
The append-only web bulletin board

James Heather and David Lundin
University of Surrey, Guildford, Surrey, UK
{j.heather,d.lundin}@surrey.ac.uk

Abstract

A large number of papers on verifiable electronic vot-
ing that have appeared in the literature in recent years
have relied heavily on the availability of an append-
only web bulletin board. Despite this widespread re-
quirement, however, the notion of an append-only web
bulletin board remains somewhat vague, and no method
of constructing such a bulletin board has been proposed.

This paper fills the gap. We identify the required
properties of an append-only web bulletin board, and
introduce the concept of certified publishing of mes-
sages to the board. We show how such a board can be
constructed in order to satisfy the properties we have
identified.

Finally, we consider how to extend the scheme to
make the web bulletin board robust and able to offer
assurance to writers of the inclusion of their messages.

Although the work presented here has been inspired
and motivated by the requirements of electronic voting
systems, the web bulletin board is sufficiently general to
allow use in other contexts.

1 Introduction

A number of verifiable electronic voting systems re-
quire specific data to be made publicly available after
or during the election [1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12,
13, 14, 15, 17, 18]. Sometimes the means of publica-
tion is left undiscussed; where it is raised, it is often
referred to as an append-only web bulletin board. The
existence of such a publication vehicle is typically as-
sumed, but the required properties of the web bulletin
board are usually not given significant air time, and
certainly no attempt has been made at a systematic
treatment or at providing a mechanism for implement-
ing an append-only web bulletin board. This is perhaps
rather surprising considering the sheer number of pa-
pers that rely on the existence of something along these
lines.

Our aim here is to identify the properties that the
append-only web bulletin board needs to possess, and
then to show how one can be built.

1.1 The web bulletin board

The basic idea that emerges from reading through
the many papers listed above is as follows. There are
three types of agent involved in the system: the web
bulletin board, readers, and writers. The web bulletin
board needs to allow various parties—the writers—to
publish information on the board, so that it can be read
by any of the readers. The board is append-only in the
sense that once something is published it should never
be removed or altered, and when something new is pub-
lished it should be placed at the end of the ordered se-
quence of messages listed on the board. If something
is inserted out of sequence, removed, or altered, this
needs to be detectable.

The board is not responsible for generating the con-
tent, of course; that is down to the parties that write to
the board. When they write something, they provide
a digital signature to enable others to verify the ori-
gin of the message. The board is, however, responsible
for ensuring that signatures are correct, and for ensur-
ing that the content of the board does not change after
publication. In the context of a national election, there
would presumably be laws governing these responsibil-
ities, with severe sanctions for contravention.

It is, of course, very hard to build a system that
can guarantee that information written to it cannot be
lost. If the published information is stored in only one
place, and that repository suffers catastrophic failure,
it might not be possible to recover it, though it might
be possible to prove that information has indeed gone
missing. For this reason, the first part of this paper
looks only at being able to detect corruption rather
than being able to prevent it. This issue of fault tol-
erance and disaster recovery is one that we will return
to in a later section.

The possibility of collusion between a writer of a

1

message and the board itself should be borne in mind.
We will ensure that nothing can be published to the
board unless it is signed by both the writer and the
board; but even if the two collude, we should still have
protection against insertion, deletion or alteration of
messages.

1.2 Motivation

The main motivating context, as we have suggested,
is that of electronic voting.

1.2.1 Electronic voting

In a verifiable electronic voting system, there are usu-
ally various parties who collectively transform the en-
crypted votes into an election result. Verifiability of
the system then rests on allowing these parties to pub-
lish certain information that enables anyone (voters,
the political parties, the media, election observers, and
so on) to check various claims; for example:

• all the encrypted votes [6, 7, 17] might be pub-
lished, so that voters can check that their votes
have been included in the process;

• all the decrypted votes might be published (with-
out anyone knowing the link from encrypted vote
to decrypted vote), so that anyone can check the
tallying;

• those involved in the decryption might publish
zero-knowledge proofs [19] or other information as
evidence that they have done their jobs without
underhand tactics [6, 7].

1.2.2 Other applications

Although electronic voting provides the primary mo-
tivation, our scheme has other applications. For in-
stance:

1. Auctions. In the auction context the bidder wishes
to place a bid at a particular time, based on a cur-
rent (opened or closed) bid and receive proof of
receipt of the bid. The auctioneer wants protec-
tion against allegations of malfeasance, and thus
needs to publish a proof that the sequence of bids
has not been manipulated in any way.

2. Auditable discussion boards. It may be desirable to
create a web-based discussion board or forum that
provides an auditable history of the discussion.

3. System logs. In some contexts, it might be useful
to have a verifiable online log of the activities of a

distributed system. Typically, log files are written
as plain text files, with full trust invested in the
system writing the log; sometimes we may wish to
weaken the level of trust required in the logger.

4. Petitions. One current fashion seems to be signing
of online petitions. However, there is usually no
security provided at all: no-one can verify that the
signatures are not faked, and those who do sign
cannot verify that the text of the petition is not
subsequently changed. It would clearly increase
trust in the final signed petition if we could find a
way round these problems.

1.3 Roadmap

The contribution of this paper is split into Sections
2 and 3. In Section 2, we introduce the certified pub-
lishing concept, identify the properties required of the
web bulletin board, and show that our system satis-
fies those properties. Section 3 then discusses how to
extend this with more thorough robustness properties.
Finally, we sum up and give conclusions in Section 4.

2 Certified publishing

The web bulletin board must accept submissions
only from accredited writers; similarly it must protect
itself from accountability that arises from the published
data by keeping proof of the origin of messages.

In this section, we start by listing the properties we
require of our web bulletin board; then we introduce
our scheme and show that it satisfies these properties.

2.1 Required security properties

We identify a number of security properties that an
append-only web bulletin board should satisfy.

A web bulletin board is a sequence 〈wbbn〉, where
each wbbi contains a message, along with some meta-
data about the message. We will leave this metadata
abstract for the moment, and give details in Section 2.2
of what metadata the web bulletin board publishes in
our scheme.

2.1.1 Unalterable history

Definition 2.1. A web bulletin board has unalterable
history if, whenever a reader retrieves the contents of
the board at time T0 and again at time T1, it is able
to check that the board it read at T0 is a prefix of the
board at T1, in the sense that the board at T1 has the
same content as previously, except for possibly having

2

had messages appended. If this is not the case, the
reader can detect that the board has become corrupted.

Definition 2.2. A web bulletin board has certified
publishing if whenever a reader retrieves the contents
of the board, either he can detect corruption of the
board, or he will have proof, for each message on the
board:

1. of who wrote the message;

2. that the writer intended the message to be pub-
lished with the stated timestamp and at this point
in the board’s sequence of messages.

These guarantees should hold even if the bulletin
board and the writer collude.

2.1.2 Proof of timeliness of acceptance

The following guarantees enable agents to verify that
messages were accepted for publication in a timely fash-
ion.

Timeliness is difficult to tie down in a clean fash-
ion, because networks are usually asynchronous, and
we have to allow for latency. Although we would like
to say, for instance, that if a reader checks the board at
time T , he should not subsequently discover a new mes-
sage published with an earlier date of writing than T ,
we must allow for the possibility that a writer has con-
structed a message with a timestamp of T − δ for some
small δ, and the message is still in transit, and so has
not yet appeared on the board. For this reason, we
introduce some small, fixed security parameter ε that
appears as a parameter to the following definitions. In-
creasing the value of ε reduces the number of times
the board has to reject a message because its claimed
publication date is too old by the time it arrives, but
increases the extent to which the web bulletin board
can deliberately delay decisions on whether to publish
a particular message. We do not anticipate that this
will cause problems: it should be possible to choose a
value of the order of a few milliseconds and still have
decent protection against latency. If a message is re-
jected because the delay exceeds ε, the message can
always be sent again with a fresh timestamp.1

Definition 2.3. The bulletin board has timely publica-
tion if, whenever a reader views the web bulletin board
at a time T , and a message is subsequently published
to the web bulletin board with a claimed publication
date that is earlier than T − ε, the reader can prove
that the board has been corrupted.

1In fact, we could get away with sending only a fresh times-
tamp and signature. This might save a lot of time if the message
was very long.

The above definition is not subsumed under Defini-
tion 2.1. Here, we are dealing with the time of publi-
cation; there, we were dealing with the order. Defini-
tion 2.3 says essentially that once someone has viewed
the board, nothing more can be published to the board
with a publication date of before the time of reading.

Definition 2.4. Suppose that the web bulletin board
currently contains λ messages. Suppose further that
writer W attempts at time T to write message m as
message λ + 1, and that W ′ attempts at time T ′ to
write m′ as message λ + 1. If in such cases the later
of the two messages always wins—that is, if whenever
(without loss of generality) T + ε < T ′, and the earlier
message m is published to the board, W ′ can prove that
the board has become corrupted—then we say that the
board has early rejection. (If |T − T ′| < ε then we get
no guarantees.)

This last point initially seems strange: one might ex-
pect the earlier message to win over the later message.
But it makes very little difference which wins, as long
as there is a clear and enforceable policy. The practical
upshot of forcing the later message to take priority is
that if the web bulletin board is to claim that the first
message never arrived, it will have to make this decision
before allowing any other writers to submit messages.
This prevents the web bulletin board from collecting a
pool of potential next messages from various writers,
and delaying its decision over which to publish until it
has received a favourable one.

2.2 The history

The implementation of the bulletin board in our
scheme is as follows. The web bulletin board stores a
sequence 〈wbbn〉, indexed starting from 1, where each
wbbi = 〈mi, Ti,Wi,Hi, WSigni, BSigni〉, where mi is
a message, Ti is a timestamp, Wi is the name of a
writer, and Hi is a hash, and WSigni and BSigni

are signed terms. The intention is that Ti will store
the writer Wi’s timestamp at the time of writing mes-
sage mi, Hi is a hash that identifies the message as
occurring at this point in the sequence, WSigni is the
writer’s commitment to the message, and BSigni is
the board’s commitment to accepting the message for
publication.

Definition 2.5. Such a sequence is called a history.

Definition 2.6. The web bulletin board is required
to ensure that its history always satisfies the following
invariant:

1. Hi = H(mi.Ti.Wi.Hi−1), where H0 = 0;

3

2. WSigni = SWi
(Hi);

3. BSigni = SB(WSigni.Ti
′), with Ti

′ being the web
bulletin board’s timestamp at the time of signing;

4. Ti ≤ Ti
′ < Ti + ε.

A history that has these properties is called a con-
sistent history.

Lemma 2.1. If a history is consistent, then any prefix
of the history is also consistent.

Proof. The proof is a simple induction on the length of
the history.

Definition 2.7. We will use ‘wbbλ’ to denote the last
element of 〈wbbn〉 (that is, the most recent entry on
the web bulletin board). The current state hash is the
value of Hλ. This is the hash value that the next writer
will need to use as the third component in constructing
Hλ+1.

2.3 Assumptions

There are various assumptions that are required in
order to ensure that the web bulletin board achieves
the security properties we desire.

In practice, the following assumption would nor-
mally be ensured by putting some adequate private key
infrastructure (PKI) in place.

Assumption 2.1. All agents know the public keys of
all writers and of the web bulletin board itself, but
each writer’s secret key is known only to that writer,
and the web bulletin board’s secret key is known only
to the web bulletin board.

We need further to assume that the cryptography
does its job adequately. Assumptions 2.1 and 2.2 to-
gether mean that a message signed with SWi must have
originated with Wi, and a message signed with SB must
have originated with the web bulletin board. Assump-
tion 2.1 is enough to ensure that anyone who sees a
signed message can verify the signature.

Assumption 2.2. Signed messages can be produced
only by an agent who knows the signing key.

The most important consequence of the following
assumption is that the hash function we are using is
treated as injective. This is obviously not strictly true
of a hash function; however, a good collision-free hash
function will effectively achieve this for us by ensuring
that hashes do not accidentally collide, and that agents
are unable to produce two distinct terms that hash to
the same value.

Assumption 2.3. The terms form a free algebra. Es-
sentially, this means that concatenation of terms is as-
sociative, and that any two syntactically distinct terms
have different values.

2.4 Reading

All information written to the web bulletin board is
considered public, and so anyone can act as a reader.
The fact that this is usually termed a web bulletin
board suggests that the transfer is to be done over
HTTP, although that will not concern us here. It is
also quite possible that, for efficiency reasons, readers
might want to retrieve only part of the contents of the
board rather than the whole of it, but again, we are
not here concerned with questions of how to present
the material to the reader. For the purposes of this pa-
per, we shall assume that readers retrieve all of 〈wbbn〉
whenever required.

Whenever anything is read from the web bulletin
board, it also returns a signed and dated copy of the
current state hash:

Message 1. B → R : 〈wbbn〉 .SB(Hλ.TB)

This makes it impossible for the web bulletin board
subsequently to change what was on the board before
this point. If the web bulletin board tries to do so, R
can prove that the board has been corrupted by pro-
ducing SB(Hλ, TB). We will return later to this point.

2.5 Writing

Writing to the board involves three stages: getting
the current state hash; sending the message to the
board; getting a receipt. The protocol looks like this:

Message 1. B → W : SB(Hλ, TB)
Message 2. W → B : m.T.W.H.SW (H)
Message 3. B → W : SB(SW (H).T ′)

where H = H(m.T.W.Hλ).
In the first message, the board sends the current

state hash Hλ to the writer, signed and dated. The
writer rejects Message 1 if TB is more than ε old.

In Message 2, the writer sends the message he wishes
to publish, along with a newly generated hash, based on
the message, the time of writing, the writer’s name, and
the current state hash; he also sends a signed version of
this hash. The web bulletin board rejects Message 2 if
T − TB > ε. On receipt of Message 2, the web bulletin
board checks the signature, and thus obtains proof that
the writer really did write the message at this point; it
also checks the hash. The writer’s signature commits

4

to the message, to the timestamp, and to the current
state hash; this guarantees that the writer intended the
message to appear as the next message in the sequence
after the one that resulted in this state hash.

Finally, the board sends back a signed and dated
copy of the writer’s signed hash. The writer will reject
Message 3 if T ′ − T > ε. The writer also checks the
signature, and gets proof that the web bulletin board
has accepted the message as appearing next in the se-
quence. If anything else appears in place of m, the
writer can produce m and the web bulletin board’s sig-
nature to show that the web bulletin board has deleted
or altered the message.

Of course, when the writer sends Message 2, he has
no guarantee of receiving a Message 3 at all, and thus
no guarantee of getting proof that the message has been
accepted.

At the end of the protocol, provided that the
signature and the hash are both correct, and pro-
vided that T is fresh, the web bulletin board appends
〈m.T.W.H.SW (H).SB(SW (H).T ′)〉 to the history. The
new state hash now becomes H.

Proposition 2.2. If the history was consistent before
appending this new message, it will still be consistent
afterwards.

Proof. By inspection.

2.6 Analysis of security properties

We now consider the security properties we set out
in Definitions 2.1 to 2.4, and show that our implemen-
tation of the bulletin board satisfies those properties.
We start with some preliminary results.

Lemma 2.3. Any reader who reads the entire history
of the web bulletin board has enough information to
check that it is consistent.

Proof. All signatures are immediately verifiable be-
cause by Assumption 2.1 all agents have all public
keys. The only remaining question is whether the
hashes can be verified; this amounts to asking whether
the reader knows the information being hashed, in or-
der to reconstruct the hash and check that the val-
ues are equal. But this is trivially true. All agents
know H0, because H0 = 0. Then, for every other hash
value Hk+1 = H(mk+1.Tk+1.Wk+1.Hk), the first three
components inside the hash appear in the clear in en-
try k+1 of the web bulletin board, and the last appears
in entry k. Finally, anyone can check that Ti

′ − T < ε
for all i.

We define equivalence of histories based on whether
the messages they store, along with the times they were
written and the names of the writers, are the same.

Definition 2.8. Suppose that we have two web bul-
letin board histories 〈wbbn〉 and 〈wbb∗n∗〉.

Suppose that the ith terms of the histories are
〈mi, Ti,Wi,Hi, WSigni, BSigni〉 for the first history,
and 〈m∗

i , T
∗
i ,W ∗

i ,H∗
i ,WSign∗i , BSign∗i 〉 for the sec-

ond. We say that the two histories are equivalent if
and only if

1. n = n∗;

2. for all 1 ≤ i ≤ n, we have mi = m∗
i , Ti = T ∗i ,

Wi = W ∗
i .

Remark. This notion of equivalence is an equivalence
relation.

Lemma 2.4. Two histories have the same state hash
if and only if the histories are equivalent.

Proof. We first show that two histories with the same
state hash are equivalent. To do this, we prove the
contrapositive: that two inequivalent consistent web
bulletin board histories have different state hashes.

Suppose that we have two consistent histories 〈wbbn〉
and 〈wbb′n′〉, where the ith term of the former is
〈mi, Ti,Wi,Hi, WSigni, BSigni〉 and the ith term of
the latter is 〈m∗

i , T
∗
i ,W ∗

i ,H∗
i ,WSign∗i , BSign∗i 〉. If

they are inequivalent, then they differ on some mi,
Ti or Wi, or else the histories are of different length.
Since the two histories are consistent, the state hashes
for each are correctly constructed from these mi, Ti

and Wi terms; that is, with the first history, for each
1 ≤ i ≤ n we have

Hi = H(mi.Ti.Wi.Hi−1)

and similarly for the second web bulletin board.
A simple mathematical induction on n, together

with Assumption 2.3, now establishes that Hn 6= H∗
n∗ .

For the reverse direction, we must show that two
equivalent histories have the same state hash. This
is also a simple induction. If the histories are equiv-
alent then they are of the same length; suppose our
two histories are 〈wbbn〉 and 〈wbb′n〉. Now an in-
duction on n establishes the result. If n = 0, then
the state hash in each case is 0. Now suppose that
the result holds for all histories of length k. When
n = k + 1, the state hash for the first board is
Hk+1 = H(mk+1.Tk+1.Wk+1.Hk), and for the second
it is H ′

k+1 = H(m′
k+1.T

′
k+1.W

′
k+1.H

′
k). But the equiv-

alence of the histories tells us that mk+1.Tk+1.Wk+1 =
m′

k+1.T
′
k+1.W

′
k+1, and the inductive hypothesis tells us

that Hk = H ′
k; thus, Hk+1 = H ′

k+1, and the histories
have the same state hash.

5

We are now in a position to consider the security
properties we require of our web bulletin board.

2.6.1 Unalterable history

Retrieving the contents of the web bulletin board, as we
have already seen, returns to the reader R the sequence
〈wbbn〉 .SB(Hλ, TB).

By performing appropriate checks when reading the
board, the reader can confirm that the board has not
been corrupted. By remembering the signed state hash
SB(Hλ, TB), the reader will have enough information
to be able to detect later if anything he has already
read has changed.

Theorem 2.5. The web bulletin board has unalterable
history (Definition 2.1).

Proof. Suppose a reader retrieves the contents of the
board at time T0. He will receive, along with the
contents 〈wbb0n0〉 of the board, SB(Hλ0 , T0). The
reader then checks that Hλ0 is indeed the state hash
of 〈wbb0n0〉; he also checks that 〈wbb0n0〉 is consis-
tent. Having made these checks, he need store only
SB(Hλ0 , T0); he need not cache the entire board.

If he later retrieves the contents 〈wbb1n1〉 of the
board at T1, he will receive SB(Hλ1 , T1). He performs
the same checks on 〈wbb1n1〉 as he did when he re-
trieved the board the first time.

If all of these checks pass, then 〈wbb1n1〉 is consis-
tent. If n1 < n0 then the later board is shorter than it
was, and the reader will know that the board has been
corrupted, because something must have been deleted
for the board to have shortened. Otherwise, he now
considers the sequence consisting of the first n0 ele-
ments of 〈wbb1n1〉. This is a prefix of the later board,
and so by Lemma 2.1 this is also consistent.

He now looks at this prefix and considers the last el-
ement 〈mn0 , Tn0 ,Wn0 ,Hn0 ,WSignn0 , BSignn0〉. The
state hash of the prefix is Hn0 . By Lemma 2.4, the
state hash of this prefix is the same as that of 〈wbb0n0〉
if and only if the prefix is equivalent to 〈wbb0n0〉; so
he checks that Hn0 = Hλ0 . If this is the case, then
he knows that no message or message timestamp or
message origin has been altered, and that nothing has
been deleted or inserted before this point. If not, he
will know that the board has been corrupted.

Note that this works even in the presence of collu-
sion between the web bulletin board and the writers.
Even if the writers produce old signatures (with old
timestamps) for the web bulletin board to insert into
the sequence, the change of history will mean that the
state hash of the prefix will change, and the reader will
be able to detect this.

Theorem 2.6. The web bulletin board has certified
publishing (Definition 2.2).

Proof. When a reader retrieves the contents 〈wbbn〉 of
the web bulletin board, he first checks that the history
is consistent. If not, he is able to detect that the board
has been corrupted. If it is consistent, then each ele-
ment is of the form 〈mi, Ti,Wi,Hi, WSigni, BSigni〉,
where WSigni = SWi

(H(mi.Ti.Wi.Hi−1)). This sig-
nature is enough to show that writer Wi created the
message—by Assumption 2.1, only Wi has the signing
key, and the only time a writer signs a message is when
sending one to the board for publication. The writer
chooses the timestamp when creating the signature, so
the reader knows that the writer intended this to be
the timestamp associated with the message.

That the writer intended the message to appear at
this point in the sequence is clear from the fact that the
writer was prepared to use Hi−1 as the last component
inside the hash to be signed: this value, Hi−1, was the
state hash before mi was added to the history.

2.6.2 Proof of timeliness of acceptance

Theorem 2.7. The web bulletin board has timely pub-
lication (Definition 2.3).

Proof. If a reader views the board at time T , he will
obtain a value of the form SB(Hλ, TB) from the web
bulletin board, with T < TB < T +ε. But this commits
the web bulletin board to the claim that at time TB , the
state hash was Hλ. This, by Lemma 2.4, corresponds
to some particular history 〈wbbλ〉.

Suppose that the board subsequently publishes a
new message, not present in 〈wbbλ〉, with a claimed
publication date of T0, where T0 + ε < T . This
involves placing an entry into the history of the
form 〈m,T0,W,H, WSign, BSign〉, where BSign =
SB(SW (H(m.T0.H

′).T0
′)), with T0

′ < T0 + ε. But now
T0
′ < T0 + ε < T < TB .
But this commits the web bulletin board to the claim

that at time T0
′, the state hash corresponded to a his-

tory that includes this new entry. Since T0
′ < TB , the

history at T0
′ should have been a prefix of the history

at TB . But this means that the history at TB should
also have included the new entry, contrary to our pre-
vious assumption.

Theorem 2.8. The web bulletin board has early rejec-
tion (Definition 2.4).

Proof. Early rejection is an immediate consequence of
timely publication and the fact that writing a message
involves first reading the state hash from the board.

6

The first message of the writing protocol is

Message 1. B → W : SB(Hλ, TB)

which returns the state hash Hλ to the writer. If an-
other writer now manages to publish a message using
the same state hash but at a time earlier than TB − ε,
the same argument as that used in Theorem 2.7 will
enable the writer to show that the board has become
corrupted.

2.7 Summary

In this section, we have developed a scheme for im-
plementing the append-only web bulletin board, and
shown that it satisfies the security properties we re-
quired of it.

This is already sufficiently powerful to meet the de-
mands of most, if not all, of the systems that have
assumed the existence of an append-only web bulletin
board. It provides an implementation that guarantees
that the bulletin board cannot manipulate the mes-
sages on the board and hope to escape detection.

The bulletin board as presented thus far, however,
does not provide any liveness guarantees. There is
nothing to stop the board from refusing to commu-
nicate with one or more agents. Although the board
cannot manipulate the history of previously published
messages, it can certainly prevent them from being
published or read.

The main motivation for developing an append-only
web bulletin board is that many electronic voting sys-
tems require such a board. Most of the voting systems
that have been proposed are rather weak at present on
their ability to recover from disaster, and are unable
to cope if one of the core components of the system
crashes or refuses to perform its function; consequently,
if the board were to be used for one of these appli-
cations, it would not significantly weaken the liveness
properties of the system as a whole.

However, it is clearly desirable to make the web bul-
letin board as robust as possible. It would be better if
we could construct a distributed board in such a way
that guarantees can be made about publication and re-
tention of messages even in the event of one or more
machines crashing or becoming compromised.

The aim of the next section is to make some progress
towards constructing such a board.

3 Robust publishing

Although the writer and the web bulletin board both
seek to gain proof from the other of their correct func-
tion, the principal weakness of the scheme presented

thus far in the paper is that the web bulletin board
may suffer some catastrophic failure that prohibits it
from fulfilling its duty to publish the data it has ac-
cepted from the writers, or the web bulletin board may
stage a denial of service attack, by refusing to commu-
nicate with some or all of the readers or writers, with
the same result.

3.1 Web bulletin board peers

A natural way of improving the scheme is to create
a distributed web bulletin board, consisting of some
number of geographically disparate linked peers, each
run by a separate organisation. We can then simply
replicate the published data across all of them, and if
one fails, the others can still function and fulfil the duty
of the collective.

However, although there exist many practical meth-
ods for replicating databases across a set of servers,
these do not offer the amount of trust that we seek. If,
for example, a particular web bulletin board peer Bx

successfully replicates the data it has accepted from
the writers and issued certificates for to another peer
By this does not necessarily give the writers any higher
level of confidence in the correct publishing of the data,
because they have not been issued a certificate by the
web bulletin board collective but merely by a single
peer. If Bx were to fail—perhaps by having its pri-
vate key compromised!—and a writer, with a certifi-
cate proving the receipt by that peer of a message,
were to complain, there would (still) be no way of re-
covering the messages that had not been replicated to
other peers. The writer must be guaranteed, at the
time of writing, that its message will survive because
it has been replicated to a large enough number of web
bulletin board peers.

The approach we adopt here is to require that as
long as some threshold set k out of n bulletin board
peers survive and function correctly, the integrity of
the election should be guaranteed by the collective. In
terms of the scheme presented in the previous section,
this means that the certificate issued by the web bul-
letin board to the writer is issued by the web bulletin
board peers as a collective. This is facilitated by a
threshold cryptography scheme.

3.2 Threshold cryptography scheme

For this improved version of the web bulletin board,
we will assume that some particular threshold cryptog-
raphy scheme, such as ElGamal [9] or Paillier [16], has
been agreed upon, and that each peer has been given
a secret share of a threshold signing key. The scheme

7

that we present here is not dependent on the particular
cryptographic mechanism used.

We require two things from the threshold scheme:
first, that it is a public key scheme, meaning that an
encryption under a generally available public key can
only be decrypted by the secret (threshold) private key;
and secondly, that the private key can be split into n
parts in such a way that a threshold subset of k key
holders can co-operate to perform the decryption, but
k− 1 key holders together still have no useful informa-
tion about the threshold key.

3.3 Distributed history: synchronized

The information stored by each peer is exactly the
same information as was stored in Section 2. The bul-
letin board’s signing key SB is now the threshold key,
split among the n peers; any k of these can together
sign a message.

The rough idea for writing a message is that the
writer should send his message to a peer of his choice;
the peer will then form a threshold set of peers who can
sign the receipt; and this signed receipt is then returned
to the writer as proof of acceptance and publication of
the message. All of the k peers involved in signing now
add the message to their own history, and the message
is also sent to the other n − k peers for publication
on their boards too. Each of those peers must accept
the message as authentic, because it has already been
signed by the threshold key.

This is nearly sufficient to give us what we want, but
there are a couple of loose ends that want tying up.

3.3.1 Locking the peers

If the peers are to stay synchronized, it is important
that we do not have two messages written concurrently.
But we need a threshold set of peers to sign a message,
and this gives us a neat way round the problem. We
start by stipulating that a threshold set must contain
more than half of the peers; that is, that 2k > n. In
this way, we can ensure that two threshold sets can
never be constructed concurrently.

Peers should never allow themselves to be part of
two signing sets at the same time. They may still re-
spond to read requests when in the middle of a signing
operation, but they may not respond to other writing
requests.

(Coding this would need to be done carefully, of
course, to prevent deadlock when two peers each try
to construct a threshold set to get a message signed.)

3.3.2 Publish or be damned

When a message is signed by a threshold set, it must
then be distributed to the other n−k peers. One must
ask what happens if a peer refuses to publish a message
on its board.

By this point, the message has been accepted by a
threshold set, and is therefore deemed to have been
certified by the collective. A peer must not refuse to
publish a certified message on its board. If it does
so, this constitutes breaking its contract, and it should
thereafter be dropped by the other peers.

3.4 Distributed history: unsynchronized

Another possibility for maintaining a distributed
web bulletin board is to drop the requirement that all
peers should keep track of all of the messages. It is pos-
sible to construct the board in such a way that writing
to one peer results in a signature from a threshold set,
and a consequent guarantee that the message has been
replicated to those peers, but not necessarily to all n
peers. This involves changing the structure somewhat
from that presented in Section 2. What we get is a
web bulletin board that maintains a local append-only
structure, in the sense that each peer keeps an ordered
sequence of messages, but the web bulletin board is no
longer globally append-only.

Following this approach has two interesting conse-
quences. First, the writing of messages need no longer
be done strictly sequentially: two or more messages can
be written concurrently. In a very large-scale system,
this could be a considerable advantage, because lock-
ing a threshold set of peers might be a time-consuming
operation.

Secondly, in order to make sure one has read all of
the messages, one now needs to consult n−k+1 peers.
(Each message is guaranteed to be written on k boards,
so we need to check enough boards to leave only k − 1
boards unchecked.) This might substantially increase
the bandwidth requirements of the readers.

Whether one chooses the synchronized distributed
web bulletin board or the unsynchronized distributed
web bulletin board depends entirely on the nature of
the application. If one requires a strict ordering of all
messages to be maintained, one must use the synchro-
nized board; this would apply to an auction, or audited
discussion board. For an online petition, the ordering
of the signatures is presumably not crucial, and the
unsynchronized board would work well.

For many electronic voting systems, the ordering of
messages is unimportant. Often what is required is
simply a record of all encrypted votes, or some such.

8

In this context, either option would work, but the un-
synchronized board might be more efficient.

4 Conclusion

In this paper, we have provided a way of implement-
ing the append-only web bulletin board whose exis-
tence has been assumed in so much of the electronic
voting literature.

We introduced the notion of certified publishing,
in which a writer and a bulletin board are protected
from false allegations of misconduct. We then intro-
duced our scheme, and demonstrated that it satisfies
the properties that one requires of an append-only web
bulletin board.

Finally, in Section 3, we discussed how to distribute
the board among a number of peers to make it robust
in the face of system failure or deliberate misconduct.

Future work will focus on the distributed web bul-
letin board and on its security properties. We aim to
define the liveness properties we would expect of the
two flavours of distributed board, and then prove that
they satisfy those properties.

4.1 The application to electronic voting

A robust web bulletin board and the issuing of en-
crypted receipts are vital components of verifiable elec-
tronic voting systems. When an encrypted receipt is
submitted to the web bulletin board by a voting ma-
chine/scanner, the web bulletin board collective re-
sponds with a certificate indicating that the receipt has
been received and published in the robust collective his-
tory. This certificate can be printed onto the voter’s
receipt, giving the individual further opportunities to
audit the election. Furthermore, if the voter is able to
verify, using the certificate, that the encrypted receipt
has been correctly entered onto the web bulletin board,
he need not check the receipt on the web bulletin board
after the close of the election. This improves the secu-
rity of the whole election: it means that the integrity
of the election requires a smaller number of voters to
check their receipts.

4.2 Acknowledgements

Warm thanks to Roger Peel and Zhe Xia for their
comments on the scheme presented here.

References

[1] B. Adida and R. Rivest. Scratch & vote: self-
contained paper-based cryptographic voting. Pro-

ceedings of the fifth ACM workshop on Privacy in
electronic society, pages 29–40, 2006.

[2] R. Aditya, Lee B, C. Boyd, and E. Dawson.
An efficient mixnet-based voting scheme provid-
ing receipt-freeness. Proceedings of TrustBus’04,
pages 152–161, 2004. LNCS 3184.

[3] Roberto Araujo, Ricardo Filipe Custodio, and
Jeroen van de Graaf. A verifiable voting proto-
col based on farnel. Proceedings of Workshop On
Trustworthy Elections (WOTE 2007), 2007.

[4] O. Baudron, P.-A. Fouque, D. Pointcheval,
J. Stern, and G. Poupard. Practical multi-
candidate election system. Proceedings of the
twentieth ACM Symposium on Principles of Dis-
tributed Computing (PODC’01), pages 274–283,
2001.

[5] J. Benaloh and D. Tuinstra. Receipt-free secret-
ballot elections (extended abstract). Proceedings
of the twenty-sixth Symposium on Theory of Com-
puting (STOC’94), pages 544–553, 1994.

[6] D. Chaum. Secret ballot receipts: true voter-
verifiable elections. IEEE: Security and Privacy
Magazine, 2(1):38–47, 2004.

[7] D. Chaum, P. Ryan, and S. Schneider. A prac-
tical voter-verifiable election scheme. Proceedings
of the tenth European Symposium on Research in
Computer Science (ESORICS’05), pages 118–139,
2005. LNCS 3679.

[8] R. Cramer, R. Gennaro, and B. Schoenmakers.
A secure and optimally efficient multi-authority
election scheme. Advances of Eurocrypt’97, pages
103–118, 1997. LNCS 1233.

[9] T. ElGamal. A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. IEEE
Transactions on IT, 31(4):467–472, 1985.

[10] K. Fisher, R. Carback, and T. Sherman. Punch-
scan: Introduction and system definition of
a high-integrity election system. In PRE-
PROCEEDINGS, pages 19 – 29. IAVoSS Work-
shop On Trustworthy Elections, 2006.

[11] A. Fujioka, T. Okamoto, and K. Ohta. A practi-
cal secret voting scheme for large scale elections.
Advances of Auscrypt’92, pages 244–251, 1992.
LNCS 718.

9

[12] A. Juels, D. Catalano, and M. Jakobsson.
Coercion-resistant electronic elections. Proceed-
ings of the 2005 ACM Workshop on Privacy in
the Electronic Society, pages 61–70, 2005.

[13] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang,
and S. Yoo. Providing receipt-freeness in mixnet-
based voting protocols. Proceedings of ICISC’03,
pages 245–258, 2003. LNCS 2971.

[14] C. A. Neff and J. Adler. Verifiable e-voting: in-
disputable electronic elections at polling places.
VoteHere Inc, 2003.

[15] M. Ohkubo, F. Miura, M. Abe, A. Fujioka, and
T. Okamoto. An improvement on a practical
secret voting scheme. Information Security’99,
pages 225–234, 1999. LNCS 1729.

[16] P. Paillier. Public-key cryptosystems based on
discrete logarithms residues. Advances of Euro-
crypt’99, pages 223–238, 1999. LNCS 1592.

[17] Punchscan. http://www.punchscan.org.

[18] R. Rivest. The threeballot voting system,
2006. http://crypto.csail.mit.edu/ rivest/Rivest-
TheThreeBallotVotingSystem.pdf.

[19] B. Schneier. Applied Cryptography: protocols, al-
gorithms, and source code in C. John Wiley,
United States of America, second edition edition,
1996.

10

