Skip to main content

A SVM Model Selection Method Based on Hybrid Genetic Algorithm and Empirical Error Minimization Criterion

  • Chapter
The Sixth International Symposium on Neural Networks (ISNN 2009)

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 56))

Abstract

The generalization capacity of support vector machine (SVM) depends largely on the selection of kernel function and its parameters, and penalty factor, which is regarded as model selection of SVM. When various forms of differentiable and loose generalization bounds are considered as the objective functions, the traditional optimization algorithms easily fall into the local optimal solutions, whereas the modern techniques difficultly find out really optimal ones. Recently the empirical error criterion on a validation set is used as a new objective function which is optimized by the classical optimization methods. In this paper, we propose a new SVM model selection based on hybrid genetic algorithm and empirical error minimization criterion. The hybrid genetic method integrates the gradient descent method into the genetic algorithm to search for a better parameter of RBF kernel. The experiments on 13 benchmark datasets demonstrate that our method can work well on some real applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Google Scholar 

  2. Cortes, C., Vapnik, V.N.: Support Vector Networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  3. Ratsch, G., Onoda, T., Muller, K.R.: Soft Margins for AdaBoost. Machine Learning 42, 287–320 (2001)

    Article  Google Scholar 

  4. Lee, J.H., Lin, C.J.: Automatic Model Selection for Support Vector Machines. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University (2000)

    Google Scholar 

  5. Chapelle, O., Vapnik, V.N., Bousquet, O., Mukherjee, S.: Choosing Multiple Parameters for Support Vector Machines. Machine Learning 46(1-3), 131–159 (2002)

    Article  MATH  Google Scholar 

  6. Keerthi, S.S.: Efficient Tuning of SVM Hyperparameters Using Radius Margin Bound and Iterative Algorithms. IEEE Trans. on Neural Networks 13, 1225–1229 (2002)

    Article  Google Scholar 

  7. Duan, K., Keerthi, S.S., Poo, A.N.: Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters. Neurocomputing 51, 41–59 (2003)

    Article  Google Scholar 

  8. Chung, K.M., Kao, W.C., Sun, C.L., Wang, L.L., Lin, C.J.: Radius Margin Bounds for Support Vector Machines with the RBF Kernel. Neural Computation 15, 2643–2681 (2003)

    Article  MATH  Google Scholar 

  9. Ayat, N.E., Cheriet, M., Suen, C.Y.: Optimization of the SVM Kernels Using an Empirical Error Minimization Scheme. In: Lee, S.W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 354–369. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Adankon, M.M., Cheriet, M., Ayat, N.E.: Optimizing Resources in Model Selection for Support Vector Machines. In: 2005 International Joint Conference on Neural Networks, pp. 925–930. IEEE Press, Montreal (2005)

    Chapter  Google Scholar 

  11. Ayat, N.E., Cheriet, M., Suen, C.Y.: Automatic Model Selection for the Optimization of the SVM Kernels. Pattern Recognition 38, 1733–1745 (2005)

    Article  Google Scholar 

  12. Adankon, M.M., Cheriet, M.: New Formulation of SVM for Model Selection. In: 2006 International Joint Conference on Neural Networks, pp. 1900–1907. IEEE Press, Vancouver (2006)

    Google Scholar 

  13. Zheng, C.H., Li, C.J.: Automatic Parameters Selection for SVM Based on GA. In: 5th World Congress on Intelligent Control and Automation, pp. 1869–1872. IEEE Press, Hangzhou (2004)

    Chapter  Google Scholar 

  14. Javier, A., Saturnino, M., Philip, S.: Tuning L1-SVM Hyperparameters with Modified Radius Margin Bounds and Simulated Annealing. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 284–291. Springer, Heidelberg (2007)

    Google Scholar 

  15. Platt, J.: Probabilistic Outputs for Support Vector Machines and Comparisons to Regula-rized Likelihood Methods. In: Bartlett, P.J., Scholkopf, B., Schuurmans, D., Smola, A.J. (eds.) Advances in large margin classifiers, pp. 67–74. MIT Press, Cambridge (1999)

    Google Scholar 

  16. Ratsch, G.: Benchmark data sets, http://ida.first.fhg.de/projects/bench/benchmarks.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, X., Xu, J. (2009). A SVM Model Selection Method Based on Hybrid Genetic Algorithm and Empirical Error Minimization Criterion. In: Wang, H., Shen, Y., Huang, T., Zeng, Z. (eds) The Sixth International Symposium on Neural Networks (ISNN 2009). Advances in Intelligent and Soft Computing, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01216-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01216-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01215-0

  • Online ISBN: 978-3-642-01216-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics