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Abstract. Choreography conformance and contract compliance have
been widely studied in the context of synchronous communication. In
this paper we approach a more realistic scenario in which the messages
containing the invocations are queued in the called service. More pre-
cisely, we study the foundational aspects of contract compliance in a
language independent way by just taking contracts to be finite labeled
transition systems. Then, we relate the proposed theory of contract com-
pliance with choreography specifications à la WS-CDL where activities
are interpreted as pairs of send and receive events. An interesting conse-
quence of adopting a language independent representation of contracts
is that choreography projection can be defined in structured operational
semantics.

1 Introduction

In the context of Service Oriented Computing (SOC) the problem of the spec-
ification of service composition is addressed using two main approaches: ser-
vice orchestration and service choreography. According to the first approach,
the activities of the composed services are coordinated by a specific component,
called the orchestrator, that is responsible for invoking the composed services
and collect their responses. Several languages have been already proposed for
programming orchestrators such as WS-BPEL [OAS]. As far as choreography
languages are concerned, the two main representatives are WS-CDL [W3C] and
BPEL4Chor [DKL+07]. Differently from orchestration languages, choreography
languages admit the direct interaction among the combined services without the
mediation of the orchestrator. In WS-CDL, the basic activity is the interaction
between a sender and a receiver, while according to the BPEL4Chor approach a
choreography is obtained as the parallel composition of processes that indepen-
dently execute send and receive activities.

Given an orchestrator (resp. a choreography), one of the main challenges
for the SOC community is the definition of appropriate mechanisms for the
(semi)automatic retrieval of services that, once combined with the orchestra-
tor (resp. once reciprocally combined), are guaranteed to implement a correct
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service composition. The currently investigated approach for solving this prob-
lem is to associate to each available service a behavioral description that de-
scribes the externally observable message-passing behavior of the service itself.
In the literature, this description is known with the name of behavioral sig-
nature [RR02], contract [FHR+04], or (in the specific SOC area) service con-
tract [CCL+06,BZ07a,LP07,CGP08]. Assuming that services expose their con-
tract, the above problem can be rephrased as follows: given an orchestrator (resp.
a choreography) and a set of service contracts, check whether the services expos-
ing the given contracts can be safely combined with the orchestrator (resp. safely
reciprocally combined). The proposed theories of contracts solve this problem
formalizing the following notions: contract compliance (if a set of contracts is
compliant then the corresponding services can be safely combined), contract re-
finement (if a service exposes a refinement of the contract of another service then
the former is a safe substitute for the latter), and choreography conformance (if
the contract of a service is conformant with a given role of a choreography then
the service can be used to implement that role in any implementation of the
choreography).

In [BZ07b] we have investigated the interplay between the above notions of
contract compliance, contract refinement and choreography conformance con-
sidering synchronous communication. In this paper we consider a more realistic
scenario in which services are endowed with queues used to store the received
messages.

More precisely, we revisit our previous theory for contract compliance and
choreography conformance [BZ07b] as follows. Contracts are specified in a lan-
guage independent way by means of finite labeled transition systems. In this way,
our new contract theory is more general and foundational as we abstract away
from the syntax of contracts and we simply assume that a contract language
has an operational semantics defined in terms of a labeled transition system.
The presence of queues strongly influences the notion of contract compliance,
for instance, the following client and service are now compliant (while this was
not the case in [CCL+06,BZ07a,LP07,CGP08]):

Client = invoke(a); invoke(b) Server = receive(b); receive(a)

In fact, the presence of queues allows the client to perform the invoke operation
in a different order w.r.t. the receive order of the server.

As far as the notion of contract refinement is concerned, the main result is
that in the presence of queues refinement can be done independently. That is,
given a set of compliant contracts C1, · · · , Cn, each contract Ci can be replaced by
any refinement C ′i, and the overall system obtained by composition of C ′1, · · · , C ′n
is still compliant. In general, in a synchronous setting, independent refinement
is not possible [CCL+06]. As an example, consider the two following service
behaviors:

Printer = receive(docToPrint)
PrinterFax = receive(docToPrint)+

receive(docToFax); invoke(faxReceipt)



where + denotes a choice among alternative operations, and the two following
client behaviors:
PrintClient = invoke(docToPrint)
PrintFaxClient = invoke(docToPrint)+

invoke(docToFax); invoke(faxNum); receive(faxReceipt)

Printer and PrintClient can be safely combined. The composition is still cor-
rect even if we replace either Printer with PrinterFax or PrintClient with
PrintFaxClient, but it turns out to be incorrect if we apply both replacements.
For this reason we have that in a synchronous context PrintClient is not a
valid refinement of Printer. On the contrary, we will prove that in the presence
of message queues the PrinterFax service is always a valid refinement of the
Printer service.

The presence of message queues decouples the send event (corresponding to
the introduction of one message in a queue) from the receive event (corresponding
to its consumption from the queue). Due to this decoupling, we propose a new
interpretation of the semantics of a WS-CDL choreography language in which
the two events are modeled by two distinct transitions labeled with a send and
a receive label, respectively. Another novelty with respect to previous work is
that the choice of representing contracts by means of labeled transition systems
allows us to define choreography projections in structured operational semantics.
As described below, the use of choreography projection is an important step
toward the definition of an appropriate notion of conformance.

Conformance is an important notion to be used to retrieve services that, once
combined, correctly implement a given choreography. Formally, (as already done
for synchronous communication [BZ07b]) we propose to define conformance as
the maximal relation among contracts (ranged over by C), roles (ranged over
by r), and choreographies (ranged over by H) written C /r H such that, given
a choreography H with roles r1, · · · , rn and a set of contracts C1, · · · , Cn for
which C1 /r1 H, · · · , Cn /rn

H, we have that the composition of C1, · · · , Cn is a
correct implementation of H. As in our previous work [BZ07b] we show that,
unfortunately, there exists no such maximal relation. The proof of this negative
result is more complex than in [BZ07b] because, due to the presence of message
queues, we had to find out a more subtle counterexample. We partially alleviate
this negative result showing that we can define a conformance notion with the
above properties as follows: C is conformant to the role r of the choreography
H if C is a refinement of the contract obtained by projecting the choreography
H to the role r.

Due to space limitations, the proofs of our results are not included in this
paper but they can be found in [BZ08].

2 The Theory of Contracts

2.1 Contracts

Contracts are defined as labeled transition systems over located action names,
representing operations at a certain location over the network.



Definition 1. A finite connected labeled transition system (LTS) with termi-
nation states is a tuple T = (S, T, L,−→, s0) where S is a finite set of states,
T ⊆ S is a set of states representing successful termination, L is a set of labels,
the transition relation −→ is a finite subset of S × L × S, s0 ∈ S and it holds
that every state in S is reachable (according to −→ from s0).

Note that non-termination states may have no outgoing transitions: in this case
they represent internal failures or deadlocks.

We assume a denumerable set of action names N , ranged over by a, b, c, . . .
and a denumerable set Loc of location names, ranged over by l, l′, l1, · · ·. The set
Nloc = {al | a ∈ N , l ∈ Loc} is the set of located action names. We use τ /∈ N
to denote an internal (unsynchronizable) computation.

Definition 2. A contract is a finite connected LTS with termination states
(S, T, L,−→, S0), where L = {a, al, τ | a ∈ N , l ∈ Loc}, i.e. labels are either
a receive (input) on some operation a ∈ N or an invoke (output) directed to
some operation a ∈ N at some location l.

In the following we introduce a process algebraic representation for contracts
by using a basic process algebra with prefixes over {a, al, τ | a ∈ N , l ∈ Loc} and
we show that from the LTS denoting a contract we can derive a process algebraic
term whose behavior is the same as that of the LTS. The process algebra is a
simple extension of basic CCS [Mil89] with successful termination denoted by
“1”: this new term is necessary in order to have two kinds of states without
outgoing transitions, those that are successfully terminating (that we denote
with the process “1”) and those that are not (denoted with the traditional null
process “0”).

Definition 3. (Contracts) We consider a denumerable set of contract vari-
ables V ar ranged over by X, Y , · · ·. The syntax of contracts is defined by the
following grammar

C ::= 0 | 1 | α.C | C+C | X | recX.C
α ::= τ | a | al

where recX. is a binder for the process variable X denoting recursive definition
of processes. The set of the contracts C in which all process variables are bound,
i.e. C is a closed term, is denoted by Pcon.

Besides the already commented recursion operator, we consider the standard
prefix α. (with possible prefixes τ , a, and al denoting internal, input, and output
action, respectively) and choice + operators. In the following we will omit
trailing “1” when writing contracts.

The structured operational semantics of contracts is defined in terms of a
transition system labeled over L = {a, al, τ, | a ∈ N , l ∈ Loc} and a termination
predicate

√
over states obtained by the rules in Table 1 (plus symmetric rule

for choice).



1
√

α.C
α−→ C

C
α−→ C′

C+D
α−→ C′

C
√

C+D
√

C{recX.C/X} α−→ C′

recX.C
α−→ C′

C{recX.C/X}
√

recX.C
√

Table 1. Semantic rules for contracts (symmetric rules omitted).

Note that we use the notation C{recX.C/X} to denote syntactic replacement
of free occurrences of variable X in C with the same contract C (where, as usual,
α-conversion is applied to avoid the possible captures of variable names). The
rules for the operational semantics are standard; we simply comment the actual
meaning of the termination predicate

√
. Informally, a contract C satisfies the

predicate if it is the successfully terminating terms 1 or it is a more complex
term in which there is at least one 1 that does not occur inside a prefixed term
α.C.

We have that the semantics of a contract C ∈ Pcon gives rise to a finite
connected LTS with termination states (S, T, L,−→, C) where L = {a, al, τ, | a ∈
N , l ∈ Loc} and: S is the set of states reachable from C, T is the subset of S
of the states for which the predicate

√
is true and −→ includes only transitions

between states of S. Note that the fact that such a LTS is finite (i.e. finite-state
and finitely branching) is a well-known fact for basic CCS [Mil89] (and obviously
the additional presence of successful termination does not change this fact).

Definition 4. A set of process algebraic equations is denoted by θ = {Xi = Ci |
0 ≤ i ≤ n − 1}, where n is the number of equation in the set, Xi are process
variables, and Ci are contract terms (possibly including free process variables).
The process algebraic equations θ is closed if only process variables Xi, with
0 ≤ i ≤ n− 1, occur free in the bodies Cj, with 0 ≤ j ≤ n− 1, of the equations
in the set.

Definition 5. Let T = (S, T, L,−→, S0) be a contract. A contract term C ∈
Pcon is obtained from T as follows.

– Supposed S = {s0, . . . , sn−1} (i.e. any given numbering on the states S), we
first obtain from T a finite closed set of equations θ = {Xi = Ci | 0 ≤ i ≤
n − 1} as follows. Denoted by mi the number of transitions outgoing from
si, by αij the label of the j − th transition outgoing from si (for any given
numbering on the transitions outgoing from si), with j ≤ mi, and by ssucci

j

its target state, we take Ci =
∑
j≤mi

αij .Xsucci
j

+ {1}, where 1 is present
only if si ∈ T and an empty sum is assumed to yield 0.

– We then obtain, from the closed set of equations θ = {Xi = Ci | 0 ≤ i ≤
n−1}, a closed contract term C by induction on the number of equations. The



base case is n = 1: in this case we have that C is recX0.C0. In the inductive
case we have that C is inductively defined as the term obtained from the equa-
tion set {Xi = C ′i | 0 ≤ i ≤ n− 2}, where C ′i = Ci{recXn−1.Cn−1/Xn−1}.

Definition 6. A homomorphism from a finite connected LTS T = (S, T, L,−→,
s0) to a finite connected LTS with finite states T ′ = (S′, T ′, L,−→′, s′0) is a
function f from S to S′ such that: f(s0) = s′0 and for all s ∈ S we have {(l, s′) |

f(s)
l

−→′ s′} = {(l, f(s′)) | s l−→ s′}, i.e. the set of transitions performable by
f(s) is the same as the set of transitions performable by s when f -images of the
target states are considered, and s ∈ T if and only if f(s) ∈ T ′.

Note that, if f is a homomorphism between finite connected LTSes with finite
states then f is surjective: this because all states reachable by f(s0) must be
f -images of states reachable from s0.

Proposition 1. Let T = (S, T, L,−→, s0) be a contract and C ∈ Pcon be a
contract term obtained from T . There exists a (surjective) homomorphism from
the semantics of C to T itself.

2.2 Composing contracts

Definition 7. (Systems) The syntax of systems (compositions of contracts) is
defined by the following grammar

P ::= [C,Q]l | P ||P | P\L
Q ::= ε | al :: Q

where L ⊆ Nloc.

The restriction operator \L is a binder for the names in located actions.
Formally, if al is in L, then L binds a in any action a occurring in the contract
located at l and in any action al. The terms in the syntactic category Q denote
message queues. They are lists of messages, each one denoted with al where a
is the action name and l is the location of the sender. We use ε to denote the
empty message queue. Trailing ε are usually left implicit, and we use :: also as
an operator over the syntax: if Q and Q′ are ε-terminated queues, according to
the syntax above, then Q :: Q′ means appending the two queues into a single
ε-terminated list. Therefore, if Q is a queue, then ε :: Q, Q :: ε, and Q are
syntactically equal.

A system P is well-formed if: (i) every contract subterm [C,Q]l occurs in P at
a different location l and (ii) no output action with destination l is syntactically
included inside a contract subterm occurring in P at the same location l, i.e.
actions al cannot occur inside a subterm [C,Q]l of P . The set of all well-formed
systems P is denoted by P. In the following we will just consider well-formed
systems and, for simplicity, we will call them just systems. Moreover, we will use
the shorthand [C]l to stand for [C, ε]l.



Given a system P , we use loc(P ) to denote the subset of Loc of the locations
of contracts syntactically occurring inside P : e.g. loc([C]l1 ||[C ′]l2) = {l1, l2}.

Also the operational semantics of systems is defined in terms of a labeled
transition system. The labels, denoted with λ, λ′, · · ·, are taken from the set
{ars, ars, a+

r→s, a
−
r→s, τ | a ∈ N ; r, s ∈ Loc}, where: ars denotes a potential input

by a queue where the sender is at location r and the receiver queue is at location
s, ars denotes a potential output where the sender is at location r and the receiver
queue is at location s, a+

r→s denotes an insertion in the queue (that actually took
place) where the sender is at location r and the receiver queue is at location s,
a−r→s denotes an extraction from the queue (that actually took place) where the
sender (that originally sent the message) is at location r and the receiver queue
is at location s, and τ denotes a move performed internally by one contract in
the system. We use α−renaming of names bound by the restriction operator \L;
namely, we write P ≡a Q if P is α-convertible into Q (or vice-versa), i.e. if Q
can be obtained from P by turning subterms P ′\L of P into subterms Q′\L′ by
renaming of located names al of L into located names ren(a)l (yielding L′ with
the same cardinality) and by correspondingly replacing: (i) each input-related
syntactical occurrence of a with ren(a) inside the unique subterm [C,Q]l of P ′,
if it exists (more precisely occurrences of al

′
inside Q are renamed into ren(a)l

′
,

independently of the location l′, and a input prefixes inside C are renamed into
ren(a) input prefixes), and (ii) each syntactical occurrence of al inside P ′ with
ren(a)l (obviously a renaming is only allowed if it does not generate a name that
is already present as a free name in association with the same location).

The rules in the Table 2 (plus symmetric rules) define the transition system
and the termination predicate (

√
) for systems. In Table 2 we assume that al ∈ Q

holds true if and only if al syntactically occurs inside Q.

[C,Q]s
ars−→ [C,Q :: ar]s

C
as−→ C′

[C,Q]r
ars−→ [C′,Q]r

P
ars−→ P ′ Q

ars−→ Q′

P ||Q
a+r→s−→ P ′||Q′

C
τ−→ C′

[C,Q]l
τ−→ [C′,Q]l

C
√

[C, ε]l
√

P
λ−→ P ′

P ||Q λ−→ P ′||Q

P
√

Q
√

P ||Q
√

P
λ−→ P ′ if λ = ars, ars then as 6∈ L

P\L λ−→ P ′\L

P
√

P\L
√

P ≡α P ′ P ′
λ−→ Q

P
λ−→ Q

C
a−→ C′ if bl ∈ Q then b 6= a

[C,Q :: ar :: Q′]s
a−r→s−→ [C′,Q :: Q′]s

Table 2. Semantic rules for contract compositions (symmetric rules omitted).



We will also use the following notations: P λ−→ to mean that there exists P ′

such that P λ−→ P ′ and, given a sequence of labels w = λ1λ2 · · ·λn−1λn (possibly
empty, i.e., w = ε), we use P

w−→ P ′ to denote the sequence of transitions

P
λ1−→ P1

λ2−→ · · · λn−1−→ Pn−1
λn−→ P ′ (in case of w = ε we have P ′ = P ,

i.e., P ε−→ P ). In the following we will adopt the usual notation A∗ to denote
(possibly empty) sequences over labels in A.

We now define the notion of correct composition of contracts. This notion is
the same as in [BZ07a]. Intuitively, a system composed of contracts is correct if
all possible computations may guarantee completion; this means that the system
is both deadlock and livelock free (there could be an infinite computation, but
given any possible prefix of this infinite computation, it can be extended to reach
a successfully completed computation).

Definition 8. (Correct contract composition) A system P is a correct con-
tract composition, denoted P ↓, if for every P ′ such that P w−→ P ′, with

w ∈ {a+
r→s, a

−
r→s, τ | a ∈ N ; r, s ∈ Loc}∗, there exists P ′′ such that P ′ w′−→ P ′′,

with w′ ∈ {a+
r→s, a

−
r→s, τ | a ∈ N ; r, s ∈ Loc}∗, and P ′′

√
.

It is interesting to observe that in a correct contract composition, when all
contracts successfully terminate, it is ensured that all the sent messages have
been actually received. In fact, by definition of the termination predicate

√
for

contract compositions, a system is terminated only if all message queues are
empty. Note also that, obviously, contracts that form correct contract composi-
tions still form correct contract compositions if they are replaced by homomor-
phic ones.

We complete this subsection presenting a simple example of correct contract
composition

[al3 ]l1 || [bl3 ]l2 || [a.b]l3

composed by three contracts, the first one and the second one that send respec-
tively the message a and b to the third one, and this last contract that consumes
the two messages.

2.3 Independent subcontracts

We are now ready to define the notion of subcontract pre-order. Given a contract
C ∈ Pcon, we use oloc(C) to denote the subset of Loc of the locations of the
destinations of all the output actions occurring inside C.

With P
τ∗−→ P ′ we denote the existence of a (possibly empty) sequence of

τ -labeled transitions starting from the system P and leading to P ′. Given the
sequence of labels w = λ1 · · ·λn, we write P w=⇒ P ′ if there exist P1, · · · , Pm
such that P τ∗−→ P1

λ1−→ P2
τ∗−→ · · · τ∗−→ Pm−1

λn−→ Pm
τ∗−→ P ′.

Definition 9. (Independent subcontract pre-order) A pre-order ≤ over
Pcon is an independent subcontract pre-order if, for any n ≥ 1, contracts C1, . . . ,



Cn ∈ Pcon and C ′1, . . . , C
′
n ∈ Pcon such that ∀i. C ′i ≤ Ci, and distinguished

location names l1, . . . , ln ∈ Loc such that ∀i. oloc(Ci) ∪ oloc(C ′i) ⊆ {lj | 1 ≤ j ≤
n ∧ j 6= i}, we have ([C1]l1 || . . . || [Cn]ln)↓ implies

– ([C ′1]l1 || . . . || [C ′n]ln)↓ and
– ∀w ∈ {a+

r→s, a
−
r→s | a ∈ N ; r, s ∈ Loc}∗.

∃P ′ : ([C ′1]l1 || . . . || [C ′n]ln) w=⇒ P ′ ∧ P ′
√

⇒
∃P ′′ : ([C1]l1 || . . . || [Cn]ln) w=⇒ P ′′ ∧ P ′′

√
.

We will prove that there exists a maximal independent subcontract pre-order;
this is a direct consequence of the queue based communication. In fact, if we
simply consider synchronous communication it is easy to prove that there exists
no maximal independent subcontract pre-order (see [BZ07a]).

We will show that the maximal independent subcontract pre-order can be
achieved defining a more coarse form of refinement in which, given any system
composed of a set of contracts, refinement is applied to one contract only (thus
leaving the other unchanged). We call this form of refinement singular subcon-
tract pre-order. Intuitively a pre-order ≤ over Pcon is a singular subcontract
pre-order whenever the correctness of systems is preserved by refining just one
of the contracts. More precisely, for any n ≥ 1, contracts C1, . . . , Cn ∈ Pcon,
1 ≤ i ≤ n,C ′i ∈ Pcon such that C ′i ≤ Ci, and distinguished location names
l1, . . . , ln ∈ Loc such that ∀k 6= i. lk /∈ oloc(Ck) and li /∈ oloc(Ci) ∪ oloc(C ′i),
we require that ([C1]l1 || . . . || [Ci]li || . . . || [Cn]ln) ↓ implies that the statement
in Def. 9 holds for ([C1]l1 || . . . || [C ′i]li || . . . || [Cn]ln). By exploiting commutativ-
ity and associativity of parallel composition we can group the contracts which
are not being refined and get the following cleaner definition. We let Pconpar
denote the set of systems of the form [C1]l1 || . . . ||[Cn]ln , with Ci ∈ Pcon, for all
i ∈ {1, . . . , n}.

Definition 10. (Singular subcontract pre-order) A pre-order ≤ over Pcon
is a singular subcontract pre-order if, for any C,C ′ ∈ Pcon such that C ′ ≤ C,
l ∈ Loc and P ∈ Pconpar such that l /∈ loc(P ) and oloc(C) ∪ oloc(C ′) ⊆ loc(P ),
we have ([C]l||P )↓ implies

– ([C ′]l||P )↓ and
– ∀w ∈ {a+

r→s, a
−
r→s | a ∈ N ; r, s ∈ Loc}∗.

∃P ′ : ([C ′]l||P ) w=⇒ P ′ ∧ P ′
√

⇒ ∃P ′′ : ([C]l||P ) w=⇒ P ′′ ∧ P ′′
√

.

The following proposition, which shows that extending possible contexts with
an external restriction does not change the notion of singular subcontract pre-
order, will be used in the following Sect. 2.4. It plays a fundamental role in
eliminating the source of infinite branching in the interaction behavior of the
contract composition originated by α-renaming of restriction. We let Pconpres
denote the set of systems of the form ([C1]l1 || . . . ||[Cn]ln)\L, with Ci ∈ Pcon for
all i ∈ {1, . . . , n} and L ⊆ Nloc.

Proposition 2. Let ≤ be a singular subcontract pre-order. For any C,C ′ ∈
Pcon such that C ′ ≤ C, l ∈ Loc and P ∈ Pconpres such that l /∈ loc(P ) and
oloc(C) ∪ oloc(C ′) ⊆ loc(P ), we have ([C]l||P )↓ implies



– ([C ′]l||P )↓ and
– ∀w ∈ {a+

r→s, a
−
r→s | a ∈ N ; r, s ∈ Loc}∗.

∃P ′ : ([C ′]l||P ) w=⇒ P ′ ∧ P ′
√

⇒ ∃P ′′ : ([C]l||P ) w=⇒ P ′′ ∧ P ′′
√

.

From the simple structure of their definition we can easily deduce that singu-
lar subcontract pre-orders have maximum, i.e. there exists a singular subcontract
pre-order includes all the other singular subcontract pre-orders.

Definition 11. (Subcontract relation) A contract C ′ is a subcontract of a
contract C denoted C ′ � C, if and only if for all l ∈ Loc and P ∈ Pconpar such
that l /∈ loc(P ) and oloc(C)∪ oloc(C ′) ⊆ loc(P ), we have that ([C]l||P )↓ implies

– ([C ′]l||P )↓ and
– ∀w ∈ {a+

r→s, a
−
r→s | a ∈ N ; r, s ∈ Loc}∗.

∃P ′ : ([C ′]l||P ) w=⇒ P ′ ∧ P ′
√

⇒ ∃P ′′ : ([C]l||P ) w=⇒ P ′′ ∧ P ′′
√

.

It is trivial to verify that the pre-order � is a singular subcontract pre-order
and is the maximum of all the singular subcontract pre-orders.

In order to prove the existence of the maximal independent subcontract pre-
order, we will prove that every pre-order that is an independent subcontract is
also a singular subcontract (Theorem 1), and vice-versa (Theorem 2).

Theorem 1. If a pre-order ≤ is an independent subcontract pre-order then it
is also a singular subcontract pre-order.

Theorem 2. If a pre-order ≤ is a singular subcontract pre-order then it is also
an independent subcontract pre-order.

We can, therefore, conclude that there exists a maximal independent sub-
contract pre-order and it corresponds to the subcontract relation “�”.

2.4 Input-Output knowledge independence

In the following we will show that allowing the subcontract relation to depend
on the knowledge about input and output actions of other initial contracts does
not change the relation. As a consequence of this fact we will show that input
on new types (operations) can be freely added in refined contracts.

Given a set of located action names I ⊆ Nloc, we denote: with I = {al | al ∈
I} the set of output actions performable on those names and with Il = {a | al ∈
I} the set of action names with associated location l.

Definition 12. (Input and Output sets) Given a contract C ∈ Pcon, we
define I(C) (resp. O(C)) as the subset of N (resp. Nloc) of the potential input
(resp. output) actions of C. Formally, we define I(C) as follows (O(C) is defined
similarly):

I(0)= I(1)= I(X)= ∅ I(a.C) = {a} ∪ I(C)
I(C+C ′) = I(C)∪I(C ′) I(al.C) = I(τ.C) = (recX.C) = I(C)



Given a system P ∈ Pconpres, we define I(P ) (resp. O(P )) as the subset of Nloc
of the potential input (resp. output) actions of P . Formally, we define I(P ) as
follows (O(P ) is defined similarly):

I([C]l) = {al | a ∈ I(C)} I(P ||P ′) = I(P ) ∪ I(P ′) I(P\L) = I(P )− L

In the following we let Pconpres,I,O, with I,O ⊆ Nloc, denote the subset of
systems of Pconpres such that I(P ) ⊆ I and O(P ) ⊆ O.

Definition 13. (Input-Output subcontract relation) A contract C ′ is a
subcontract of a contract C with respect to a set of input located names I ⊆ Nloc
and output located names O ⊆ Nloc, denoted C ′ �I,O C, if and only if for all l ∈
Loc and P ∈ Pconpres,I,O such that l /∈ loc(P ) and oloc(C) ∪ oloc(C ′) ⊆ loc(P ),
we have ([C]l||P )↓ implies

– ([C ′]l||P )↓ and
– ∀w ∈ {a+

r→s, a
−
r→s | a ∈ N ; r, s ∈ Loc}∗.

∃P ′ : ([C ′]l||P ) w=⇒ P ′ ∧ P ′
√

⇒ ∃P ′′ : ([C]l||P ) w=⇒ P ′′ ∧ P ′′
√

.

Due to Proposition 2, we have �=�Nloc,Nloc
. The following proposition states

an intuitive contravariant property: given �I′,O′ , and the greater sets I and O
(i.e. I ′ ⊆ I and O′ ⊆ O) we obtain a smaller pre-order �I,O (i.e. �I,O⊆�I′,O′).
This follows from the fact that extending the sets of input and output actions
means considering a greater set of discriminating contexts.

Proposition 3. Let C,C ′ ∈ Pcon be two contracts, I, I ′ ⊆ Nloc be two sets of
input located names such that I ′ ⊆ I and O,O′ ⊆ Nloc be two sets of output
located names such that O′ ⊆ O. We have:

C ′ �I,O C ⇒ C ′ �I′,O′ C

The following lemma, that will be used to characterize the subcontract rela-
tion, states that a subcontract is still a subcontract even if we modify it so to
consider only the inputs and outputs already available in the supercontract.

In the following lemma, and in the remainder of the paper, we use the abuse
of notation “C\M”, with M ⊆ N , to stand for “C{0/α.C ′|α ∈ M}”, that
denotes the effect of restricting C with respect to inputs in M .

Lemma 1. Let C,C ′ ∈ Pcon be contracts and I,O ⊆ Nloc be sets of located
names. We have that both the following hold

C ′ �I,O C ⇒ C ′\(I(C ′)− I(C)) �I,O C

C ′ �I,O C ⇒ C ′{τ.0/α.C ′′ | α ∈ O(C ′)−O(C)} �I,O C

A fundamental result depending on the queue based communication is re-
ported in the following proposition. It states that if we substitute a contract
with one of its subcontract, the latter cannot activate outputs that were not
included in the potential outputs of the supercontract (and similarly for the
system considered as context).



Proposition 4. Let C,C ′ ∈ Pcon be contracts and I,O ⊆ Nloc be sets of located
names. Let l ∈ Loc and P ∈ Pconpres,I,O, l /∈ loc(P ) and oloc(C) ∪ oloc(C ′) ⊆
loc(P ) be such that ([C]l||P )↓. We have that both the following hold:

If ([C ′{τ.0/α.C ′′ | α ∈ O(C ′)−O(C)}]l||P )↓ then

([C ′]l||P ) w−→ ([C ′der,Q]l||Pder)∧w∈{a+
r→s, a

−
r→s, τ | a ∈ N ; r, s ∈ Loc}∗ ⇒

∀ al′ ∈ O(C ′)−O(C). C ′der
al′−→/

If ([C ′\(I(C ′)− I(C))]l||P )↓ then

([C ′]l||P ) w−→ ([C ′der,Q]l||Pder)∧w∈{a+
r→s, a

−
r→s, τ | a ∈ N ; r, s ∈ Loc}∗ ⇒

∀ a ∈ I(C ′)− I(C).∀ r ∈ loc(P ). Pder
arl−→/

The following propositions permit to conclude that the set of potential inputs
and outputs of the other contracts in the system is an information that does not
influence the subcontract relation.

Proposition 5. Let C ∈ Pcon be contracts, O ⊆ Nloc be a set of located output
names and I, I ′ ⊆ Nloc be two sets of located input names such that O(C) ⊆ I, I ′.
We have that for every contract C ′ ∈ Pcon,

C ′ �I,O C ⇐⇒ C ′ �I′,O C

Proposition 6. Let C ∈ Pcon be contracts, O,O′ ⊆ Nloc be two sets of located
output names such that for every l ∈ Loc we have I(C) ⊆ Ol, O

′
l, and I ⊆ Nloc

be a set of located input names. We have that for every contract C ′ ∈ Pcon,

C ′ �I,O C ⇐⇒ C ′ �I,O′ C

We finally show that the subcontract relation � allows input on new types
(and unreachable outputs on new types) to be added in refined contracts. The
result, that uses Lemma 1, is a direct consequence (in the case of inputs) of
the fact that C ′ �Nloc,

⋃
l∈Loc I([C]l) C if and only if C ′ � C, i.e. it exploits the

results above about independence from knowledge of types used by other initial
contracts.

Theorem 3. Let C,C ′ ∈ Pcon be contracts. Both the following hold

C ′\(I(C ′)− I(C)) � C ⇐⇒ C ′ � C
C ′{τ.0/α.C ′′ | α ∈ O(C ′)−O(C)} � C ⇐⇒ C ′ � C

3 Contract-based Choreography Conformance

We first introduce a choreography language similar to those already presented
in [BGG+05,CHY07,BZ07b]. The main novelty is that, as we are considering
communication mediated by a message queue, in the operational semantics we
distinguish between the send and the receive events.



Definition 14. (Choreographies) Let Operations, ranged over by a, b, c, · · ·
and Roles, ranged over by r, s, t, · · ·, be two countable sets of operation and role
names, respectively. The set of Choreographies, ranged over by H,L, · · · is de-
fined by the following grammar:

H ::= ar→s | H +H | H;H | H|H | H∗

The invocations ar→s (where we assume r 6= s) means that role r invokes the
operation a provided by the role s. The other operators are choice + , sequential
; , parallel | , and repetition ∗.

The operational semantics of choreographies considers three auxiliary terms
a−r→s, 1, and 0. The first one is used to model the fact that an asynchronous
interaction has been activated but not yet completed. The other two terms are
used to model the completion of a choreography, which is relevant in the op-
erational modeling of sequential composition. The formal definition is given in
Table 3 where we take η to range over the set of labels {a+

r→s, a
−
r→s | a ∈

Operations, r, s ∈ Roles} and the termination predicate
√

. The rules in Table 3
are rather standard for process calculi with sequential composition and without
synchronization; in fact, parallel composition simply allows for the interleaving
of the actions executed by the operands.

ar→s
a+r→s−→ a−r→s a−r→s

a−r→s−→ 1 1
√

H∗
√

H
η−→ H ′

H+L
η−→ H ′

H
√

H+L
√

H
η−→ H ′

H;L
η−→ H ′;L

H
√

L
η−→ L′

H;L
η−→ L′

H
√

L
√

H|L
√

H
√

L
√

H;L
√

H
η−→ H ′

H|L η−→ H ′|L

H
η−→ H ′

H∗
η−→ H ′;H∗

Table 3. Semantic rules for choreographies (symmetric rules omitted).

Choreographies are especially useful to describe the protocols of interactions
within a group of collaborating services, nevertheless, even if choreography lan-
guages represent a simple and intuitive approach for the description of the mes-
sage exchange among services, they are not yet very popular in the context of
service oriented computing. The main problem to their diffusion is that it is
not trivial to relate the high level choreography description with the actual im-
plementation of the specified system realised as composition of services that are
usually loosely coupled, independently developed by different companies, and au-
tonomous. More precisely, the difficult task is, given a choreography, to lookup
available services that, once combined, are ensured to behave according to the
given choreography.



In order to formally investigate this problem, we define a mechanism to ex-
tract from a choreography the description of the behavior of a given role. For-
mally, for each role i, we define a labeled transition system with transitions

η−→i

(see the rules in Table 4) and termination predicate
√
i representing the behavior

of the role i. In the following, given a choreography H and one of its role i, with
semHi we denote the contract term obtained from the labeled transition system
transηi according to the technique defined in Section 2.

ar→s
as−→r 1 ar→s

a−→s 1 ar→s
√
i if i 6= r, s

1
√
i H∗

√
i

H
η−→i H

′

H+L
η−→i H

′

H
√
i

H+L
√
i

H
η−→i H

′

H;L
η−→i H

′;L

H
√
i L

η−→i L
′

H;L
η−→i L

′

H
√
i L

√
i

H|L
√
i

H
√
i L

√
i

H;L
√
i

H
η−→i H

′

H|L η−→i H
′|L

H
η−→i H

′

H∗
η−→i H

′;H∗

Table 4. Projection on the role i of a choreography (symmetric rules omitted).

In this section we discuss how to exploit the choreography and the contract
calculus in order to define a procedure that checks whether a service exposing a
specific contract C can play the role r within a given choreography.

First of all we need to uniform the choreography and the contract calculus.
From a syntactical viewpoint, we have to map the operation names used for
choreographies with the names used for contracts assuming Operations = N .
We do the same also for the role names that are mapped into the location
names, i.e., Roles = Loc. Taken these assumptions, we have that the labels of
the operational semantics of the choreography calculus are a subset of the labels
of the operational semantics of contract systems, i.e. a+

r→s and a−r→s.
We are now ready to formalize the notion of correct implementation of a

choreography. Intuitively, a system implements a choreography if it is a correct
composition of contracts and all of its conversations (i.e. the possible sequences
of message exchanges), are admitted by the choreography.

Definition 15. (Choreography implementation) Given the choreography
H and the system P , we say that P implements H (written P ∝ H) if

– P is a correct contract composition and
– given a sequence w of labels of the kind a+

r→s and a−r→s, if P w=⇒ P ′ and
P ′
√

then there exists H ′ such that H w−→ H ′ and H ′
√

.

Note that it is not necessary for an implementation to include all possible
conversations admitted by a choreography. As an example, consider the chore-



ography reserveclient→server; (acceptserver→client + rejectserver→client). We can
think of implementing it with the following system

[reserveserver.(accept+ reject)]client || [reserve.acceptclient]server

where the server is always ready to accept the client’s request.
It is interesting to observe that given a choreography H, the system ob-

tained composing its projections is not ensured to be an implementation of H.
For instance, consider the choreography ar→s ; bt→u. The system obtained by
projection is [as]r || [a]s || [bu]t || [b]u. Even if this is a correct composition of con-
tracts, it is not an implementation of H because it comprises the conversation
b+t→ub

−
t→ua

+
r→sa

−
r→s which is not admitted by H.

The problem is not in the definition of the projection, but in the fact that the
above choreography cannot be implemented preserving the message exchanges
specified by the choreography. In fact, in order to guarantee that the communi-
cation between t and u is executed after the communication between r and s,
it is necessary to add a further message exchange (for instance between s and
r) which is not considered in the choreography. We restrict our interest to well
formed choreographies.

Definition 16. (Well formed choreography) A choreography H, defined on
the roles r1, · · · , rn, is well formed if [ [[H]]r1 ]r1 || · · · || [ [[H]]rn

]rn
∝ H

As another example of non well formed choreography we consider al1→l3 ; bl2→l3
which have the following projection [al3 ]l1 || [bl3 ]l2 || [a.b]l3 corresponding to the
system described at the end of the subsection 2.2. Among the possible traces
of this system we have a+

l3
b+l3a

−
l3
b−l3 which is not a correct trace for the above

choreography. This example is of interest because it shows that some interesting
contract systems are not specifiable as choreographies. This follows from the fact
that we have adopted the same approach of WS-CDL that exploits synchroniza-
tions as its basic activity. In order to model at a choreographic level the above
contract system, we should separate also in the syntax (and not only in the se-
mantics) the send from the receive actions. For instance, we could consider two
distinct basic terms a+

r→s and a−r→s for send and receive actions, respectively, and
describe the above system with the choreography a+

l1→l3 | b
+
l2→l3 | a

−
l1→l3 ; b−l2→l3 .

We are now in place for the definition of the relation C /r H indicating
whether the contract C can play the role r in the choreography H.

Definition 17. (Conformance family) A relation among contracts, roles,
and choreographies denoted with C /r H is a conformance relation if, given a
well formed choreography H with roles r1, · · · , rn, we have that [[H]]ri

/ri
H for

1 ≤ i ≤ n and if C1 /r1 H, · · · , Cn /rn H then [C1]r1 || · · · ||[Cn]rn ∝ H

In the case of synchronous communication we proved in [BZ07a] a negative
result about conformance: differently from the subcontract pre-orders defined on
contracts in the previous Section, there exists no maximal conformance relation.
The counter-example used in that paper to prove this negative results does not
work in the presence of message queues, but we have found out the following



more subtle counter-example. Consider the choreography H = ar→s|bs→r. We
could have two different conformance relations, the first one /1 including (besides
the projections) also a.br/1

sH and the second one /2 including also b.as/2
rH. It is

easy to see that it is not possible to have a conformance relation that comprises
the union of the two relations /1 and /2. In fact, the system [b.as]r || [a.br]s is
not a correct composition because the two contracts are both blocked for a never
incoming message.

The remainder of the paper is dedicated to the definition of a mechanism that,
exploiting the choreography projection and the notion of contract refinement de-
fined in the previous Section, permits to characterize an interesting conformance
relation. This relation is called consonance.

Definition 18. (Consonance) We say that the contract C is consonant with
the role r of the well formed choreography H (written C ./r H) if C � [[H]]r
where � is the subcontract relation defined in Section 2.

Theorem 4. Given a well formed choreography H, we have that the consonance
relation C ./r H is a conformance relation.

4 Related Work and Conclusion

We have addressed the problem of the definition of suitable notions of con-
tract refinement and choreography conformance for services that communicate
through message queues. We have attacked this problem exploiting the approach
that we have already successfully adopted for synchronously communicating ser-
vices [BZ07b]. However, the new theory of contracts is more general than the
theory in our previous paper because we represent contracts in a language inde-
pendent way. On the one hand, this required to significantly revisit our technical
contribution, but on the other hand, our results are now more general as they
apply to any contract language (for which an operational semantics is defined
in terms of a labeled transition system). This choice also influenced the theory
for choreography conformance. Now a choreography projection must produce a
labeled transition system instead of a contract specified in a given language. We
solve this problem defining the projection in structured operational semantics.

It is worth noting that, differently from our previous work, in this paper we do
not present an actual way for deciding compliance, refinement, and conformance.
This follows from the fact that the presence of message queues make a contract
system possibly infinite. In fact, even if contracts are finite state, a contract could
repeatedly emit the same message thus introducing an unbounded amount of
messages in a queue. Contract systems can be limited to be finite in (at least) two
possible ways, either considering bounded buffers or avoiding cycles in contracts.

In the Introduction we have already commented similar contract theories
available in the literature [CCL+06,LP07,CGP08] developed for synchronous
communication. Similar ideas were already considered also in [FHR+04] where
the notion of stuck-free conformance is introduced. The unique contract theo-
ries for asynchronous communication that we are aware of are by Rajamani and



Rehof [RR02] and by van der Aalst and others [ALM+07]. In [RR02] a con-
formance relation is defined in a bisimulation-like style introducing an ad-hoc
treatment of internal and external choices that are included in the calculus as
two distinct operators. We try somehow to be more general, avoiding the intro-
duction of two distinct choice operators and by defining our refinement notion
indirectly as the maximal contract substitution relation that preserves system
correctness. In [ALM+07] the same approach for formalizing compliance and re-
finement that we have presented in [BZ07b] has been applied to service systems
specified using open Workflow Nets (a special class of Petri nets) that commu-
nicate asynchronously. As in our works, they prove that contract refinement can
be done independently. Moreover, they present an actual way for checking refine-
ment that work assuming that contracts do not contain cycles. As a future work,
we plan to investigate whether their decidability technique can be applied also
in our different context in which message queues preserve the order of messages.

We now comment on the testing theories developed for process calculi starting
from the seminal work by De Nicola and Hennessy [DH84]. A careful comparison
between the testing approach and our contract theory for synchronous communi-
cation can be found in [BZ07a] (where we resort to fair testing [RV07], a variant of
De Nicola-Hennessy must testing for fair systems, to define an actual procedure
to check contract refinement). The same comments apply also to the CSP failure
refinement [Hoa85] as it is well known that the must testing pre-order and the
CSP failure refinement coincide (at least for finitely branching processes without
divergences) [DeN87]. As far as must testing for asynchronous communication is
concerned, it has been investigated for asynchronous CCS in [CH98,BDP02]. An
interesting law holding in that papers is that an input, immediately followed by
the output of the same message, is equivalent to do nothing. This does not hold
in our context. In fact, a receiver of a message cannot re-emit the read message
because it is not possible for a service to introduce a message in its own message
queue.

Finally, we would to report about related work on the study of services com-
municating via asynchronous mechanisms and their conversations. In particular,
in [FuBS05] the authors present a technique to establish satisfaction of a given
property on service conversations from the specifications of the involved services
and in [FuBS04] the authors study, given a specification of possible conversa-
tions, whether there exists or not a set of services realizing them.
Acknowledgements. We thank the anonymous referees for their comments.
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