
Remote Controlling and Monitoring of Safety Devices
Using Web-Interface Embedded Systems

A. Carrasco, M. D. Hernández, M. C. Romero, F. Sivianes, and J. I. Escudero

Dpto. Tecnología Electrónica, Universidad de Sevilla
Avda. Reina Mercedes S/N, 41012 Sevilla, Spain

{acarrasco,mdhv,mcromero,fsivianes,ignacio}@us.es

Abstract. To date, access control systems have been hardware-based platforms,
where software and hardware parts were uncoupled into different systems. The
Department of Electronic Technology in the University of Seville, together with
ISIS Engineering, have developed an innovative embedded system that pro-
vides all needed functions for controlling and monitoring remote access control
systems through a built-in web interface. The design provides a monolithic
structure, independence from outer systems, easiness in management and main-
tenance, conformation to the highest standards in security, and straightforward
adaptability to applications other than the original one. We have accomplished
it by using an extremely reduced Linux kernel and developing web and pur-
pose-specific logic under software technologies with an optimal resource use.

Keywords: Embedded systems, web applications, open source, safety devices,
web interface, remote controlling.

1 Introduction

Nowadays, physical access control systems play a key role in corporation’s security
systems nowadays. They allow intrusion detection and grant access to authenticated
users to facilities, devices and other sensible elements located in corporations. Their
core is formed by hardware elements such as sensors, and other higher-level devices
that allow their management.

The main drawback of this approach lies in the need of updating every single copy
of the administration software each time a new update is released. Moreover, there is
a strong dependence between the software and the hardware platform it runs on, en-
tailing at worst the replacement of hardware parts to support new software features.

The main goal we proposed when designing the device described within this paper
was designing from the scratch, and implementing, a new device that allows monitor
and administer an access-control system remotely. This access-control [1] system
consisted of multiple hardware parts monitoring unauthorized entrance to rooms
within a corporation facility. The system had to surpass the previously commented
drawbacks and finally, the device should be easily plugged into any Ethernet network
offering its management features through a web-based interface.

Another objective, but not less important, was building a highly secure system.

Fig. 1. Using the web-based embedded device for different applications

However, on a long term, the goal was to design a flexible system that could easily
be adapted to other uses than monitoring access-control systems, with the least possi-
ble modifications to its hardware and software structures.

Apart from the obvious benefits enjoyed by final users, from the developer point of
view, having a flexible platform implementing all the hardware parts and interfaces
reduces development effort, thus reducing costs.

On the other side, convergence of software and hardware into a single device
brings many advantages not only to access-control-orientated systems, but also to
other specific-purpose systems such as Supervisory Control and Data Acquisition
(SCADA) [3] systems, to give an example.

The solution to all these requirements comes by hands of an embedded platform
[2] that implements software logic and hardware interfaces into a single device. The
embedded system uses a hardware platform, which together with a modularized
design of software components, allow adaptation to new applications.

2 Key Features of the System

Next we will discuss in detail the most noticeable features offered by the embedded
device, both to final users and to developers themselves.

2.1 Compatibility

Using a web-based interface provides full software compatibility with any external
operating system. Users can operate the device trough a web navigator application,
available in all modern operating systems, (using PCs, cell phones…).

On the other hand, having a device based on Ethernet technology with a fully cus-
tomizable IP makes integrating it into any corporative network a very straightforward
process.

2.2 Monolithic Structure

One of the main goals achieved by this platform is to be designed in a way users
perceive it like a black box. The system, once connected to the hardware it is designed
to work with, allows interoperating with the subjacent hardware through the

web-based, built-in administration logic, so that users do not need to know the way
devices lying below this platform work.

In a practical case, the box is connected to a Texecom’s “Premier” alarm control
panel through a serial port, having an Ethernet [4] port so that it is accessible from a
Local Area Network and/or Internet. Users, using a web-browser, will connect to a
given IP address and receive graphical information about the state of surveyed loca-
tions, performing any needed actions unaware of the panel and sensors connected to it.

2.3 Security

Security requirements for parts used in these applications (e.g. access control systems
[5]) are very tight, because any security flaw in its software components might
compromise the integrity global system.

Fig. 2. Securing the embedded system

Therefore, some actions have been taken to ensure that only trusted users can make
use of the embedded device’s capabilities.

Firstly, information sent and received by our system is secured by means of Secure
Socket Layer (SSL) encrypted HTTP connections [6] for all web communications.
This means anybody is able to view any sensible information.

Furthermore, user authentication is implemented, which prevents non-authorized
users from accessing to the embedded device. All users and groups management is
administered from the web-interface; this way, users can be granted to view and/or
modify different device’s functions depending on the role they play within the corpo-
rative organization (e.g. administrators, maintainers, etc…).

Finally, additional securing steps have been taken, as the closure of all unessential
and vulnerable network ports (e. g. Telnet [7])[8].

2.4 Ease in Management and Maintenance

Web logic provides a graphical interface that allows any user to use a web navigator
to supervise the status of all the devices. It can also be used to deal with all other
appropriate system operations such as bypassing of locks, deactivation of alarms,
modification of parameters (e.g. the box’s IP [9] address), or even updating the

system logic. Being able of updating system software logic from a remote computer is
one of the strongest points of this architecture; this introduces many advantages:

− Final users do not need to update or change any software neither any hardware
component in their systems, so they can use new features from a first moment.

− Technical assistance and maintenance can be carried out from remote computers,
thus physical presence is avoided and maintenance expenses are severely reduced.

− In the case of a system hardware failure, it can be easily replaced by a new one,
again without the need of any additional update at users´ environments.

− The option exists of making the system to automatically check for updates (by
asking administrators for authorization or by using a fully automatic mode- update
itself).

3 System Design

When designing software for embedded systems, we are subject to serious restrictions
due to the limited system resources available, such as the processor clock frequency,
RAM, and ROM. Other major parameters for the design of the overall system are the
processor's power consumption and the cost of the processor. At the same time, there
is an increased demand to improve the software-based functionality in the individual
device.

Hardware used to build the embedded system consists of all-in-one board having:
− A RISC processor
− 2 MB of flash memory and 8 MB of RAM memory
− Two 100-base-t Ethernet ports, with unique MAC [10] addresses
− 3 serial ports: two RS-232 ports and one USB [11] port

This set-up provides a limited but powerful-enough platform to develop any net-
worked device that can easily adapt to any purpose; its functionality can range from
acting as a network firewall to -by simply updating its software logic- be used for
communicating with any device via its serial or network ports.

The system can also easily be expanded to add different ports, as e.g. RS-485 or
GPRS links [12].

3.1 Operating System

The system is built over a Linux [13] core, which due to the limited hardware
resources available, needs to have a very small size. So, we have used some solutions
to reduce the size of the embedded Linux operating system:

− All unneeded drivers and services have been removed.
− Only essential shell commands are kept, with reduced functionality. Furthermore,
− they have been put together into a common executable.
− O.S. is also compressed when stored into the flash memory, being decompressed to

RAM memory to be effectively executed.

Linux daemons such as HTTP/FTP servers, security suites (firewall, SSL, etc.) or
custom device controllers are also deployed as a part of Linux operating system,
which are upon booting the system.

3.2 Software Components Design

Due to low spare flash space and RAM memory available, custom software
components also need to be small both in size and memory use.

The best approach here is using software components developed in pure C lan-
guage. Also, server-side scripting languages such as PHP [14] or ASP [15] cannot be
used in such an environment, leading us to use client-side JavaScript language and
Common Gateway Interface (CGI) [16] executable programs to build the web logic.

Fig. 3. Web software logic as the interface between the browser and the supported system

Regarding application efficiency, all software components have been developed using
a thread-based architecture when concurrent actions (e.g. serving network petitions,
etc…) are needed. This improves performance thanks to the parallelization provided
by the thread-based approach.

However, special care must be taken with the memory threads use, as they may
exhaust the limited memory resources available in the AXIS platform. Memory
depletion issues cause erratic behavior not only the consumer applications, but also in
other programs and the operating system.

Limiting the number of threads an application can launch is a good mechanism to
prevent memory-starvation issues. It may reduce functionality, but it avoids more
severe consequences than those software malfunctions can cause over trusted
systems; such failures might be exploited by malicious people.

3.3 Real-Life Application: “Indalo”, a “Premier” Alarm Panel Controller

All this theory has been brought into reality in the form of a device implementing a
web-based interface that allows administering a “Premier” alarm central device. The
alarm central, in its turn, is connected to several alarms distributed along a
corporation. This real-life appliance has been successfully deployed into the local
network of a national aero-spatial company, allowing security staff to detect
unauthorized accesses to its different secured rooms.

Fig. 4. Screenshot from web interface of “Indalo” access control management device

The “Indalo” device – name of this customization for this general-purpose embed-
ded system - can be accessed through the corporation network, allowing users to have
the correct administration rights, supervise and administer the whole access-control
system. Both on demand and “real-time” HTML content are provided by the box,
being the later periodically updated so it always displays an up-to-date status of the
system.

In addition, system’s logic provides additional administration web-pages, allowing
users to create customized statistical reports based on different policies, such
descriptions about non-allowed accesses or other system events that have taken place
in a given lapse of time.

As commented above, we are forced to use CGI executables for both transmitting
actions taken on web pages to the alarm central and reflecting the status of the differ-
ent alarms administered by the alarm central.

CGI executables that analyze the status data received from the alarm system are
excuted periodically, feeding the HTML pages by creating the JavaScript code so the
browser can show the status of the different alarms (bypassed, alarmed, etc.).

Commands to be taken over the alarm system are forwarded from the browser to
other CGIs, which analyze the command type and its parameters and send the correct
command packet structure to the alarm system via a RS-232 serial connection.

Result of commands operation received from the alarm system is then parsed and
JavaScript code is created so HTML pages can reflect the result.

Fig. 5. Embedded system using CGIs to communicate with “Premier” alarm control panel

Fig. 6. Separating device-dependent code to be on daemons and HTML-dependent code on
CGIs

With the objective of having a more flexible system where CGIs need not be modified
when so are low-level components, we have decoupled low-level libraries that
communicate with external hardware from CGIs.

Within this new structure, libraries are now located into new executable compo-
nents designed to work as Linux daemons that serve to requests coming from CGIs
using local network sockets. The combined use of sockets and threads allows for
multiple CGIs petitions to be simultaneously served.

There is an inherent trouble derived from the way Linux O.S. handles serial ports,
which means that concurrent accesses to serial port may cause data sent from different
CGIs to be interleaved, and thus making the “Premier” alarm panel receive mixed
data it cannot understand.

We have solved this drawback using a shared queue where the daemon inserts all
petitions coming from CGIs, so they are served in a serialized manner.

4 Conclusions

The Linux-based embedded system described in this paper provides a flexible and
expandable platform that can be used for different purposes.

Once connected to the corporative network, the system can be remotely managed
using web connections, so any authorized user located anywhere can make use of its
features with a PC, cellular phone or any other device supporting web-surfing.

Security is another strong point in this platform. All information received and sent
by it is encrypted using SSL technology. Also, users accessing the device will need to
identify themselves; this prevents users from using features other than the ones they
are allowed to.

The functionality of this system can be remotely extended, or transformed to
support new applications, with just a new firmware (software) update.

This provides a more cost-effective solution for both final users and developers
than what was offered by previous systems, where changes in the system meant that
the replacement of hardware parts, or displacement of technical staff was necessary.

In a world where companies are increasingly giving services to international cus-
tomers, the capability of providing distant support makes all the difference.

The development of this kind of system shows that –in spite of the restrictions in
memory and CPU resources- it is possible to build a powerful general-purpose
embedded device, which can be programmed to serve a specific purpose.

This goal has been achieved thanks to a design where efficient software technolo-
gies and techniques, as well as common hardware interfaces, are the keys to success.

Acknowledgements. The work described in this paper has been funded by the Minis-
terio de Ciencia y Tecnología within the I+D+I National Program through the project
with reference number TEC2006-08430.

We´d also like to thank ISIS Engineering (Seville) for providing us with proto-
types, and Medina-Garvey electrical company for letting us use their facilities.

References

1. Konicek, J., Little, K.: Security, ID Systems and Locks = The Book on Electronic Access
Control. Butterworth-Heinemann (1997)

2. Yaghmour, K.: Building Embedded Linux Systems. O’Reilly, Sebastopol (2003)
3. Boyer, S.A.: SCADA = Supervisory Control And Data Acquisition, 2nd edn. SA – The In-

strumentations, Systems and Automatic Society, New York (1999)
4. Information technology – Local area networks – Part 3: Carrier sense multiple access with

collision detection. IEEE 802.3 (1993)
5. Ibarra-Manzano, M.A., Almaza-Ojeda, D.L., Aviles-Ferrera, J.J., Avina-Cervantes, J.G.:

Access Control System Using an Embedded System and Radio Frquency Identification
Technology. In: IEEE, Electronics, Robotics and Automotive Mechanics Conference –
CERMA 2008, pp. 127–132. IEEE Press, Los Alamitos (2008)

6. Rescorla, E.: HTTPS = HTTP over TLS. IETF RFC 2818 (2000)
7. Postel, J., Reynolds, J: Telnet protocol specification. IETF RFC 854 (1983)
8. Yan-ling, X., Wei, P., Xin-guo, Z.: Design and implementation of secure embedded sys-

tems based on Trustzone. In: International Conference on Embedded Software and Sys-
tems – ICESS 2008, Sichuan, pp. 136–141. IEEE Press, Los Alamitos (2008)

9. University of Southern California: IP = Internet Protocol. IETF RFC 791 (1981)
10. Leon-García, A., Widjaja, I.: Communication Networks, 2nd edn. McGraw-Hill, New

York (2003)
11. Technical guide of USB 2.0. USB Implementers Forum (2001), http://www.usb.org
12. GPRS – Service Description; Stage 2. ETSI GSM 03.60 (2000)
13. Siever, E., Figgins, S., Weber, A.: Linux in a Nutshell, 4th edn. O’Reilly, Sebastopol

(2003)
14. Hypertext Processor Scripting Language – 5.0.2. The PHP Group (2004),

http://www.php.net
15. Mitchell, S.: Designing Active Server Pages. O’Reilly, Sebastopol (2000)
16. Robinson, D., Coar, K.: CGI = The WWW Common Gateway Interface Version 1.1. IETF

RFC 3875 (2004)

	Remote Controlling and Monitoring of Safety Devices Using Web-Interface Embedded Systems
	Introduction
	Key Features of the System
	Compatibility
	Monolithic Structure
	Security
	Ease in Management and Maintenance

	System Design
	Operating System
	Software Components Design
	Real-Life Application: “Indalo”, a “Premier” Alarm Panel Controller

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

