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Summary. We introduce a novel ensemble model based on random projections.
The contribution of using random projections is two-fold. First, the random-
ness provides the diversity which is required for the construction of an ensem-
ble model. Second, random projections embed the original set into a space of
lower dimension while preserving the dataset’s geometrical structure to a given
distortion. This reduces the computational complexity of the model construction
as well as the complexity of the classification. Furthermore, dimensionality re-
duction removes noisy features from the data and also represents the information
which is inherent in the raw data by using a small number of features. The noise
removal increases the accuracy of the classifier.
The proposed scheme was tested using WEKA based procedures that were ap-
plied to 16 benchmark dataset from the UCI repository.
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1 Introduction

Ensemble methods are very popular tools in pattern recognition due to their robustness
and higher accuracy relatively to non-ensemble methods [18]. Rather than relying on a
single classifier, they incorporate several classifiers where, ideally, the combination of
classifiers outperforms each of the individual classifiers. In fact, ensemble methodology
imitates our second nature to seek several opinions before making any crucial decision.
We weigh the individual opinions, and combine them before reaching a final decision
[24].

Successful applications of the ensemble methodology can be found in many fields:
finance [20], manufacturing [26] and medicine [22], to name a few.

One of the most common approaches for creating an ensemble classifier constructs
multiple classifiers based upon a single given inducer e.g the nearest neighbor inducer
and C4.5 [25]. The classifiers are constructed via a training step. Each classifier is
trained on a different training set, all of which are derived from the original training
set. The classification result of the ensemble algorithm combines the results of the dif-
ferent classifiers (e.g. by a voting scheme). Ensemble methods can also be applied to
regressors in which case a multivariate function is used to combine the individual re-
gression results of the classifiers [27]. In this paper, we focus on classifiers rather than
on regressors.



2 Alon Schclar and Lior Rokach

Two crucial components in an effective ensemble method are accuracy and diver-
sity. Accuracy requires that each individual classifier will generalize as much as possible
to new test instances i.e. individually minimize the generalization error. Diversity [19]
requires that the individual generalization errors will be uncorrelated as much as pos-
sible. These components are contradictory in nature. On one hand, if every individual
classifier in completely accurate, then the ensemble is not diverse and is not required at
all. On the other hand, if the ensemble is completely diverse the ensemble classification
is equivalent to random classification. In [23], “kappa-error” diagrams are introduced
in order to show the effect of diversity at the expense of reduced individual accuracy.

When using classifiers that are derived from a single inducer, the diversity is
achieved by construction of different training sets. One of the most common ensem-
ble methods of this type is the Bagging algorithm [5] which obtains the diversity by
creating the various training sets via bootstrap sampling (allowing repetitions) of the
original dataset. This method is simple yet effective. Bagging was successfully applied
to a variety of problems e.g. spam detection [30] and analysis of gene expressions [28].

In this paper, we utilize random projections to construct a novel ensemble algorithm.
Specifically, a set of random matrices is generated. The training sets of the different
classifiers are constructed by projecting the original training set onto the random matri-
ces. This approach is different from the random subspaces [16] method that is used in
[27]. In random subspace, each training set is composed of a random subset of features.
However, in random projection, every derived feature is a random linear combination of
the original features. In this sense, random subspaces are equivalent to random feature
selection while random projections are equivalent to random feature extraction.

When designing the proposed algorithm, we aimed to construct an algorithm which
will require limited computational resources i.e. the algorithm was designed so its com-
plexity would be as low as possible. Accordingly, it stands to reason to compare the
proposed algorithm only with algorithms of the same complexity category. The most
prominent algorithm in this complexity category is the Bagging algorithm, whose com-
plexity is only slightly lower than the complexity of the proposed algorithm. No com-
parison is made with more complex ensemble algorithms such as AdaBoost [12] and
Rotation Forests [1].

1.1 Random projections

The utilization of random projections as a tool for dimensionality reduction stems from
the pioneering work of Johnson and Lindenstrauss [17] who laid the theoretical foun-
dations of dimensionality reduction by proving its feasibility. Specifically, they showed
that N points in N dimensional space can almost always be projected onto a space of
dimension C logN with control on the ratio of distances and the error (distortion). Bour-
gain [4] showed that any metric space with N points can be embedded by a bi-Lipschitz
map into an Euclidean space of logN dimension with a bi-Lipschitz constant of logN.
Thus, random projections reduce the dimensionality of a dataset while preserving its
geometrical structure.

Applications of the above theorems, which use random projections for dimension-
ality reduction, were successfully used for protein mapping [21], reconstruction of
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frequency-sparse signals [7, 9], face recognition [13] and textual and visual informa-
tion retrieval [3].

Random projections were also utilized as part of an ensemble algorithm for clus-
tering in [10] and for gene expression data analysis in [11]. Essentially, the random
projection algorithm is used to reduce the dimensionality of the dataset. Then an EM
(of Gaussian mixtures) clustering algorithm is applied to the dimension-reduced data.
However, it is reported in [10] that using a single run of the random projection algorithm
produces poor and unstable results. This is due the unstable nature of random projec-
tions. Accordingly, an ensemble algorithm is proposed. Each iteration in the algorithm
is composed of two steps: (a) dimensionality reduction via random projection and (b)
application of the EM clustering algorithm. The ensemble algorithm achieves results
that are better and more robust than those obtained by single runs of random projec-
tion/clustering and are also superior to a similar scheme which uses PCA to reduce the
dimensionality of the data.

In the following, we formally describe the random projection algorithm for dimen-
sionality reduction. Let

Γ = {xi}N
i=1 (1)

be the original high-dimensional dataset given as a set of column vectors where xi ∈Rn,
n is the (high) dimension and N is the size of the dataset. All dimensionality reduction
methods embed the vectors into a lower dimensional space Rq where q ¿ n. Their
output is a set of column vectors in the lower dimensional space

Γ̃ = {x̃i}N
i=1 , x̃i ∈ Rq (2)

where q approximates the intrinsic dimensionality of Γ [15, 14]. We refer to the vectors
in the set Γ̃ as the embedding vectors.

In order to reduce the dimensionality of Γ using random projections, a random vec-
tor set ϒ = {ri}n

i=1 is first generated where ri ∈Rq. Two common choices for generating
the random basis are:

1. The vectors {ri}n
i=1 are uniformly (or normally) distributed over the q dimensional

unit sphere.
2. The elements of the vectors {ri}n

i=1 are chosen from a Bernoulli +1/-1 distribution
and the vectors are normalized so that ‖ri‖l2 = 1 for i = 1, . . . ,n.

Next, a q×n matrix R whose columns are composed of the vectors in ϒ, is constructed.
The embedding x̃i of xi is obtained by

x̃i = R · xi

2 The proposed algorithm

In the proposed algorithm, random projections are used in order to create the training
sets on which the classifiers will be trained. Using random projections provides the re-
quired diversity component of the ensemble method. Although the complexity of using
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random projections is slightly higher than that of the Bagging algorithm, random pro-
jections possess useful properties that can help obtain better classification results than
those achieved by the Bagging algorithm. In particular, random projections reduce the
dimensionality of the dataset while maintaining its geometrical structure within a cer-
tain distortion rate [17, 4]. This reduces the complexity of the classifier construction
as well as the complexity of the classification of new members while producing clas-
sifications that are close to or better than those of the original dataset. Furthermore,
dimensionality reduction removes noisy features and thus can improve the generaliza-
tion error.

One of the crucial parameters to any dimensionality reduction algorithm is the di-
mension of the target space. In the proposed algorithm, we set the dimension of the tar-
get space to a portion of the dimension of the ambient space where the training members
reside.

Algorithm description Given a training set Γ as described in Eq. 1, we construct a
matrix G of size n×N whose columns are composed of the column vectors in Γ

G = (x1|x2| . . . |xN)

Next, we generate k random matrices {Ri} k
i=1of size q×n where q and n are described

in the previous section and k is the number of classifiers in the ensemble. The columns
are normalized so that their l2 norm will be 1.

The training sets {Ti} k
i=1 for the ensemble classifiers are constructed by projecting

G onto the random matrices {Ri} k
i=1, i.e. Ti = Ri ·G where i = 1, . . . ,k. These training

sets are input to an inducer I and the outcome in a set of classifiers {Ci} k
i=1.

In order to classify a new member u by a classifier Ci, u must first be embedded
into the dimension-reduced space Rq. This is achieved by projecting u onto the random
matrix Ri

ũ = Ri ·u.

where ũ is the embedding of u. The classification of u is set to the classification of ũ by
Ci. The final classification of ũ by the proposed ensemble algorithm is produced via a
voting scheme that is applied to the classification outcomes of all the classifiers {Ci} k

i=1
for the ũ.

3 Experimental results

We tested our approach on 16 datasets from the UCI repository [2] which contains com-
monly used benchmark datasets that are used to test machine learning algorithms e.g.
classifiers. We used the nearest-neighbor inducer (WEKA’s B1 lazy classifier) to con-
struct 10 classifiers in each ensemble where the results are the average of 10 ensembles.
The size of the dimension-reduced space was set to half of the dimension of the training
set. The random matrices were generated from a Gaussian distribution.

Table 1 describes the results of the experiments comparing the performance of the
proposed algorithm with the performance of the Bagging algorithm. We also include the
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results of the simple non-ensemble nearest-neighbor (NENN) classifier and an ensem-
ble algorithm which is based on the Random subspaces (RS) approach (each training
set contains 50 percent randomly chosen features). For each dataset, we specify the
number of instances, the number of features (original dimensionality) and the Gener-
alized Accuracy of the two algorithms. The generalized accuracy represents the mean
probability that an instance was classified correctly and it was calculated via a 10-fold
cross-validation procedure which was repeated ten times. Since the average accuracy is
a random variable, the confidence interval was estimated by using the normal approx-
imation of the binomial distribution. The one-tailed paired t-test [8] with a confidence
level of 95% verified whether the differences in accuracy between the proposed algo-
rithm and the Bagging algorithm were statistically significant. It can be seen in Table
1 that the proposed algorithm significantly outperforms the Bagging algorithm in six
(Hill Valley, Isolet, Madelon, Sat, Waveform with noise and Waveform without noise)
datasets out of the 16 benchmark datasets. Furthermore, the proposed algorithm out-
performs without statistical significance the Bagging algorithm in five (Musk1, Musk2,
Ecoli, Glass, Ionosphere) out of the 16 benchmark datasets. On the other hand, the Bag-
ging algorithm significantly outperforms the proposed algorithm in five datasets (Mul-
tiple features, Segment, Shuttle, Spambase and Wine). However, the dimensionality in
these cases is less than 101 and the proposed algorithm dominates the datasets whose
dimension is higher than 100. The proposed algorithm outperforms each of the NENN
and the RS algorithms in 11 of the test datasets. The NENN algorithm and the RS algo-
rithm outperform the proposed algorithm in five datasets. In three of which (Segment,
Multiple features and Wine), both them outperform it.

In order to conclude which algorithm performs best over all the benchmark datasets,
we use the Wilcoxon test [8] whose definition follows: let δi be the difference between
the performance scores of the two classifiers on the j-th out of the Ω = 16 datasets. We
rank the differences according to their absolute values. In case of ties, average ranks are
assigned. Let ρ+ be the sum of ranks for the data sets on which the proposed algorithm
outperformed the Bagging algorithm, and ρ− be the sum of ranks for the opposite. Cases
for which δi = 0 are split evenly between the sums. Formally, ρ+and ρ− are defined as
follows:

ρ+ = ∑
δi>0

rank (δi)+
1
2 ∑

δi=0
rank (δi) ;

ρ− = ∑
δi<0

rank (δi)+
1
2 ∑

δi=0
rank (δi)

Let τ = min(ρ+,ρ−) be the smaller of the sums. Define the statistic

z =
τ− 1

4 Ω(Ω+1)√
1

24 Ω(Ω+1)(2Ω+1)

which for a larger number of data sets is distributed approximately normally. For the
datasets that we used, we got z = −1.29 to α = 0.1. Thus, the proposed algorithm
significantly outperforms the Bagging algorithm with z =−1.29, p < 0.1.
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Table 1: Properties of the benchmark datasets along with a comparison between the performance
of the proposed algorithm and the Bagging algorithm. The ’++’ postfix means that the proposed
algorithm is significantly more accurate than the Bagging algorithm. The converse is marked
by a ’–’ postfix. The ’+’ postfix indicates that the proposed algorithm is more accurate than the
Bagging algorithm without statistical significance. The two right columns contain the results of a
Random-subspace based ensemble algorithm and a non-ensemble nearest neighbor classification
algorithm.

Dataset Name Instance# Feature# Proposed algorithm Bagging Random subspaces Non-ensemble NN
Hill Valley ++ 2424 100 73.15±7.41 61.38±5.09 61.89±4.11 61.38±4.3

Isolet ++ 7797 617 90.56±1.02 89.77±1.02 90.01±1.03 87.09±1.19
Madelon ++ 2000 500 67.72±3.36 55.63±3.29 55.1±3.47 53.25±3.13

Multiple features – 2000 649 96.11±1.3 97.9±0.9 97.9±0.92 97.65±1.01
Sat ++ 6435 36 91.06±1.06 90.41±0.92 90.41±0.97 88.97±1.12

Segment – 2310 19 96.27±1.21 97.03±1.17 97.15±1.11 96.76±1.1
Shuttle – 58000 9 99.79±0.06 99.93±0.03 99.93±0.03 99.75±0.06

Spambase – 4601 57 85.56±1.44 91±1.35 90.78±1.36 86.56±1.71
Waveform w noise ++ 5000 40 79.63±1.88 73.8±1.7 73.41±1.82 73.22±2.13

Waveform w/o noise ++ 5000 21 80.93±1.81 77.4±1.67 77.17±1.63 71.91±1.88
Wine – 178 13 76.96±8.87 95.07±4.31 95.12±4.34 91.07±6.12

Musk1 + 476 166 86.98±4.73 85.65±4.91 85.55±4.79 83.51±5.27
Musk2 + 6598 166 95.89±0.67 95.79±0.7 95.7±0.72 95.43±0.72
Ecoli + 336 7 83.42±5.38 80.98±6.1 80.66±6.16 73.96±6.15
Glass + 214 9 71.44±9.18 69.98±9.25 70.3±8.96 73.03±9.95

Ionosphere + 351 34 90.4±4.55 87.36±5.06 87.1±5.12 85.62±5.21

4 Conclusion and future work

In the this paper, we introduced an alternative ensemble method to the Bagging al-
gorithm. The method uses random projections instead of the bootstrap sampling that
is used by the Bagging algorithm. The proposed method proves to be superior to the
bagging algorithm in several datasets while producing competitive results for the other
datasets.

The results in this paper are promising. However, a question that needs further inves-
tigation is when does the proposed method outperform the Bagging algorithm. Ideally,
rigorous criteria should be formulated.

Furthermore, the proposed method should also be tested using other inducers e.g.
classification and regression trees [6], SVM [29], etc.
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