Microeconomics, vol. 4, no. 4, pg 273-351, 2008.

[36] Frederick Asselin and Brahim Chaib-draa: Toward a Protocol for the Formation of

Coalitions of Buyers. In: The Fifth International Conference on Electronic Commerce

Research (ICECR-5) 2002.

[37] Yinh-Hueih Chen, Ching-Yi Tsao, Chia-Chen Lin and I-Chieh Hsu: A Conjoint

Study of the Relationship between Website Attributes and Consumer Purchase Intentions.

In: Pacific Asia Conference on Information Systems (PACIS) 2008.

[38] Sandhya Beldona, Costas Tsatsoulis: Reputation Based Buyer Strategy For Seller

Selection For Both Frequent and Infrequent Purchases. In: 4th International Conference

on Informatics in Control, Automation & Robotics, ICINCO-RA (2) 2007: 84-91,

Angers, France.

109

[39] www.futureshop.ca accessed on September 25,2009.

[40] www.bestbuy.ca accessed on September 25, 2009.

[41] www.dell.ca accessed on September 25,2009.

[42] www.ebay.ca accessed on September 25, 2009.

[43]. http://seekingalpha.com/article/105889-top-10-online-retailers-shopping-categories

accessed on November 7, 2009.

110

http://www.futureshop.ca
http://www.bestbuy.ca
http://www.dell.ca
http://www.ebay.ca
http://seekingalpha.com/article/105889-top-10-online-retailers-shopping-categories

