
Defining Adaptation Constraints for Business

Process Variants

Ruopeng Lu1, Shazia Sadiq2, Guido Governatori3, Xiaoping Yang2

1 SAP Research CEC Brisbane, Australia
ruopeng.lu@sap.com

2 School of Information Technology and Electronic Engineering
The University of Queensland, Brisbane, Australia

{shazia,xiaoping}@itee.uq.edu.au
3 NICTA, Australia

guido.governatori@nicta.com.au

Abstract. In current dynamic business environment, it has been ar-
gued that certain characteristics of ad-hocism in business processes are
desirable. Such business processes typically have a very large number of
instances, where design decisions for each process instance may be made
at runtime. In these cases, predictability and repetitiveness cannot be
counted upon, as the complete process knowledge used to define the pro-
cess model only becomes available at the time after a specific process
instance has been instantiated. The basic premise is that for a class of
business processes it is possible to specify a small number of essential
constraints at design time, but allow for a large number of execution
possibilities at runtime. The objective of this paper is to conceptualise
a set of constraints for process adaptation at instance level. Based on a
comprehensive modelling framework, business requirements can be trans-
formed to a set of minimal constraints, and the support for specification
of process constraints and techniques to ensure constraint quality are
developed.

Key words: Business Process Management, Process Variant Manage-
ment, Constraint-Based BPM, Business Process Constraint Network

1 Background and Motivation

In order to provide a balance between the opposing forces of control and flex-
ibility, we have argued for [12], a modelling framework that allows part of the
model that requires less or no flexibility for execution to be predefined, and part
to contain loosely coupled process activities that warrant a high level of cus-
tomization. When an instance of such a process is created, the process model is
concretised by the domain expert at runtime. The loosely-coupled activities are
given an execution plan according to instance-specific conditions, possibly some
invariant process constraints, and their expertise.

The foremost factor in designing business processes is achieving improve-
ments in the business outcomes [4]. However, decisions at the strategic level

12th International Conference on Business Information Systems, 2009.
c© Springer 2009.
The original publication is available at www.springerlink.com.

ruopeng.lu@sap.com
{shazia, xiaoping}@itee.uq.edu.au
guido.governatori@nicta.com.au
http://www.springerlink.com

2 Ruopeng Lu et al.

need to be evaluated in light of constraints that arise from several sources. It
has been identified that at least four sources of constraints have impact on a
business process design:

– Strategic constraints define the tactical elements of the process e.g. ap-
proval of director required for invoices beyond a certain value.

– Operational constraints are determined through physical limitations of
business operations, e.g. minimum time for warehouse offloading.

– Regulatory constraints are prescribed by external bodies and warrant com-
pliance e.g. financial and accounting practices (Sarbanes-Oxley Act), or batch
identification for FDA in pharmaceutical industry.

– Contractual constraints define the contractual obligations of an organiza-
tion towards its business partners, e.g. maximum response time for a service.

In order to harness the full power of BPM techniques, each of these con-
straints should eventually be translated into constructs of a (executable) busi-
ness process model, and subsequently lead to process enforcement at the business
activity level. This paper will introduce a design time modelling approach for
process constraints. This approach transfers part of the process modelling effort
to domain experts who make execution decisions at runtime. Instance adapta-
tion is supported by techniques for specifying instance-specific process models
and constraint checking in different variants of the business process [12]. We will
demonstrate how the specification of so-called selection constraints can lead to
increased flexibility in process execution, while maintaining a desired level of
control.

The rest of the paper is organized as follows. We use a running example
to motivate the overall approach in section 2. Section 3 provides background
concepts for the underlying framework for supporting instance adaptation. In
section 4, we introduce the core concept of process constraints. The approach
is evaluated against an application scenario in section 5, where the constraint
editor prototype is presented. Related work is presented in section 6, followed
by the conclusion and future work in section 7.

2 Motivating Example

Consider a customer request processing workflow in a CRM (Customer Relation-
ship Management) system. The process is triggered when a customer submits a
purchase request. Upon receiving which, a senior sales representative creates a
customer requirement document in the system, then he specifies a list of activ-
ities to manage the customer request for different workflow roles/participants.
The purchase request is finally confirmed and further procurement activities are
carried out. The procedures for creating and confirming customer requirement
document are predictable and repetitive, while the customer request manage-
ment activities will typically be case-specific and can be uniquely configured
for each customer request which require ad-hoc adjustment. Fig. 1 shows such a

Defining Adaptation Constraints for Business Process Variants 3

workflow in BPMN notation, where the dynamic part of the workflow is modelled
as an Ad-Hoc Sub-Process [9].

Customer Request Processing

~

T3: Change
Customer

Requirement

T4: Approve
Change

Requirement

T7: Synchronise
with External

Catalogue

T6: Configuring
Mapping Rules

T1: Internal
Item Availability

Check

T5: Modify
Internal

Catalogue

T2: External
Item Availability

Check
Receive

Purchase
Request

Crete
Customer

Requirement

Confirm
Customer
Request

Release for
Procurement

Fig. 1. A network diagnostics scenario modelled in BPMN notation

At the same time, some dependencies and restrictions among the available
tests can be abstracted beforehand as follows:

– Internal Item Availability Check T 1 must be performed for all customer re-
quirement cases;

– Based on operational guideline, maximal 6 activities can be selected for prompt
customer response;

– The customer requirement can be adjusted according to case-specific condi-
tions (T 3), but needs to be approved by a senior sales representative (T 4);

– The mapping rules can be configured to map content from external catalogue
to internal catalogue (T 6), after which the internal catalogue should be syn-
chronised with the external catalogue to reflect the rule change (T 7). However,
synchronisation T 7 can be triggered without change in mapping rules;

– In order to avoid inconsistency, manual modification to internal catalogue
(T 5) and automatic synchronisation with external catalogue (T 7) should not
be selected at the same workflow instance.

It is obvious that even with a small number of activities, there is a large
number of possible scenarios that satisfy the selection restrictions. For example,
the sales representative can decide to execute one, two or up to six activities to
fulfil the request processing goals, where the combination of selected activities
can be varied. Consider that for each such scenario, the sales representative
can further define a variety of execution plans including any execution order
and patterns, e.g., execute all selected tasks in sequence, in parallel, or some in
sequence and others in parallel (Fig. 2). In graphical modelling notation (e.g.,
BPMN), it is tedious if not possible to capture and manage all such scenarios
and to articulate the conditions for selecting the alternative branches.

3 Fundamentals

Constraint Satisfaction are supported by formal methods and its suitability and
applicability to solve applied problems such as job-shop scheduling have been
extensively demonstrated [2]. The declarative nature of constraint specification,

4 Ruopeng Lu et al.

T3: Change
Customer

Requirement

T4: Approve
Change

Requirement

T1: Internal
Item Availability

Check

T2: External
Item Availability

Check

Customer Request Processing

(a)

Customer Request Processing

T3: Change
Customer

Requirement

T4: Approve
Change

Requirement

T2: External
Item Availability

Check

T6: Configuring
Mapping Rules

T7: Synchronise
with External

Catalogue

T1: Internal
Item Availability

Check

(b)

Customer Request Processing

T2: External
Item Availability

Check

T3: Change
Customer

Requirement

T4: Approve
Change

Requirement

T6: Configuring
Mapping Rules

T1: Internal
Item Availability

Check

T7: Synchronise
with External

Catalogue

(c)

Fig. 2. Execution possibilities of the BPMN ad hoc sub-process shown in Fig. 1

and the automated reasoning backed by formal theory provides a potential hand-
in-gloves solution for the flexible workflow problem defined in this paper.

Nevertheless, applying Constraint Satisfaction in flexible workflows is not
straightforward. The overall challenge is to find the right balance between the
expressiveness of the constraint language that is rudimentary for expressing con-
straints in workflows, and the computational efficiency of the resulting constraint
networks. The fundamental requirements are to design a constraint language that
is expressive enough, while computationally efficient algorithms can be designed
and applied for reasoning, and is usable for human constraint designer.

Business process semantics is complex in a sense that it involves different
level of abstractions. Control flow, data dependency and resource allocation are
the primary aspects that needs to be modelled, among which control flow is the
fundamental aspect in workflow models [5]. As such, process constraints should
express foremost and at least the restrictions on the structural dependency be-
tween workflow activities in a workflow model.

Through intensive investigations, a variant of Constraint Satisfaction have
been identified as the theoretical foundation for process constraints, namely,
Boolean Constraint Network. Boolean constraints are used to specify the inter-
task dependencies, e.g., the effect on other tasks when selecting task A to execute,
and should task B be selected if A is depending on B (for logical or data depen-
dency). In particular, the consideration of Boolean constraints is confined within
the subset of tractable constraints. Tractable constraints are the the class of con-
straints where polynomial time solution algorithms are known [3]. A mapping
has been established between process requirements as directed by business pro-
cess semantics, and the formal expressions in a subset of Boolean constraints.
Then the expressiveness of the constraint language can be determined, which

Defining Adaptation Constraints for Business Process Variants 5

justifies the appropriateness of the constraint language for expressing process
requirements. Once the constraint language is defined, appropriate algorithms
can be applied for constraint validation, and process design verification.

Definition 1 (Constraint) A constraint C is a pair (L, R), where L ⊆ X is

an m-tuple of variables, called the scope of the constraint; X is a finite set of

variables. R is an m-ary relation defined on L, which is a subset of the set of all

m-tuples of elements from some set D, called the domain.

The set of all m-tuples (d1, d2, . . . , dk) of elements from some set D with
d1 ∈ D1, d2 ∈ D2, . . . , dk ∈ Dk is the Cartesian product D1 × D2 × . . . × Dk.
The length of the tuple m is called the arity of the constraint. When there is no
ambiguity on the scope of the constraints, a relation and a constraint is referred
to interchangeably.

For the subsequent discussion on process constraints, we also define this
specific term: A process template PT is defined by a set of process tasks T and
a set of process constraints C. T represent the available pool of activities to
be adapted at runtime. C is a set of selection constraints that defines relations
between the properties of tasks in T .

4 Selection Constraints

The adaptation of a process instance is governed by selection and subsequent
scheduling constraints. Selecting constraints regulates how and what tasks can
be chosen to perform, while scheduling constraints address how these selected
tasks are executed, e.g., order of execution, in sequence or parallel [7]. This paper
focuses on the first perspective.

4.1 Conceptualisation

The following classes of selection constraints have been identified:

Mandatory constraint man defines a set of tasks that must be executed in every
process variant, in order to guarantee that intended process goals will be
met.

Prohibitive constraint pro defines a set of tasks that should not be executed in
any process variant.

Cardinality constraint specifies the minimal minselect and maximal maxselect

cardinality for selection among the set of available tasks.
Inclusion constraint inc expresses the dependency between two tasks Tx and

Ty, such that the presence of Tx imposes restriction that Ty must also be
included. Prerequisite constraint pre is the inverse of an inclusion constraint.

Exclusion constraint exc prohibits Ty from being included in the process variant
when the Tx is selected.

Substitution constraint sub defines that if Tx is not selected, then Ty must be
selected to compensate the absence of the former.

6 Ruopeng Lu et al.

Corequisite constraint cor expresses a stronger restriction in that either both Tx

and Ty are selected, or none of them can be selected, i.e., it is not possible
to select one task without the other.

Exclusive-Choice constraint xco is also a more restrictive constraint on the se-
lection of alternative tasks, which requires at most one task to be selected
from a pair of tasks (Tx, Ty).

4.2 Formalisation

Let T = {T1, T2, . . . , Tn} denote the set of all tasks in a process template PT .
Each task Ti is considered as a propositional variable ranging over domain Di =
{0, 1}. Let Ti = 1 stand for the presence of task Ti in a process variant V and
Ti = 0 stand for absence.

Mandatory, prohibitive and cardinality constraints can be defined by restrict-
ing the domains of respective tasks. A mandatory task Ti ∈ T is denoted by
man(Ti), where manselect is a property of Ti restricting its domain Di = {1}.
The set of all mandatory tasks in a process template PT is given by:

Rman = {Ti | man(Ti)}

A task Ti in a process template PT is prohibitive if it is forbidden to be
selected in any process variants V of PT . A single prohibitive task Tx can be
denoted by pro(Tx), where pro is a property of Tx restricting Dx = {0}. The set
of all prohibited tasks in a process template PT is given by:

Rpro = {Ti| pro(Ti)}

A minselect constraint is denoted by Rmin(m) ⊆ T , such that |Rmin(m)| ≥ m,
and ∀Ti ∈ Rmin(m), Di = {1}. The minselect constraint restricts that every
process variant V should contain all tasks in Rman, and zero, one or more tasks
from (T −Rman). A maxselect constraint is denoted by Rmax(m) ⊆ T , such that
|Rmax(m)| ≤ m, and ∀Ti ∈ Rmax(m), Di = {1}.

The mandatory, prohibitive and cardinality constraints are defined by re-
stricting the domain of a single task. On the other hand, inclusion, exclusion,
substitution, prerequisite, corequisite and exclusive-choice constraints are binary
relations that are defined by restricting the domains of the pair of tasks. Accord-
ing to the nature of the constraints, we call them containment constraints.
For example, An inclusion constraint Rinc is a binary relation on a pair of vari-
ables (tasks) Tx, Ty ∈ T , if and only if (iff):

Rinc = ((Tx, Ty), {(0, 0), (0, 1), (1, 1)})

An inclusion constraint Rinc defined on tasks Tx, Ty reads Tx includes Ty.
By definition, it restricts the domain of values that can be assigned to the pair
(Tx, Ty). In this case, either (0, 0), (0, 1), or (1, 1) can be assigned. Applying this
definition to task selection, it expresses that when Tx is selected, Ty must also
be selected (Tx is the dependent of Ty). The following selection scenarios are
permitted:

Defining Adaptation Constraints for Business Process Variants 7

– neither Tx nor Ty is selected, i.e., (0, 0);
– Ty is selected without Tx, i.e., (0, 1);
– both Tx and Ty are selected, i.e., (1, 1).

The scenario (1, 0) is prohibited where Tx is selected without Ty, thus en-
forcing the inclusion relationship between selection of Tx and Ty.

Similarly, an exclusion constraint Rexc is a binary relation on a pair of vari-
ables Tx, Ty ∈ T , iff :

Rexc = ((Tx, Ty), {(0, 0), (0, 1), (1, 0)})

An exclusion constraint prohibits the selection scenario (1, 1) where both Tx and
Ty are selected. Table 1 presents a summary for the definition of the containment
constraints.

Table 1. Definitions of Containment Constraints

Constraint Definition

Rinc ((Tx, Ty), {(0, 0), (0, 1), (1, 1)})
Rexc ((Tx, Ty), {(0, 0), (0, 1), (1, 0)})

Rsub ((Tx, Ty), {(0, 1), (1, 0), (1, 1)})
Rpre ((Tx, Ty), {(0, 0), (1, 0), (1, 1)})
Rcor ((Tx, Ty), {(0, 0), (1, 1)})
Rxco ((Tx, Ty), {(0, 1), (1, 0)})

For example, the restrictions for customer request processing discussed in
section 2 can be expressed as follows:

– Mandatory task T 1, i.e., man(T 1)
– Maximal selection of 6 tasks, i.e., Rmax(6)

– T 3 and T 4 are co-requisite, i.e., T 3 cor T 4
– T 6 includes T 7, i.e., T 6 inc T 7
– T 5 and T 7 are exclusion, i.e., T 5 exc T7

Considering constraint T 3 cor T 4, where it regulates that either both T 3
and T 4 are selected in the same workflow instance, or none of them should be.
Similarly, the substitution constraint T 5 sub T 7 prohibits the case when both
T 5 and T 7 are selected at the same instance.

4.3 Expressiveness of Selection Constraints

A constraint language L is defined by imposing restrictions on the possible con-
straint relations allowed to use. The expressiveness of the selection constraint
language can be investigated through the inverse, intersection and composition
of the abovementioned selection constraints. These constraint properties will also
be utilised in the validation algorithm later in the paper.

8 Ruopeng Lu et al.

Inverse Given a containment constraint R, the inverse R−1 of R also follows
basic set theoretic definition, i.e.,

R−1 = {(a, b)|(b, a) ∈ R} (1)

The inverse of a prerequisite constraint is equivalent to an inclusion con-
straint. The rest of the four containment constraints are reflexive, therefore their
inverse relations equal to themselves. The inverse of a mandatory constraint is
the prohibitive constraint and vice versa.

Intersection For (binary) containment constraints, it is allowed for more than
one selection constraint to be specified on the same pair of tasks (variables).
The intersection between two containment constraints R1 and R2 defined on
the same pair of variables (Tx, Ty) is denoted by R1 ∩R2. Intersections between
selection constraints follow the classic set theoretic definition, i.e.,

R1 ∩ R2 = {(a, b)|(a, b) ∈ R1, (a, b) ∈ R2} (2)

For example, suppose an inclusion and a substitution constraint are defined
on tasks Tx and Ty, i.e., Tx inc Ty, and Tx sub Ty. The set of possible values for
(Tx, Ty) that satisfies both inc and sub is given by:

inc ∩ sub = {(0, 0), (0, 1), (1, 1)} ∩ {(0, 1), (1, 0), (1, 1)} = {(0, 1), (1, 1)}

The resulting relation requires Ty to be a mandatory task since Ty = 1 in both
cases. Furthermore, the intersection between containment constraints and the
mandatory and prohibitive constraints can also be defined.

Composition The composition of two containment constraints R(Tx, Ty) and
R(Ty, Tz), denoted by:

R(Tx, Ty) ⊗ R(Ty, Tz)

results in the binary relation R(Tx, Tz), where

R(Tx, Tz) = R(Tx, Ty) ⊗ R(Ty, Tz)

= {(a, b)|a ∈ Dx, b ∈ Dz, ∃c ∈ Dy, (a, c) ∈ R(Tx, Ty), (c, b) ∈ R(Ty, Tz)}

(3)

In order to make mandatory and prohibitive relations union-comparable to
containment relations, the relation R(Tx, Ty) between an unconstrained task, say
Tx, and a mandatory task Ty can be denoted as {(0, 1), (1, 1)}, which allows any
value of Tx as long as Ty = 1. Similarly, if Ty is prohibitive, and Tx is uncon-
strained, R(Tx, Ty) = {(0, 0), (1, 0)}. For example, suppose defining Tx pre Ty on
an arbitrary pair of tasks (Tx, Ty), while Ty is mandatory. It implies that both
Tx and Ty to be mandatory, i.e.,

R(Tx, Ty) = {(0, 0), (1, 0), (1, 1)} ∩ {(0, 1), (1, 1)} = {(1, 1)}

While if Tx is prohibitive, and Tx pre Ty for tasks Tx and Ty, it can be
inferred that Ty is also prohibitive.

Defining Adaptation Constraints for Business Process Variants 9

4.4 Validation of Selection Constraints

Given the definition of selection constraints in a process template PT , it is
necessary to make sure at design time that:

– all implicit constraints are made explicit; and
– no conflict exists in the constraint specification.

In order to formally address the problem, a Selection Constraint Network
(SCN) is defined to provide formal semantics to validate the selection constraints.
SCN is a binary Boolean constraint network [6], which is a special type of con-
straint network with variables having bi-valued domains 1, 0 or true, false. Val-
idation of selection constraints of a process template PT is realized by checking
for the consistency of the corresponding SCN.

Definition 2 (SCN) Given a process template PT , SCN is a binary constraint

network defined by (Xs, Ds, Cs). Xs = {T1, . . . , Tn} is the set of all tasks in PT

represented as propositional variables. Ds = {D1, . . . , Dn} is the set of domains

of the corresponding propositional variables, where Di ∈ Ds, Di ⊆ {0, 1} . Cs is

the set of all selection constraints in PT .

For example, a SCN = (Xs, Ds, Cs) can be formulate for the the selection
constraints modelled for the customer request processing workflow in section 4,
where:

– Xs = {T 1, . . . , T7}
– Ds = {D1, . . . , D7}, where

Di =

{

{1} i ∈ {1}
{0, 1} i ∈ {2, 3, 4, 5, 6, 7}

– Cs = {R(T 3, T 4), R(T 5, T 7), R(T6, T7)}, where
– R(T 3, T 4) = T 3 cor T 4,
– R(T 5, T 7) = T 5 inc T 7, and
– R(T 6, T 7) = T 6 exc T7

A solution to a SCN is the assignment of values to each variable such that
no constraint is violated, i.e., ∀Ti ∈ Xs, there is a consistent assignment of a
value from Di such that all relevant selection constraints in Cs are satisfied. A
solution corresponds to a task selection scenario for the process template PT that
satisfies all relevant selection constraints in PT . A SCN is said to be consistent

if there exists at least one solution. If conflict exists between the constraints, the
constraint network is inconsistent and hence no solution exists.

Given an SCN as a binary Boolean constraint network, the consistency of
SCN can be checked by applying a generic consistency checking algorithm to
SCN (cf. Fig. 3 adapted from [3]).

The algorithm checks whether each pair of constraints in SCN is consistent.
If conflicts exist, the operation R(Ti, Tj) ∩ (R(Ti, Tk) ⊗ R(Tk, Tj)) results in an

10 Ruopeng Lu et al.

Fig. 3. Consistency checking procedure for SCN

Procedure SCN Consistency

Input: A constraint network SCN (Xs, Ds, Cs)
Output: A consistent constraint network SCN ′ equivalent to SCN

Method:

do

Q← SCN

for each k from 1 to n do

for each i, j from 1 to n, R(Ti, Tj) ∈ Q do

R(Ti, Tj)← R(Ti, Tj) ∩ (R(Ti, Tk)⊗R(Tk, Tj))
if R(Ti, Tj) = ∅ then break

until Q = SCN

empty constraint R(Ti, Tj) for some Ti and Tj, and the checking algorithm termi-
nates. Conflicts can exist between containment constraints, or between manda-
tory and containment constraints. However, if no conflict is detected, further
composition operation will not change the constraints in SCN, and the algo-
rithm terminates. Furthermore, implicit constraints will be inferred and added
to SCN, as the result of applying the composition operation to each pair of tasks.

Considering the following example to help explain how the algorithm is ap-
plied to reason about the selection constraints. Applying the algorithm to the
given SCN example, a more restrictive relation between (T 5, T 6) is obtained
by applying composition ⊗ to R(T 5, T 7) and R(T 6, T 7). We take the inverse of
R(T 6, T 7), where R−1(T 6, T 7) = R(T 7, T 6) = T 7 pre T 6. Applying composi-
tion operation R(T 5, T 7)⊗R(T 7, T 6), the new relation R(T 5, T 6) = T 5 exc T6
is obtained (cf. equations (1) and (3) in section 4.3). Since no conflict is detected,
the example SCN is consistent1. Hence, the specification of selection constraints
for the customer request processing workflow is correct.

5 Prototypical Implementation

We have implemented a prototype to evaluate the theoretical constraint mod-
elling approach. An extensible constraint designer has been built for end users
to model selection constraints (and other constraint types such as scheduling
constraints [7]). Fig. 4 is a snapshot of the prototype showing the modelled
constraints from the previous examples. A built-in function is provided for de-
sign time constraint validation. If validation is successful, the editor exports the
constraint specification into a XML file, which can be deployed into a dynamic
workflow engine called Chameleon. Chameleon is a light-weight workflow plat-
form built upon Windows Workflow Foundation that supports flexible workflow
execution such as Pocket of Flexibility [12]. The deployed constraints file is used

1 Note that the cardinality constraint can be simply checked by counting the number
of selected tasks in Xs.

Defining Adaptation Constraints for Business Process Variants 11

to automatically verify instance adaptation for different process instances on the
Chameleon platform during instance adaptation.

Fig. 4. Constraint Editor Prototype

6 Related Work

The proposed constraint-based approach falls in the category of late binding

paradigm, which is an approach where parts of the process schema are left unde-
fined at design time, but are configured at runtime for each process instance. For
this purpose, placeholder activities are provided, which are modelled and exe-
cuted during run-time. The guidelines or restrictions on the runtime adaptation
are modelled as rules [1, 8] or constraints [12]. On the other hand, there have been
a number of constraint languages proposed in other disciplines, such as Object
Constraint Language (OCL) [10] for object-oriented analysis and design method.
OCL is based on first-order predicate logic but it uses syntax similar to program-
ming languages. As a result, it is used to express additional constraints on UML
models that cannot specified with the graphical means provided by UML. OCL
has been applied to model resource allocation in workflows. However OCL and
UML do not support concepts usually adopted in the characterisation of con-
trol flows requirement in workflows. At the same time, the DECLARE approach
[11] has a similar problem-solving philosophy, which also aims at supporting
instance-level process adaptation by defining a set of workflow constraints to
regulate flexible changes. The background theory of DECLARE constraints is
Linear Temporal Logic (LTL), which operates on additional temporal logical
operators including always, eventually, until and next time. As a result, the
focus of DECLARE constraints has been on the temporal dependencies. In our
constraint framework, late binding is seen as a two-step approach. At runtime,
domain expert adapts a process instance by first selecting a set of tasks to per-
form, and secondly structuring the tasks into certain workflow patterns. As a
result, two constraints systems have been developed to support such activities.
This paper has focused on modelling the dependencies on task selection, as the

12 Ruopeng Lu et al.

first and most essential step in late binding paradigm. The structuring (schedul-
ing) constraints have been covered by our previous work [7].

7 Conclusion and Outlook

Process constraints can express minimal restrictions on the selection and order-
ing of tasks for all instances of the targeted business process, thus providing a
degree of flexibility in process execution. This paper has presented how task se-
lection constraints can be specified at design time, through selection constraints,
and the quality of the constraint specification is checked through the formal
machinery of selection constraint network respectively. Different process mod-
els can be built/tailored for individual process instances at runtime, leading to
instance-specific process models (process variants). Possible future work includes
to explore further constraint dimensions such as the resource perspective, and a
complete implementation of the extended constraint sets.

References

1. Adams, M., ter Hofstede, A. H. M., Edmond, D., van der Aalst., W. M. P.: Imple-
menting Dynamic Flexibility in Workflows using Worklets. BPMcenter.org (2006)

2. Bartk, R.: Dynamic constraint models for planning and scheduling problems. In
Lecture Notes in Computer Science, Vol. 1865, Springer-Verlag (1999) 237-255

3. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
4. Indulska, M., Chong, S., Bandara, W., Sadiq, S., Rosemann, M.: Major issues in

business process management: A vendor perspective. In Proc. the Pacific Asia Con-
ference on Information Systems (PACIS2007) (2007)

5. Jablonski, S.: MOBILE: A Modular Workflow Model and Architecture. In Proc.
Int’l Working Conference on Dynamic Modelling and Information Systems, Nord-
wijkerhout 1994 (1994)

6. Jeavons, P.: Constructing constraints. In Proc. Int’l Conference on Principles and
Practice of Constraint Programming. Springer-Verlag (1999)

7. Lu, R., Sadiq, S., Padmanabhan, V., Governatori, G.: Using a Temporal Constraint
Network for Business Process Execution. In Proc. 17th Australasian Database Con-
ference (ADC2006), Hobart, Australia (2006)

8. Muller, R., Greiner, U., Rahm, E.: AGENT WORK: a workflow system supporting
rule-based workflow adaptation. Data Knowl. Eng., Elsevier Science Publishers B.
V., Vol.51 (2004) 223-256

9. Object Management Group: Business Process Modeling Notation (BPMN) Specifi-
cation 1.0 Technical Report, Object Management Group (OMG) (2006)

10. Object Management Group: Object Constraint Language Specification Version 1.1.
Technical Report, Object Management Group (OMG) (1997)

11. Pesic, M., Schonenberg, M. H., Sidorova, N., van der Aalst, W. M. P.: Constraint
based workflow models: Change made easy. In Proc. OTM Confederated Interna-
tional Conferences 2007 (2007) 77-94

12. Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification and
Validation in Flexible Workflows. Information Systems, Vol.30(5) (2005)

