
Extending Anticipation Games with Location, Penalty
and Timeline

Elie Bursztein (eb@lsv.ens-cachan.fr)

LSV, ENS Cachan, CNRS, INRIA, France

Abstract. Over the last few years, attack graphs have became a well recognized
tool to analyze and model complex network attack. The most advanced evolution
of attack graphs, called anticipation games, is based on game theory. However
even if anticipation games allow to model time, collateral effects and player in-
teractions with the network, there is still key aspects of the network security that
cannot be modeled in this framework. Theses aspects are network cooperation to
fight unknown attack, the cost of attack based on its duration and the introduction
of new attack over the time. In this paper we address these needs, by introducing
a three-fold extension to anticipation games. We prove that this extension does
not change the complexity of the framework. We illustrate the usefulness of this
extension by presenting how it can be used to find a defense strategy against 0
days that use an honey net. Finally, we have implemented this extension into a
prototype, to show that it can be used to analyze large networks security.

1 Introduction

As networks of hosts continue to grow, evaluating their vulnerability to attacks becomes
increasingly more important. When evaluating the security of a network, it is not enough
to consider the presence or the absence of public vulnerabilities. Inevitably, a large
network will contain undisclosed vulnerabilities that can be the target of undisclosed
attacks called zero day exploits. To setup a defense strategy that mitigates this kind of
attack, network cooperation defense needs to be considered. Using network topological
information along with other information such as average deployment cost and time,
an analyst can produce an anticipation game. The anticipation game framework [5]
is the most advanced evolution of attach graphs, based on game theory [7] and more
specifically on TATL [8] (Timed Alternating-time Temporal Logic).

Modeling network cooperation strategy cannot be achieved in attack graphs and the
current anticipation games framework, because some rules and strategies need to be
restrained to specific set of services, whereas other need to be global to model network
communication. For example, patching rules should not be applied to a honey-net net-
work. That is why location restriction needs to be introduced in the framework. More-
over dealing with a zero day exploit requires taking into account the vulnerability cycle
timeline.A timeline of events is a succession of events that need to take place one after
the other.

We also extend anticipation games with penalties. Intuitively a penalty is a cost
added for each unit of time a constraint holds. As additional benefit penalty allow to

model another important relation between time and cost: cost diminishing. A cost di-
minishing occurs when the same action is executed multiple times. It also occurs when
an on-going process is done for an extended period. e.g service monitoring.

Finally this extension allows us to model player’s simultaneous actions and event
branching. Event branching is used to model that at a certain point, several options are
available to the player, such as using one kind of patch or an other.

The main contribution of this paper is an extension of the anticipation game frame-
work that allows to model network cooperation, intrusion cost based on their duration,
and the introduction of new event over the time. To the best of our knowledge, our
extended framework is the first which is able to model and analyze those aspect of net-
work security. We prove that anticipation games with locations and penalties are decid-
able and that the complexity of the model remains EXPTIME-complete. We also have
implemented our framework into an freely available tool called NetQi [3] to evaluate
the effectiveness of the approach. In the evaluation section we will show that it is pos-
sible to analyze complex multiple-sites scenarios even on large networks with thousand
of services. To illustrate how our extension works, we provide a running example that
discusses a network multiple-sites defense strategy that uses of an honey-net against
various types of exploits including zero day ones.

The reminder of this paper is organized as follows. In Sect. 2, we will survey related
work and in Sect. 3 we recall what an anticipation game is. We also detail the game
example that is used as a guideline for the rest of the paper. Sect. 4 presents the notion
of locations. In Sect 5 the timeline of events is illustrated. Sect. 6 introduces the notion
of penalty and cost diminishing. Sect 7 covers the multiple-sites defense strategies that
were found by analyzing the running example with our prototype. In sect. 8 we evaluate
the effectiveness of the approach.We conclude in Sect. 9

2 Related Work

Model checking for attack graphs was introduced by Ammann and Ritchey [17]. They
are used to harden security [14]. Various methods have been proposed for finding attack
paths, i.e., sequences of exploit state transitions, including logic-based approaches [15,
19, 9, 18], and graph-based approaches [21, 20, 13]. Anticipation game are based on
timed automata, timed games, and timed alternating-time temporal logic (TATL) [8], a
timed extension to alternating-time Kripke structures and temporal logic (ATL) [1]. The
TATL framework was specifically introduced in [7]. Game strategies have been used to
predict players actions in numerous domains ranging from economy to war [2, 16]. the
notion of cost diminishing appears in [6]. The use of games for network security was
introduced by Lye and Wing [11]. The anticipation game framework was presented by
Bursztein and Goubault-Larrecq [5] and network strategies for anticipation games were
detailed in [4]. Finally the first use of game theory for denial of service was done by
Mahimkar and Shmatikov [12].

3 Anticipation Games

An anticipation game is a timed game [7], the key difference between standard timed
games and anticipation games is the dual-layer structure used in anticipation games.
Its lower-layer called the Network Layer is used to represent network information. Its
upper-layer called the Attack Layer is a regular TATL game structure used to model
the network state evolution induced by players actions such as exploiting a vulnerability.
Anticipation games can be thought as a graph of graphs where the lower graph is the
network state and the above graph describes the transition between one network state to
an other. The players of an anticipation games are called administrator and intruder
and their actions are modeled by timed rules. Typical actions range from patching, to
exploiting a vulnerability, to firewalling a service. They are called timed rules because
a rule execution requires a certain amount of time to be executed. Each Attack Layer
transition represents the execution of one rule. In an anticipation game a path is called
a play. More formally a play is a path (a sequence of action and states) ρ : s0r0s1r1...
where ∀j : sj

rj→ sj+1, sj and sj+1 are network states, and rj is the rule used to make
the transition. Using a network initial configuration and a set of rules, an anticipation
game is used to answer questions such as : what should I do to counter this type of attack
? A questions is represented by strategies objectives and its answer, the strategy, is the
play that fulfill best these objectives. Strategies objectives are composed of two main
parts: a set of constraints and a set of goals. Constraints are used to express conditions
on the network state that a play must satisfy to be considered as a potential strategy.
A typical defense strategy constraint is that no service is ever compromised during the
play and that at the end of the play no service is vulnerable anymore. Goal are used
to select among all the play that satisfy the set of constraints the one that is the most
relevant by analyzing the cost, reward and time outcome. A typical defense strategy goal
is to minimize the cost of the strategy. The cost reward and timing used in this paper
are not meant to be realistic, they are only here for example purpose. While interesting,
computing the real value of cost, reward and timing is out of the scope of this paper that
aims at providing a mean to reason on them.

3.1 Network Layer

The Network Layer is composed of two parts. First the Dependency Graph which is
the graph that represents the dependency relations that exist in the network. It is meant
to be static and does not evolve over game execution. Secondly a finite set of states
associated to each Dependency Graph vertex that describes the current network state.
This set of states is meant to evolve over game execution. Formally, let A be a finite
set of so-called atomic propositionsA1, . . . ,An, . . . , denoting each base property. Each
atomic proposition is true or false at each vertex. E.g., Vuln is true at each vertex that is
vulnerable. Thus each atomic proposition is true or false for each of Dependency Graph
vertices. States on Dependency Graph are then simply functions ρ : A → P(V) map-
ping each atomic proposition to the set of vertices that satisfies it. We describe ρ in a
finite way, as a table of all pairs (A, v) ∈ A×P(V) such that v ∈ ρ(A); hence there are
finitely many states. The Dependency Graph used as an example and the corresponding

set of states are represented in Figure 1.

States 1 2 3 4 5 6 7
ρ(0DayAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(CustomAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(PubAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(PatchAvail) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(Detected) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(Monitored) ⊥ > > > ⊥ ⊥ ⊥
ρ(Vuln) ⊥ ⊥ > ⊥ ⊥ > ⊥
ρ(Compr) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
ρ(Public) > > > > > > >

Fig. 1. Dependency Graph (left) and Initial set of states (right)

This Dependency Graph is composed of six real vertices and a virtual one (vertex
1). The edges are the dependencies that exist between services. Concrete dependencies
are represented with a plain line and virtual dependencies used for the timeline of events
with a dashed line. The role of the virtual vertex and its incoming dependencies is to
model the timeline of events as detailed in Section 5. Concrete dependencies are used
to model that a service is dependent on another. In our example the vertex www (5),
which is a web server, depends on the vertex DB (6), which is a database, to retrieve
user credential for authentication purpose. From a security perspective it means that if
the vertex DB (6) is unavailable by collateral effect the vertex www (5) will be also
unavailable. It also means that the trust relation that exists between those two vertices
may be exploited by an attacker. These dependencies are used in game rules to model
collateral effects and trust abuse. The three dependencies from the company’s network
services to their twins services located in the honey network are used for the multiple-
sites defense purpose. The fake honey-net services are used to lure the attacker and
catch him when he tries to attack them. Using an honey-net allow to catch unknown
attack because the only traffic they get are attacks. Hence if the traffic is not a known
attack, it is likely that its a new type of attack. That is why each company’s services
depend on its honey-net fake twin service to defeat a zero day attack.

The complete set of variables mapping used in the example can be divided into
three parts. The first part is variables 0DayAvail, CustomAvail, PubAvail and
PatchAvail which are used to model the timeline of events.The second part is vari-
ables Detected and Monitored which are used for multiple-sites defense purpose.
Finally the third part is used to describe the network’s initial state. The variable Vuln is

used to model that the company web and email services along with their fake twin ser-
vices located on the honey-net are vulnerable to an unknown vulnerability, The variable
Compr is used to say that no service is compromised. Finally the variable Public is
used to indicate that every service is public (not firewalled).

3.2 Attack Layer

TATL [8] extends ATL [1] with the notion of timed game by adding time cost to tran-
sitions. From the network security perspective this is important because it models that
player actions on a network require a certain amount of time to be executed. This pre-
vents meaningless strategies such as being able to patch every network vulnerability in
an instant. Hence an anticipation game can be viewed as a race between players where
the fastest wins. This time race introduces a so called element of surprise [7]. For exam-
ple the intruder can take the administrator by surprise if he can exploit a vulnerability
faster than the administrator can patch it. This is coherent with real network security
where you cannot foresee what attacker will come up next.

3.3 Rules of the game

The actions of each player are described by a set of timed rules. Each rule is of the
form:

Γx : Pre F
∆, p, a, c
−→ P

where F is the set of preconditions that need to be satisfied in order to use the rule.
∆ is the amount of time needed to execute the rule, p is the player who uses the rule, a
is the rule label (string), and c is the rule cost. P is the rule post-condition, that states
rule effects. It is required for F preconditions to hold not just when the rule is selected,
but also during the whole time it takes the rule to actually complete (∆ time units). Γx is
the rule location. Anticipation games use two types of rules [4]. Granting rule use the
=⇒ double arrow and regular rules use the −→ single arrow. A granting rule allows
the player to receive a reward based on the target Dependency Graph vertex value when
the rule is successfully executed whereas regular rules do not grant any reward. Regular
rules are used for temporary actions and for the timeline of events. For example the
following rule is used to model trust abuse attack:

Γ : Pre ♦Compr ∧ ¬Compr 2,I,Trust abuse, 200
=⇒ Compr

It says that the intruder (I) can compromise a non compromised (¬Compr) vertex
by exploiting a trust relation if one of its successors is compromised (♦Compr) in 2
units of time for a cost of $200. The ♦ is a modal operator used to speak of Dependency
Graph successors. The other operators used in rule preconditions and effects are stan-
dard modal operators. If the intruder chooses to use this rule, then to have a successful
rule execution it is required that the preconditions are fulfilled when he chooses to ap-
ply the rule, and also after the 2 units of time required to complete it. This is mandatory

because the network state might evolve due to administrator actions during these 2 units
of time. For example the administrator might have restored the successor vertex. In this
case, the intruder is taken by surprise, and the compromise rule fails.

4 Location

In the original anticipation games [5] a rule can be applied to any Dependency Graph
vertex as long as its set of constraints meets the rule preconditions requirements. How-
ever in many cases such behavior is not suitable. In particular it is not possible to model
network multiple-sites defense analysis without restricting the scope of rules. This im-
possibility is mainly due to the fact that different rules need to be applied to the different
networks. Therefore we distinguish three type of rules: the transitional ones, the local
ones, and the global ones. Transitional rules are used to model inter-site interaction.
Local rules are used for site specific action. In our example the rule used to model
trust abuse attacks needs to be restricted to company’s network, and timeline of events
rules to the virtual location. Finally global rules are meant to be used on any vertex.
Similarly strategies objectives might be restricted to a given set of vertices. In our ex-
ample finding a defense strategy that prevents service compromising should obviously
not apply to honey-net fake services. In order to restrict rules and strategy objectives
to a given set of vertices, we extend anticipation games with locations. A location is a
non-empty set of services that belongs to the same site. More formally a location is a set
of Dependency Graph vertices represented by an integer. Location integer is added to
every Dependency Graph vertex as a label. Locations are specified in rules and strategy
objectives to restrict their scopes.

4.1 Type of Rule

We use the set of an operational rules depicted in figure 2 in the example. We speak of
operational set because it is used to model attack and defense actions. At the opposite
the set of timeline rules depicted in section 5 is used to model timeline events. This
operational set combines the three types of rules to model multiple site defense. The
three type of rules are more formally defined as:

Definition 1 (Global rule) A rule is global if no location restriction is specified.

Definition 2 (Local rule) A rule is local if the same location restriction is specified for
the rule target vertex and the rule target successor vertex.

Definition 3 (Transitional rule) A rule is transitional if a different location restriction
is specified for the rule target vertex and the rule target successor vertex.

4.2 Global Rules

The first three rules are comparable, as they model the same action: an intruder (I)
that exploits a remote service vulnerability to compromise a public service. The rule

1) Γ: : Pre : ♦0DayAvail ∧ V uln ∧ Public ∧ ¬Compr
=⇒ 3, I, 0 day exploit, 20000
Effect : Compr

2) Γ: : Pre : ♦CustomAvail ∧ V uln ∧ Public ∧ ¬Compr
=⇒ 4, I, Custom exploit, 2000
Effect : Compr

3) Γ: : Pre : ♦PubAvail ∧ V uln ∧ Public ∧ ¬Compr
=⇒ 7, I, Public exploit, 200
Effect : Compr

4) Γ3:3 : Pre : ¬Compr ∧ ♦Compr
=⇒ 2, I, Trust Abuse, 200
Effect : Compr

5) Γ1:1 : Pre Monitored ∧ Compr ∧ ¬Detected
−→ 1, A, Attack Detected, 2000
Effect Detected

6) Γ2:2 : Pre ¬V uln ∧ ¬Public
−→ 1, A, Unfirewall, 100
Effect Public

7) Γ3:2 : Pre ♦Detected ∧ V uln ∧ Public
−→ 0, A, Firewall, 100
Effect ¬Public

8) Γ3:1 : Pre ♦PatchAvail ∧ V uln
−→ 6, A, Patch, 500
Effect ¬V uln

Fig. 2. Set of rules used to model a players action

preconditions ensure that the targeted service is vulnerable (V uln has to be true) and
remotely accessible (Public has to be true). The rule effects when the execution is
successful is that the vertex becomes compromised (Compr become true). Since these
rules are meant to attack fake and real services they are global (Γ has no index). They
differ because due to the events timeline, they are available at a different time. The
0Day exploit is released first, then the custom exploit and finally the public exploit.
For instance 0DayAvail is set to true for the virtual vertex by a timeline rule after 48
hours. This constraint is used to prevent the intruder from using it earlier in the game.
Accordingly the Custom exploit cannot be used before it is available because until then,
the CustomAvail is set to false for the virtual vertex. The cost of the three rules also
differs researching a vulnerability is more costly than making a custom exploit which
is more costly than simply using a public exploit. The conjunction of cost and timeline
allows us to model the trade-off between the advantage awarded by an undisclosed
vulnerability exploit and the investment required to find it.

4.3 Local Rules

Rules 4, 5, and 6 are local rules. Their Γ index is of the form n : n where the first
n is the vertex location and the second n is the successor location. Rule 4 says that
if a service is not compromised (¬Compr) and if one of its successor is compromised
(♦Compr) then it can be compromised by the intruder (I) in 2 hours for $200. This rule
must be local because otherwise erroneous actions are possible: as visible in diagram 1
a dependency exists between each company’s service and its corresponding honey-net
service. When the trust abuse rule is not restricted to a local scope these relations can
be used for trust abuse. As a result a compromised honey-net service can be used to
compromise a company’s service by trust abuse, which is clearly an erroneous action.
This is why this rule needs to be restricted to the company’s network context to be
executed only on services where real trust relation exists. Rule 5 is local to the honey-net
network. It states that if a service is monitored (Monitored), compromised (Compr)
and an alert has not been already raised (¬Detected) then an alert is raised. The time
required to trigger the rule also includes the alert propagation time in order to achieve

simultaneous service firewalling execution as explained in Section 5. The Monitored
set is used as detailed in Section 6 to compute monitoring ongoing process cost. The
rule 6 is local to the company’s network because since the firewall rule applies only
to the company’s network this one should only apply to it as well. It states that if a
service is not public (¬Public) and not vulnerable (¬V uln) then it can be made public
(Public).

4.4 Transitional Rules

Rules 7 and 8 are transitional rules. Their Γ index is of the form n : m where n is
the vertex location and m the successor location. They are used for multiple-sites in-
teraction. In the example there are two kinds of such interactions. First the interaction
between the honey-net (location 2) and the company’s network (location 3). This in-
teraction allows the company’s network to defend itself against unknown attacks by
firewalling a company’s service when the corresponding honey-net service experience
an attack. This interaction is described by the rule 7 which states that if an attack is
detected on a remote location (♦Detected) and the vertex is public (Public) and vul-
nerable (Vuln) then it can be firewalled by the administrator. The location restriction
ensures that only company’s network will be affected by the rule. It also ensures that
the successor belongs to the honey-net. The other transitional rule is the patching rule. It
is restricted to the company network location because honey-net services are not meant
to be patched. Its successor has to be the virtual location because this is where the time-
line of events evolves. The timeline information is needed to know when the patch is
available. This rule can only be transitional: if it is global, it can be applied to honey-net
and if it is local it does not work because the timeline of events evolution take place in
the virtual location.

4.5 Strategy with location

Definition 4 (Strategy) A strategy is the tuple S : (name,P,O,R, C,L) where name
is the strategy name, P its owner, O is the strategy objectives set, R is the objectives
priority strict order, C is the set of constraints for the play and L is the set of constraint
for the location.

In our example the following defense strategy objectives are used:

S : (Defense strategy, Admin,MIN(Cost) ∧MAX(OCost), OCost >
Cost,�¬Compr,¬2)

They are used to find the play for the administrator that primarily maximizes in-
truder cost (MIN(OCost)), and secondarily minimizes the administrator cost (MIN(Cost)),
and ensures that no service in every location except the honey-net location (¬2) is ever
compromised (�¬Compr). Adding the opponent cost maximization objective aims at
finding the (weakly) dominant strategy.

Definition 5 (weakly) dominant strategy A dominant strategy is the strategy that
beats every opponent strategy (strict dominance) or at least maximizes the number of
strategies beaten (weak dominance).

The strategy returned for these objectives can be view as the play where the opponent
plays his best game against the targeted player. Model-checking strategies constraints
against Anticipation games with location is still decidable (see proof in appendix ??)

Lemma 1. Model-checking strategies constraints against Anticipation games extended
with locations is decidable.

5 Using a Timeline of Events

Being able to model a timeline of events is mandatory because many network security
scenarios need it. For instance the classical vulnerability cycle [10] follows a timeline
of events: the patch for a given flaw is developed only after the vulnerability is
either reported, or caught in the wild and reverse engineered. Similarly an attack can be
detected by a misuse IDS only after its signature has been added to the database.
Such a timeline of events can be modeled in anticipation games by using a combina-
tion of rules, states and dependencies. The key idea is to add a virtual vertex in the
dependency graph that is used to model the timeline of events evolution thanks to a set
of states. An additional set of dependencies from real services to this virtual vertex is
added in order to be able to use timeline of events state in rule preconditions and effects
(as in the Dependency Graph depicted in figure 1). Locations are used to ensure that the
virtual vertex is the only one used in timeline of events evolution rules. Otherwise, every
timeline rule will apply successively to every vertex leading to an erroneous strategy.

5.1 Discreet Timeline of Events Illustration

1) Γ1:1 : Pre ¬0DayAvail
−→ 48, I, O day exploit Available, 0
Effect 0dayAvail

2) Γ1:1 : Pre ¬CustomAvail ∧ 0DayAvail
−→ 288, I, Custom exploit available, 0
Effect CustomAvail

3) Γ1:1 : Pre ¬PubAvail ∧ CustomAvail
−→ 48, I, Public exploit available, 0
Effect Pub

4) Γ1:1 : Pre ¬PatchAvail ∧ CustomAvail
−→ 48, I, Patch available, 0
Effect 0dayAvail

Fig. 3. Vulnerability timeline of events (left) and the set of rules used to model timeline evolution
(right)

The multiple-site defense example uses a timeline of events inspired by the stan-
dard vulnerability cycle represented in diagram 3 which is modeled by the four sets

and four rules presented in figure 3. Intuitively in this model states are used to model
which points have been reached so far and rules are used to advance in the timeline.
One distinct state is required for each event because states are Boolean values. Accord-
ingly each state used for the timeline of events is set to false in initial conditions. The
rule execution time represents the time interval between two consecutive events. For
example the custom exploit is available 14 days after the vulnerability is discovered
(global time), and 12 days after the zero day exploit (relative time). The availability of
the custom exploit is modeled by the rule 2. This rule states that if the Custom exploit is
not available (¬CustomAvail) and the zero day is (0DayAvail) then after 288 units
of time (12 days) the attacker will have access to custom exploit.

Using a relative time allows us to model branching. For example if the timeline pre-
sented above is not sufficient, because one wants to model multiple ways to disclose the
vulnerability and make the custom exploit available, then it is possible to use multiple
rules that have the same effect but different preconditions, time, and cost. For example
to model that the disclosure is the result of an intrusion caught by the honey-net and
reverse engineered the following rule can be used with the proper set of dependencies:

Γ1:2 : Pre Detected
288, A, Reverse Engineering , 500

−→ EffectCustomAvail

This transitional rule states that if a honey-net service is compromised then in 12
day the administrator staff is able to reverse engineer it for a cost of $500. Branching
was not introduced in the example for the purpose of clarity.

Another type of timeline of events occurs when multiple actions take place at the
same time. In the multiple-site defense this occurs when the attack on the honey-net is
caught: every site has to use the firewall simultaneously. Otherwise the time required
to firewall x sites is equal to x × t where t is the time required to firewall one site. To
have a constant time regardless of the number of sites a state is used as a validation
point. In the example this is the state Detected. The time required to firewall the site is
modeled by the rule 5 of figure 2. Once this rule is executed the administrator is able to
use simultaneously as many firewall rules as she wants. This is achieved by setting the
firewall rule time to 0.

6 Linking Cost and Time

In the original anticipation games model with strategies [4], costs are bounded to rule
executions: each time a player executes a rule, his cost increases. This is a natural way to
model that player action has a cost. However this approach has an important limitation:
it does not allow to model costs that are time dependent. Such cost exists for on-going
processes which are prominent in network security. Two well known examples of such
on-going processes are service DOSing (Denial Of Service)[12], and intrusion detection
monitoring. The longer they last, the higher the cost is. To model this type of cost,
anticipation games need to be extended with the notion of penalty. Intuitively a penalty
is a cost that is added for every unit of time a constraint holds on a given dependency
graph vertex. More formally a penalty is defined as follows:

Definition 6 (Penalty) A penalty is the tuple P : (P,N,C,F) where P is the player
targeted by the penalty, N ∈ N∗ is the Dependency Graph vertex where the constraint
has to hold, C is the constraint that needs to be satisfied to trigger the penalty, and
F(x) is the function F(x) : N∗ → N that takes as parameter the integer x which is
the number of units of time elapsed since the penalty has been triggered and returns
the corresponding cost for this unit of time. The total cost generated by the penalty is
therefore the sum of all the costs returned by the penalty function.

Here is how penalty can be used to model a DOS cost. Assume that the Depen-
dency Graph vertex 5 is a HTTP service used to sell company products. Every hour, the
amount of income generated by this service is $1000. Therefore for every unit of time
the service is unavailable (¬ Avail) because of the DOS, the company loses $1000 of
income. This can be modeled by adding the following penalty to the game:

P : (Administrator, 5,¬Avail, f(x)→ 1000)

which states that for each unit of time where the vertex 5 (www service) is not
available the administrator cost is increased by 1000. The use of such penalty allows the
incident strategy cost minimization objective to take into account the relation between
the loss of income and the time elapsed. In the running example we use the same kind
of penalty to compute the cost associated with the action of firewalling a public service.
The use of a function based on the number of units of time elapsed allows to use various
cost models such as an exponential cost or a diminishing cost model as presented above.

Another important time/cost relation to consider is when the cost diminishes over
the time [6]. This reduction occurs when the same action is performed multiple times,
or when an on-going process is run for an extended period of time. Performing the same
action again and again is a common practice in network security. For instance the action
of patching similar services or the action of reusing the same exploit. In this context the
cost of the first use is more expensive than later ones. In the patching case, the first
use is more expensive because it requires to download and test the patch. In the exploit
case, the first use requires the attacker to develop and test the code whereas subsequent
exploitations only require it to be launched. This type of cost reduction is modeled in
anticipation games by using two rules with different costs and a timeline of events to
ensure that the cheaper rule is only used after the most expensive one has been used. To
model a diminishing supervision cost with a lower bound the following kind of penalty
can be used:

P : (Administrator, 5,Monitored, f(x)→ int(1000/x) + y)

Where x is the number of time units elapsed, y ∈ N is the lower bound cost and
int(x) the standard function that returns a rounded integer from a float. We use two
kinds of penalties in the example. The first kind is induced by monitoring honey-net
service, we assume that monitoring a honey-net service costs $10 by hour. Accordingly
we add three penalties to the analysis, one for each honey-net service. For example the
following penalty is added for the vertex 2:

P : (Administrator, 2,Monitored, f(x)→ 10)

6.1 Decidability and Complexity of the extended model

Even if adding penalty allows to model a brand new range of cost, from the decidability
perspective, extending the framework with penalty does not change the decidability (see
proof in appendix ??)

Lemma 2. Model-checking strategies constraints against Anticipation games extended
with penalty is decidable.

From Lemma 1 and Lemma 2 it follows:

Theorem 1 Model-checking strategies constraints against Anticipation games extended
with penalties and locations is decidable

Which is the central theoretical result. Additionally we prove that locations and
penalties does not change the anticipation games complexity bound (see proof in ap-
pendix ??) which is a key result for the practicality of the approach:

Theorem 2 Model-checking strategies constraints over anticipation games extended
with penalties and locations remain EXPTIME-Complete

7 Multiple sites Strategies Illustration

We use the Dependency Graph, Set of states, and rules sets presented above to illustrate
how multiples-sites defense analysis can be achieved in anticipation games thanks to
strategies. To do so we consider the two following cases. In the first case the company’s
network does not rely on honey-net information to detect zero day attacks and there-
fore the honey-net is removed from the simulation. In the second case, the interaction
between the honey-net and the company’s network occurs. This is the exact configura-
tion described earlier during the paper. For both cases, we run the analysis to find the
administrator dominant strategy objective as introduced in 4:

S : (Defense strategy, Admin,MIN(Cost) ∧MAX(OCost), OCost >
Cost,�¬Compr,¬2)

When the honey-net is not present the only type of attack that can be countered is
the public exploit attack one. This is done by patching the vulnerable service as soon as
the patch is available. This defense strategy is presented in figure 4. In this figure, rule
names have been abbreviated. Column abbreviations are Ts for time, Pl for player,
Ac action, Ta target vertex, S successor vertex, Pa payoff and C for cost. A denote the
administrator player and I for the intruder.

The row one of the table on the left is read as follows: at time 0 the Intruder (I)
selects (sel) the rule 0day avail on vertex 2, there is no successor involved (⊥).
The intruder reward and cost are not yet intialized (-). Accordingly the line 2 states
that at time 48 the intruder (I) execute (exec) the rule 0day avail on vertex 2, his
current cost is 0 and his current reward is 0. And so on.

Ts Pl Ac Rule Ta S Pa C
0 I sel 0day avail 2 ⊥ - -
48 I exec 0day avail 2 ⊥ 0 0
48 I sel Custom avail 2 ⊥ - -

336 I exec Custom avail 2 ⊥ 0 0
337 I sel Public avail 2 ⊥ - -
337 A sel Patch avail 2 ⊥ - -
385 I exec Public avail 2 ⊥ 0 0
385 I sel Compr public 7 2 - -
385 A exec Patch avail 2 ⊥ 0 2700
385 A sel Patch 7 2 - -
391 A exec Patch 7 2 1 3500
392 I fail Compr public 7 2 0 200

Ts Pl Ac Rule Ta S Pa C
0 I sel 0day avail 2 ⊥ - -

48 I exec 0day avail 2 ⊥ 0 0
48 I sel Compr 0 day 4 2 - -
51 I exec Compr 0 day 4 2 1 20000
52 I sel Compr 0 day 7 2 - -
52 A sel Attack catched 4 ⊥ - -
52 A exec Attack catched 4 ⊥ 0 2000
52 A sel Firewall 7 4 - -
52 A exec Firewall 7 4 0 4800
54 I fail Compr 0 day 7 2 1 40000
54 I sel Custom avail 2 ⊥ - -
342 I exec Custom avail 2 ⊥ 1 40000
343 I sel Public avail 2 ⊥ - -
343 A sel Patch avail 2 ⊥ - -
390 I exec Public avail 2 ⊥ 1 40000
391 A exec Patch avail 2 ⊥ 0 4000
391 A sel Patch 7 2 - -
397 A exec Patch 7 2 1 4500
397 A sel UnFirewall 7 ⊥ - -
398 A exec UnFirewall 7 ⊥ 1 4803

Fig. 4. Defense strategy without Honey-net (left) Defense strategy with honey-net (right)

The defense efficiency can be improved by taking preventive action when the vul-
nerability is disclosed (See appendix ??). When the honey-net is used, the defense strat-
egy can mitigate zero day attacks as long as the honey-net is targeted first by the in-
truder, as detailed in figure 4 (on the right). Even with the introduction of an honey-net,
the intruder has a strictly dominant strategy that involves attacking company’s network
services first (see appendix ??). This is consistent with real world honey-net purpose
that aims at mitigate 0 day attack by catching unknown threats without the guaranty
catch them all.

8 Evaluation

To evaluate the effectiveness of anticipation games to analyze complex multiple-sites
scenarios, we have implemented the full framework in a tool written in C for perfor-
mance reasons. Evaluations were conducted on a Linux core 2 desktop using the tool
built-in benchmark option. The game used in the evaluation is the one presented in this
paper with more company networks and more services per network. Benchmark results
are summarized in the table below. Time is in second. The prototype includes many
optimizations to delay the execution time blowup. It follows that it is possible to find
the optimal strategy for 50 services divided into 4 sites and 1 honey-net. When more
services are added, the execution time blowup as predicted by the theoretical complex-
ity bound. That is why for larger network, we have designed an heuristic that is able to
find an approximate strategy by using a dynamic rules ordering algorithm. The strategy

returned by this algorithm is sound, it satisfies the strategy constraint, but there is no
guarantee that it is the best one. However on small examples, it appears to be so. This
evaluation shows that anticipation games is suitable to analyze complex scenarios even
on very large networks.

Analysis Num of service Num of network Analysis time in sec
Exact 30 2 0.03
Exact 40 3 0.1
Exact 50 4 1020
Appro 2000 1 0.48
Appro 5000 4 0.82
Appro 10000 3 2.26

9 Conclusion

We have introduced an extension for anticipation games that allows to analyze network
cooperation and cost over the time. We have also proved that this extension does not
change anticipation games complexity. Finally we have shown with our prototype that
anticipation games with this extension can be used in practice to model complex sce-
nario even when each network have thousand services. As a future direction of work,
we will focus on dependency graph static analysis to improve the scalability of the exact
solution.

Acknowledgements

Thanks to Richard Lippmann for his advices on multi-sites defense and Marc Dacier
for the discussion about the notion of cost diminishing.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672–713, 2002.

2. M. R. B. Game Theory: Analysis of Conflict. Harvard University Press, 1997.
3. E. Bursztein. Netqi http://www.netqi.org.
4. E. Bursztein. Network administrator and intruder strategies. Technical Report LSV-08-02,

LSV, ENS Cachan, Jan 2008.
5. E. Bursztein and J. Goubault-Larrecq. A logical framework for evaluating network resilience

against faults and attacks. In 12th annual Asian Computing Science Conference (ASIAN),
pages 212–227. Springer-Verlag, Dec. 2007.

6. M. Dacier, Y. Deswarte, and M. Kaaniche. Models and tools for quantitative assessment of
operational security. In 12th International Information Security Conference, pages 177–186,
May 1996.

7. L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga. The element of
surprise in timed games. In 14th International Conference on Concurrency Theory, volume
2761 of LNCS, pages 144–158. Springer-Verlag, 2003.

8. T. Henzinger and V. Prabhu. Timed alternating-time temporal logic. In Formats 06, volume
4202, pages 1–18. Springer-Verlag, 2006.

9. S. Jha, O. Sheyner, and J. Wing. Two formal analysis of attack graphs. In CSFW ’02:
Proceedings of the 15th IEEE Computer Security Foundations Workshop (CSFW’02), pages
49–63, Washington, DC, USA, 2002. IEEE Computer Society.

10. R. Lippmann, S. Webster, and D. Stetson. The effect of identifying vulnerabilities and patch-
ing software on the utility of network intrusion detection. In RAID ’02: Proceedings of
the 5th International Workshop on Recent Advances in Intrusion Detection, pages 307–326.
Springer-Verlag, Oct 2002.

11. K.-w. Lye and J. M. Wing. Game strategies in network security. Int. J. Inf. Sec., 4(1-2):71–86,
2005.

12. A. Mahimkar and V. Shmatikov. Game-based analysis of denial-of-service prevention pro-
tocols. In 18th IEEE Computer Security Foundations Workshop (CSFW), Aix-en-Provence,
France, June 2005, pp. 287-301. IEEE Computer Society, 2005., pages 287–301. IEEE Com-
puter Society, Jun 2005.

13. S. Noel and S. Jajodia. Managing attack graph complexity through visual hierarchical ag-
gregation. In VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, pages 109–118, New York, NY, USA, 2004. ACM
Press.

14. S. Noel, S. Jajodia, B. O’Berry, and M. Jacobs. Efficient minimum-cost network hardening
via exploit dependency graphs. In 19th Annual Computer Security Applications Conference,
pages 86–95, Dec. 2003.

15. C. Ramakrishan and R. Sekar. Model-based analysis of configuration vulnerabilities. In
Journal of Computer Security, volume 1, pages 198–209, 2002.

16. E. Rasmusen. Games and Information. Blackwell publishing, 2007.
17. R. W. Ritchey and P. Ammann. Using model checking to analyze network vulnerabilities. In

SP ’00: Proceedings of the 2000 IEEE Symposium on Security and Privacy, pages 156–165,
Washington, DC, USA, 2000. IEEE Computer Society.

18. H. R. Shahriari and R. Jalili. Modeling and analyzing network vulnerabilities via a logic-
based approach.

19. O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated generation and
analysis of attack graphs. In SP ’02: Proceedings of the 2002 IEEE Symposium on Security
and Privacy, pages 273 – 284, Washington, DC, USA, 2002. IEEE Computer Society.

20. L. P. Swiler. A graph-based network-vulnerability analysis system. In New Security
Paradigms Workshop, pages 71 – 79. ACM Press, 1998.

21. D. Zerkle and K. Levitt. Netkuang: a multi-host configuration vulnerability checker. In
SSYM’96: Proceedings of the 6th conference on USENIX Security Symposium, Focusing on
Applications of Cryptography, pages 195–201. Usenix, 1996.

