Skip to main content

Sparse Kernel Learning and the Relevance Units Machine

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5476))

Abstract

The relevance vector machine(RVM) is a state-of-the-art constructing sparse regression kernel model [1,2,3,4]. It not only generates a much sparser model but provides better generalization performance than the standard support vector machine (SVM). In RVM and SVM, relevance vectors (RVs) and support vectors (SVs) are both selected from the input vector set. This may limit model flexibility. In this paper we propose a new sparse kernel model called Relevance Units Machine (RUM). RUM follows the idea of RVM under the Bayesian framework but releases the constraint that RVs have to be selected from the input vectors. RUM treats relevance units as part of the parameters of the model. As a result, a RUM maintains all the advantages of RVM and offers superior sparsity. The new algorithm is demonstrated to possess considerable computational advantages over well-known the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tipping, M.: The relevance vector machine. In: Solla, S., Leen, T., Müller, K. (eds.) Advances in Neural Information Processing Systems, vol. 12. MIT Press, Cambridge (2000)

    Google Scholar 

  2. Bishop, C., Tipping, M.: Variational relevance vector machines. In: Boutilier, C., Goldszmidz, M. (eds.) Uncertainty in Artificial Intelligence 2000, pp. 46–53. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  3. Tipping, M.: Sparse Bayesian learning and the relevance vector machine. J. Machine Learnign Research 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Tipping, M., Faul, A.: Fast marginal likelihood maximisation for sparse bayesian models. In: Bishop, C., Frey, B. (eds.) Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL (January 2003)

    Google Scholar 

  5. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  6. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  7. Poggio, T., Girosi, F.: A sparse representation for function approximation. Neural Computation 10, 1445–1454 (1998)

    Article  Google Scholar 

  8. Chen, S.: Local regularization assisted orthogonal least squares regression. NeuroComputing 69, 559–585 (2006)

    Article  Google Scholar 

  9. Kruif, B., Vries, T.: Support-Vector-based least squares for learning non-linear dynamics. In: Proceedings of 41st IEEE Conference on Decision and Control, Las Vegas, USA, pp. 10–13 (2002)

    Google Scholar 

  10. Gestel, T., Espinoza, M., Suykens, J., Brasseur, C., deMoor, B.: Bayesian input selection for nonlinear regression with LS-SVMS. In: Proceedings of 13th IFAC Symposium on System Identification, Totterdam, The Netherlands, pp. 27–29 (2003)

    Google Scholar 

  11. Valyon, J., Horváth, G.: A generalized LS-SVM. In: Principe, J., Gile, L., Morgan, N., Wilson, E. (eds.) Proceedings of 13th IFAC Symposium on System Identification, Rotterdam, The Netherlands (2003)

    Google Scholar 

  12. Suykens, J., van Gestel, T., DeBrabanter, J., DeMoor, B.: Least Square Support Vector Machines. World Scientific, Singapore (2002)

    Book  Google Scholar 

  13. Drezet, P., Harrison, R.: Support vector machines for system identification. In: Proceeding of UKACC Int. Conf. Control 1998, Swansea, U.K, pp. 688–692 (1998)

    Google Scholar 

  14. Gao, J., Antolovich, M., Kwan, P.H.: L1 lasso and its Bayesian inference. In: 21st Australasian Joint Conference on Artificial Intelligence, New Zealand (submitted, 2008)

    Google Scholar 

  15. Wang, G., Yeung, D.Y., Lochovsky, F.: The kernel path in kernelized LASSO. In: International Conference on Artificial Intelligence and Statistics, pp. 580–587. MIT Press, San Juan (2007)

    Google Scholar 

  16. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Royal. Statist. Soc. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Roth, V.: The generalized lasso. IEEE Transactions on Neural Networks 15(1), 16–28 (2004)

    Article  Google Scholar 

  18. Wu, M., Schölkopf, B., Bakir, G.: A direct method for building sparse kernel learning algorithms. Journal of Machine Learning Research 7, 603–624 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Burges, C.: Simplified support vector decision rules. In: Proc. 13th International Conference on Machine Learning, pp. 71–77. Morgan Kaufman, San Mateo (1996)

    Google Scholar 

  20. Snelson, E., Ghahramani, Z.: Sparse gaussian processes using pseudo-inputs. In: Advances in Neural Information Processing Systems 18, pp. 1257–1264. MIT Press, Cambridge (2006)

    Google Scholar 

  21. Gao, J.: Robust L1 principal component analysis and its Bayesian variational inference. Neural Computation 20, 555–572 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lawrence, N.: Probabilistic non-linear principal component analysis with gaussian process latent variable models. Journal of Machine Learning Research 6, 1783–1816 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Billings, S., Chen, S., Backhouse, R.: The identification of linear and nonlinear models of a turbocharged automotive diesel engine. Mech. Syst. Signal Processing 3(2), 123–142 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, J., Zhang, J. (2009). Sparse Kernel Learning and the Relevance Units Machine. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, TB. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2009. Lecture Notes in Computer Science(), vol 5476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01307-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01307-2_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01306-5

  • Online ISBN: 978-3-642-01307-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics