Know What You Trust
Analyzing and Designing Trust Policies with Scoll*

Fred Spiessens, Jerry den Hartog, and Sandro Etalle

Eindhoven Institute for the Protection of Systems and Information
University of Technology Eindhoven
Eindhoven, The Netherlands.
a.o.d.spiessens@tue.nl j.d.hartog@tue.nl s.etalle@tue.nl

Abstract. In Decentralized Trust Management (DTM) authorization
decisions are made by multiple principals who can also delegate deci-
sions to each other. Therefore, a policy change of one principal will often
affect who gets authorized by another principal. In such a system of in-
fluenceable authorization a number of principals may want to coordinate
their policies to achieve long time guarantees on a set of safety goals.
The problem we tackle in this paper is to find minimal restrictions to
the policies of a set of principals that achieve their safety goals. This will
enable building useful DTM systems that are safe by design, simply by
relying on the policy restrictions of the collaborating principals. To this
end we will model DTM safety problems in Scoll [1], an approach that
proved useful to model confinement in object capability systems [2].

1 Introduction

Structural (role based) decentralized trust management (DTM) systems address
the problem of access and delegation control in a distributed setting where au-
thorization emanates from multiple sources. The rights of the agents/users in/of
a system are not determined by a single authority but is the effect of policies set
by different parties.

Principals cannot only define roles and authorize other principals as members
of these roles. They can also delegate the authorization of their roles to other
principals. Several powerful role based delegation models and trust management
languages have been proposed for this purpose in the literature, each with their
own balance between simplicity and expressive power. In this paper we will use
RTy, the simplest in the RT [3,4] family of trust management languages, but
our approach can easily be applied to more expressive members of that family.

The Running Example The following simple example will be used and elabo-
rated throughout this paper. The chair of the Open Conference defines a reviewer
role and a submitter role for the conference. The chair designates Alice as a first

* This work has been supported in part by European Commission FP7 TAS3 project,
nr. 216287 and the BSIK project Poseidon.

reviewer. He then delegates all authorization responsibilities for both conference
roles to the members of the reviewer role. This means that the policy of ev-
ery conference reviewer can now influence the conference’s role assignment. The
safety concern the conference chair wants to be guaranteed is a simple mutual
exclusion between the submitter and the reviewer role: no submitter should ever
become also a reviewer.

The Problem If the reviewers cooperate with each other to manage both
conference roles, it is relatively easy for them to detect a breach of the mutual
exclusion requirement: they would only have to check the members of both roles
and raise alarm when both roles have a common member. However, it is not
trivial for the reviewers to design their policies in such a way that the safety
breach becomes guaranteed impossible.

For instance, it does not suffice for the reviewers to simply refrain from
authorizing anyone directly to be a member of both roles. They must also watch
their delegation statements, as these may have indirect effects that may not be
obvious to predict. Disallowing the reviewers to assign anybody to the submitter
role could be sufficient to guarantee the safety concern, but that solution would
be too restrictive for the purpose of the conference.

The problem we want to solve concerning the running example is: in what
way(s) can we restrict the policies of the reviewers no more than necessary to
make sure that the conference roles are mutually exclusive regardless of the
policies of the non-reviewers, while still allowing the submitter role to be filled.

The general form of the problem is as follows. In a DTM system in which ev-
ery principal has a policy, and policies are finite sets of monotonic authorizations
and delegations, let the following be given:

— let Py be the set of principals of which we know the exact policies

— let P, be the set of principals of which we do not know the policies or have
no reliable way to restrict them, with (P, N P, = 0),

— let P, be the set of cooperating principals: the ones of which we can restrict
the policies, with (P.N P, = 0)

— a number of safety concerns: what authorizations should not be allowed

— a number of availability concerns: what authorizations should be allowed

The problem is to find all restrictions R; for the principals in P, such that:

1. As long as the principals in P. do not include any of the elements in R;
into their policy, it is impossible for the principals of P, to break the safety
requirements.

2. As long as the principals in P, do not restrict their policies any further than
described above, it is possible for the principals of P, to reach the availability
requirements .

We call R; a solution to our problem. In practice, we will only calculate the mi-
nimal sets R; for which both properties hold, and call them “optimal” solutions.

Property 1 indicates that every solution represents a set of sufficient restric-
tions for the cooperating principals that will guarantee safety, regardless of how
the non-cooperative principals extend their policies. Property 2 merely indicates
that no solution restricts the policies so strong that, even with maximally per-
missive policies of the principals in P,, the reachability properties would not be
guaranteed. Solutions are “optimal” if the restrictions are not only sufficient but
also necessary for safety.

The approach we apply here will conservatively (over-)approximate all poli-
cies of the P, principals to calculate upper bounds to the policies of the P,
principals. Our safety results are valid, even if the policies of the other prin-
cipals are also conservatively approximated. However, this is not the case for
availability requirements. That would require us to approximate the unknown
policies from below and calculate lower bounds for the policies of the cooperating
principals, which we regard as interesting future work.

A solvable problem will typically have multiple solutions, because a restric-
tion in one principal’s policy may render another restriction unnecessary.

The Proposed Solution We propose to express and analyze safety problems
in DTM systems using Scoll (Safe Collaboration Language), a formal model
designed for general safety analysis.

First, we show that, thanks to its Datal.og based structure and its explicit
support for behavior-based effect analysis, Scoll provides a natural way to model
such problems.

Secondly, we demonstrate how Scollar (Scoll’s analysis tool) can calculate
the minimal restrictions in the behavior of a set of entities that are necessary
to avoid a given set of unwanted effects, without leading to overly restrictive
solutions that prevent another given set of wanted effects. Our entities will be the
principals and the role names of a DTM system. Our behaviors will correspond
to the RTy policies of the principals.

Scoll and Scollar are explained in dept in “Patterns of Safe Collaboration” [1].

The remainder of this paper is organized as follows. We discuss related work
in section 2. In Section 3 we give a quick account on the RT(language and
express the running example in it. We then give an overview of Scoll in Section 4
while translating our example into Scoll. In Section 5 we calculate and interpret
the solutions to the running example. We conclude in section 6.

2 Related Work

In decentralized trust management [3-6] decisions are made based on statements
made by multiple principals. The decision who can be trusted, e.g. to access a
resource, is not made by a single principal but takes into account information
from multiple principals, i.e. the decision is in part delegated to these other
principals.

Securely sharing statements made by principals can be achieved by certifi-
cates frameworks such as X.509 which provides certified but uninterpreted state-

ments and systems such as SPKI/SDSI [7] which link statements to authoriza-
tion. The PolicyMaker [5] and KeyNote [6] systems separate trust and security
concerns, allowing the specification of trust relationships in the form of assertions
by the different principals.

In the RT [3,4] family of trust management languages principals express
their trust policies in the form of relationships between the principal’s roles and
those of other principals. The use of simple rules and a sequence of increasingly
more expressive and complex optional language features allows us to express
simple policies easily while also supporting more complex trust relations.

Delegation is very powerful and typically coarse-grained in trust manage-
ment systems such as RT. Usually one cannot be certain that whoever you are
delegating to will know, understand and adhere to your expectations about how
they should use these delegated powers. Therefore you cannot be sure that the
delegation works in the way you intended. RT in itself does not provide the
means to express these intentions, nor to reason about what the policies should
be, given your intentions of bounding the eventual authorization.

This problem does not go away if we treat delegation as a permission in
itself and allow policies to restrict delegation rights as proposed by [8,9]. Even if
such policies are more refined, the original problem remains: what should these
refined policies be, given your intentions to bound the eventual authorization.
Moreover, approaches using delegation-as-permission typically require a more
elaborate and complex enforcement mechanism.

In [10] a different approach is followed; instead of restricting the delegation,
a number of constraints on its consequences are stated explicitly. Cooperative,
trusted parties are then expected to help monitor these constraints. The ap-
proach then calculates a minimal subset of roles whose policy changes must be
monitored to guarantee the early detection of constraint violations. Control over
the (consequences of the) delegation should then be kept within this group of
trusted parties.

In contrast to this monitoring approach, we propose to define a set of coop-
erating principals and calculate alternative minimal sets of (RT() policy rules
that should be disallowed for these principals, to avoid violating the safety con-
straints.

Certain security analysis problems about safety and reachability were solved
in [11]. That work also focusses on calculating bounds for the algorithmical
complexity of such problems.

In this paper we restrict ourselves to safety problems. We only take availabil-
ity constraints into account to make sure that our proposed restrictions do not
make the required availability impossible. The Scoll approach is meant for safety
analysis and thus calculates minimal sets of policy restrictions. Our approach
can therefor not provide real insights about availability, even though that would
be very useful in the context of DTM. It is interesting future work to extend
Scollar to also calculate minimal DTM policies for this purpose.

3 Policies and Safety Concerns in RT

In this section we first introduce the basics of the trust management language
RTo, see e.g. [12] for details. Next we introduce the notion of incomplete RT
policies and show how our running example can be expressed. Finally we intro-
duce safety concerns for such policies.

In RT(principals are uniquely identified individuals or processes, denoted
by names starting with an uppercase. A principal can define roles, which are
denoted by the principal’s name, followed by the role name, separated by a dot.
Role names start with a lowercase. For instance “A.rolel” denotes the role named
“rolel” as defined by principal A.

A credential is an expression of one of the four types listed and clarified in
table 1. A policy system is a set of credentials. The policy Ap of a (group of)
principal(s) A is the subset of S defining roles of A.

Table 1. The 4 types of RTy policy expressions.

example type meaning

Ar— B membership|principal A adds principal B to role A.r

Ar — Burl simple A considers every member of B.rl to
inclusion be a member of A.r

Ar «— Arlr2 linking A considers everybody in the r2 role of

inclusion anybody in A.rl to be a member of A.r
A.r — B.rl N C.r2|intersection |A considers every member of B.rl1 who is also
a member of C.r2 to be a member of A.r

RT(, Semantics: Given a system of RT(policies, the set of principals that are
defined by the system to be members of the role A.r is denoted as [A.r] (see [12]
for a formal definition). We will use this notation when expressing safety require-
ments about an RT(system.

When checking safety requirements we will need to distinguish fixed or con-
trollable parts of the policy and parts of which we cannot be sure. To this end
we add a classification to the principals. We refer to the resulting system as
an incomplete RT(system to emphasise that to address safety concerns we will
need to consider extensions of the system.

Definition 1 (Incomplete RT; system). An Incomplete RT(system is a
RTy policy system together with a labeling which assigns to each participant one
of the following three labels:

— label k for the principals whose policies are static and completely known.

— label ¢ for the principals whose policy changes we can control and bound if
necessary.

— label u for the principals whose policies are not completely known or can
change beyond our control

We use P to denote all principals with label . An extension of the system is
obtained by adding credentials for P. or P, (but not Py).

Table 2 shows our running example as an incomplete RT(system with three
principals: Conference, Alice, and Bob.

Table 2. An incomplete RT(policy system.

Principal |[label|rule nr.
Conference| k |Conference.reviewer < Alice

Conference.reviewer < Conference.reviewer.reviewer
Conference.submitter < Conference.reviewer. submitter
Alice ¢ |Alice.submitter < Bob

Alice. reviewer < Alice. reviewer. reviewer

QU W N =

Bob u

Conference’s label indicates that her policy is fixed and stable as described
in the first three rules of table 2. In rule 1 Conference adds Alice to Confer-
ence.reviewer. In rules 2 and 3 Conference delegates the authorization decisions
about both her roles to members of her reviewer role.

Alice’s label indicates that her policy changes can be controlled. In rule 4
she adds Bob to Alice.submitter. Rule 5 states that Alice allows her reviewers to
make authorization decision about Alice.reviewer, just as Conference did in rule
2. Bob will become a member of Conference.submitter via the combined effects
of rules 1, 3 and 4.

Bob’s label indicates that we have no definite knowledge about Bob’s policy
and/or we cannot restrict his policy changes.

Safety and availability concerns: When defining roles we have will have
certain restrictions on who is allowed to be in what role. These restrictions can
be expressed by constraints on the roles, see e.g. [10]. Here we consider two types
of constraints. The first are Safety constraints which are expressions of the form
[Alriln...n[ALrlu . UAT PPN N [AP] C 0.

The safety requirement in our running example is: mutual exclusion between
Conference’s reviewer and submitter roles. That can be expressed as:
[Conference.reviewer] N [Conference.submitter] C

The second type of constraints are availability requirements which are ex-
pressions of the form [A{.r{]N...N[AL.rl]JU.. . U[AT PPN .O[AP 7] D 0.

That at least one principal should be in Conference.submitter can be ex-
pressed as: [Conference.submitter] O ().

Definition 2. Given an incomplete policy system P, a set of safety and a set of
availability constraints we say that a set of credentials R for roles of principals
in P. (called a restriction) is a solution if

— any extension of P not containing credentials in R satisfies the safety con-
straints.

— there exists an extension of P not containing credentials in R which satisfies
all the availability constraints.

We say a solution is optimal if any strict subset of R is not a solution.

In the next section we will see how we specify incomplete RTj systems and
safety and availability concerns in Scoll. After that we will show how to find
optimal solutions.

4 Modeling DTM safety problems in Scoll

In this section we will give an intuition about Scoll’s syntax and semantics while
we show how the running example can be modeled.

Scoll is based on DataLog [13] and was designed to automate reasoning about
the potential effects that can be caused by the (inter-)actions of entities in a
system, and to calculate what limitations (to the system and/or the entities) are
necessary and sufficient to avoid all unwanted effects (safety) without preventing
any wanted effects (availability). For a detailed account on Scoll we refer to [1].

Scoll programs involve a static and finite set of subjects. Every subject con-
servatively models a (possibly dynamic and infinite) set of actual entities. To
model our running example we have chosen to represent all the potential re-
viewers with a single subject Alice, and all potential submitters with a single
subject Bob. Aggregating entities this way is a valid approach when analyzing
safety, but it may represent an over approximation. This means that the policy
restrictions we will calculate are guaranteed to be sufficient but may be refined
in situations where not all reviewers are supposed to have the same policy. While
Scoll provides support for iterative and selective refinement, we will not use this
feature here as we don’t need it to clarify our contributions.

Core Syntax Features: In Scoll all predicate labels and subject constants
start with a lowercase letter. Variables range over all subjects, and start with
a uppercase letter. Predicate labels can contain dot characters to increase read-
ability. Behavior types are denoted in all capitals.

Figure 1 shows how we expressed the running example in Scoll. We can
distinguish six parts in the Scoll program, indicated by keywords in bold. Each
part will now be discussed in detail.

4.1 Part 1: declare

The first part declares the labels and arities of the predicates over the subjects in
the program (see Figure 1). Scoll differentiates between three kinds of predicates:

state predicates modeling the security state,
behavior predicates modeling the intentions subjects can have, and

declare

state: canActAs/3 shareMember/3
behavior: member/3 incl/4 link/4 intersect/6
knowledge:

system

/* Simple Member */
A:member(R1,B) => canActAs(B,A,R1);
/* Simple Inclusion */
A:incl(R1,B,R2) canActAs(C,B,R2) => canActAs(C,A,R1);
/* Linking Inclusion */
A:link(R,R1,R2) canActAs(B,A,R1) canActAs(C,B,R2) => canActAs(C,A,R);
/* Intersection */
Acintersect(R,B1,R1,B2,R2) canActAs(C,B1,R1) canActAs(C,B2,R2)
=> canActAs(C,AR);
/* Mutex */
canActAs(A,B,R1) canActAs(A,B,R2) => shareMember(B,R1,R2);
behavior
NONE {}
UNKNOWN { => member(_,.) incl(-,-,-) link(-,-,-) intersect(-,_,-,_,-); }
CONFERENCE { isAlice(X) isReviewerRole(R)=> member(X,R);
isReviewerRole(R) => link(R1,R,R1);}
subject
? alice: NONE
bob: UNKNOWN
conference: CONFERENCE
reviewer: NONE
submitter: NONE
config
conference:isAlice(alice) conference:isReviewerRole(reviewer)
goal
I shareMember(conference,reviewer,submitter)
canActAs(bob,conference,submitter)
canActAs(alice,conference,reviewer)

Fig. 1. Running example : an RTy based trust problem in Scoll

knowledge predicates modeling the internal state of subjects: what a subject
can “know” or “learn” about the system and about the other subjects.

The state predicates for our running example are clarified in table 3. They
will be used in the system part (Section 4.2) and in the goal part (Section 4.6).

Table 3. state predicates

predicate example meaning
canActAs/3 |canActAs(a,b,rl) Aec[Burl]
shareMember/3|shareMember(a,r1,r2)[[Al [N [A2] #0

The canActAs predicate expresses role membership and is scenario indepen-
dent. For each safety or availability constraint we add a predicate capturing
violation of the constraint, such as shareMember/3 for the mutual exclusion con-
straint. If the constraint concerns a single role as in [Conference.submitter] O ()
we can omit the extra predicate as we can already express role membership.

Behavior predicates express the behavior of the subject in the first argument
of the predicate. Similarly, knowledge predicates express knowledge available to
the subject in the first argument. To emphasize this, behavior and knowledge
predicates will be denoted with their first argument in front of the predicate
label, separated by a colon. For example we use conference:member(reviewer,alice)
rather than member(conference, reviewer, alice) to make it clear that this is a
predicate on conference’s behavior.

The behavior predicates of Figure 1 are clarified in table 4. They correspond
exactly to the RT(policy expressions of section 3. Instead of representing cre-
dentials (e.g. as in [12]), here they represent the authorization intentions of an
issuer of credentials: his RT(policy.

Table 4. behavior predicates

predicate|example meaning in RTy
member/3 |a:zmember(r,b) |A.r— B

incl/4 azincl(r,b,rl) |Ar— B.rl

link/4 a:link(r,r1,r2) [Ar— Arl.a2
int/6 a:int(r,b,rl,c,r2)|A.r— B.rl N C.r2

Notice that we did not provide a behavior predicate to express the actual use
of a role by a subject. Scoll is very suitable for modeling usage behavior as well,
but we will not explore that in this paper.

Knowledge predicates model what entities can learn from their own successful
behavior. This knowledge can be used in behavior rules (Section 4.3). We will

only use static, subject specific knowledge that can be declared in the config
part (Section 4.5).

4.2 Part 2: system

This part contains the system rules: Datal.og rules that conservatively and
monotonically model all the mechanisms by which subject behavior can result
in changes to the security state as represented by the state predicates.

All Scoll rules use a notation that is closer to logics than to logic program-
ming: the conditions are to the left and the conclusions to the right of a logical
implication sign “=>". To encourage correct conservative approximations, Scoll
allows only variables in system rules. Knowledge of identity will be modeled
explicitly with static, subject specific predicates in Section 4.5.

System rules typically include behavior predicates in their conditions to ex-
press that a subject’s cooperation is a necessary condition to the state change.
We refer to [2] for an explanation on how this approach can model discretionary
access control. In our example the four types of RT credentials each appear as
a behavior condition in a system rule.

The first four system rules in Figure 1 should now be self explanatory. For
every behavior predicate there is a rule that states the conditions in which a
subject’s behavior affects the security state. These four rules have similar effects:
canActAs() facts are added to the security state.

To these scenario independent rules we add a rule capturing the meaning of
each of the predicates used for the constraints: the last system rule derives a
state predicate that will be used later to detect a breach of mutual exclusion:
canActAs(A,B,R1) canActAs(A,B,R2) => shareMember(B,R1,R2);

Remark: In the actual Scoll model of this problem we added some type restric-
tions to the conditions in the system rules, using unary state predicates that are
not shown here. Their only effect is in speeding up the calculation and avoiding
variable bindings that do not make sense. We did not show them here, to avoid
cluttering up the example.

4.3 Part 3: behavior

Behavior rules are DataLog rules that express in what conditions a subject is
ready to show what behavior. The first argument is dropped in every predicate
of a behavior rule: it implicitly refers to the subject who’s behavior is described.

Two standard behaviors are NONE and UNKNOWN which respectively model
principals which will issue no credentials at all or freely issue any of the pos-
sible credentials. The latter is how we model unknown entities conservatively:
as subjects that always show every possible behavior towards all other subjects.
Notice the use of anonymous variables indicated with underbar “_”.

In addition we have scenario specific behaviors. For each principal with a
k label we define a corresponding behavior; i.e. a behavior which issues the

credentials in their (fixed) policy. The CONFERENCE behavior type has two
rules:

isAlice(X) isReviewerRole(R) => member(X,R); This is the way in which rule 1
of table 2 is expressed in Scoll. Basically we are saying that someone with
this behavior makes Alice a member of their reviewer role. However, as no
constants are allowed in Scoll behaviors, we introduce local knowledge pre-
dicates isAlice/2 and isReviewerRole/2 describing these values and initialize
them in them in the config part (Section 4.5).

isReviewerRole(R) => link(R1,R,R1); Here we have used a shorthand. Rather
than defining two rules, one for reviewer and one for submitter roles we link
any role R1 thus capturing both rules 2 and 3 of table 2 in a single Scoll
rule.

4.4 Part 4: subject

Every subject is listed in this part, and assigned a behavior type from the previ-
ous part. The behavior type should reflect the trust we have in the entity to not
engage in any behavior other than specified in the rules of the behavior type.

7 alice:NONE The question mark before alice indicates that we want to find out
how we far we can safely extend alice’s behavior, starting from the NONE
behavior type. All principals with a ¢ label should be marked like this.

bob:UNKNOWN To safely approximate bob’s behavior we assume the worst.

conference:CONFERENCE Subject conference has behavior CONFERENCE
reviewer:NONE Subject reviewer is a role name and has no behavior
submitter:NONE Subject submitter is a role name and has no behavior

4.5 Part 5: config

This part defines the initial configuration: a list of all state facts in the initial
security state and all knowledge facts in the initial subject states. In Figure 1
this part initializes the private knowledge of subject conference.

4.6 Part 6: goal

The final part of a Scoll program is the “goal” part. It lists the facts that should
not become true (safety requirements) preceded by an exclamation mark, and the
facts that should become true (availability requirements) without an exclamation
mark.

In the example we want one fact to not become true:
shareMember(conference, reviewer, submitter).

This goal corresponds to the mutual exclusion constraint: nobody should have
both the reviewer role and the submitter role for this conference. Conservative
modeling should guarantee that the safety properties satisfied in the Scoll model
also hold in the actual system.

The availability goals are added to avoid solutions that restrict Alice’s policy
so much that there is no way for Bob to be in Conference.submitter, or for Alice
to be in Conference.reviewer.

5 Scollar finds solutions for DTM safety problems

The Scoll program in Figure 1 expresses a mutual exclusion problem combined
with basic availability requirements. Achieving mutual exclusions is generally a
difficult problem in trust management systems. For example, in the RT family
of languages a special construction (manifold roles [3]) is needed. In [10] mutual
exclusion is monitored and detected early, rather than prevented, by introducing
constraints and keeping control within a group of trusted, cooperating agents.

We turned our mutual exclusion constraint into a detectable state-predicate
(Section 4.2), of which a particular fact should be avoided (Section 4.6).

As explained in [14], Scollar uses constraint programming to calculate the
minimal sets of behavior restrictions that guarantee the safety requirements
without preventing the availability requirements. By listing the ways in which
Alice’s policies can be restricted no more than necessary to achieve our safety
goals, without preventing our availability goals, Scoll will tell us what the bound-
aries to Alice’s allowed policies are.

When presented with the problem of Figure 1, Scollar finds two solutions
(Figure 2) that minimize the restrictions on Alice’s policy. To keep the table
within reasonable size for a good overview, we removed the 6-ary predicate in-
tersection() from the calculations.

solution number 1{ 2
1|alice:member(reviewer,alice) 0
2 reviewer,bob) 00
3 submitter,alice) 0]0
4 alice:incl(reviewer,alice,submitter) 00
5 reviewer,bob,reviewer) 0|0
6 reviewer,bob,submitter) 0|0
7 submitter,alice,reviewer) 0
8 submitter,bob,reviewer) 00
9 submitter,bob,submitter) 0|0
10 alice:link(reviewer, reviewer,submitter) |0
11 reviewer,submitter,reviewer) 0|0
12 reviewer, submitter, submitter) [0 |0
13 submitter, reviewer, reviewer) |0
14 submitter,submitter,reviewer) [0 |0
15 submitter, submitter,submitter)|0 |0

Fig. 2. Overview of the 2 possible alternatives for restricting Alice’s RTy policy (ex-
cluding the intersection statements).

The table in Figure 2 contains a row for every behavior fact (policy , see
table 1) of Alice that is to be avoided in at least one of the two solutions. If the
expression is to be avoided in a solution, it is indicated as a zero in the column
representing this solution.

Let us first check the lines that contain 0 for both solutions. In no circum-
stances should Alice add the corresponding RT(credentials to her policy.

— line 2: Alice.reviewer <+ Bob
Alice should never make Bob a member of Alice.reviewer because, since the
conference’s roles are delegated to Alice, that would immediately violate the
mutual exclusion constraint.
— line 3: Alice.reviewer «— Alice,
Alice should never make herself member of her submitter role (line 3) because,
since the conference’s roles are delegated to Alice, that would immediately
violate the mutual exclusion constraint.
— line 4: Alice.reviewer « Alice.submitter
Alice should never include here submitter role in her reviewer role.
— lines 5 and 6:
Alice.reviewer < Bob.reviewer,
Alice.reviewer «— Bob.submitter
Alice should never include any of Bob’s roles in her reviewer role.
— lines 8 and 9:
Alice.submitter < Bob.reviewer,
Alice.submitter < Bob.submitter
Alice should never include any of Bob’s roles in her submitter role either.
— lines 11,12,14 and 15:
Alice.reviewer < Alice.submitter.reviewer,
Alice.reviewer « Alice.submitter.submitter,
Alice.submitter « Alice.submitter.reviewer,
Alice.submitter « Alice.submitter.submitter,
Alice should never link any of her roles via her submitter role.

Solution 1 allows Alice to include herself to her own reviewer role (line 1), at
the cost of further restricting the delegation via that role (lines 7, 10, and 13).
Solution 2 represents the only alternative.

For improved understanding of the results, Scoll allows the user to check
out the individual solutions in detail. The user then gets a complete overview
showing the state, knowledge and behavior facts that would become true for
every entity.

The solutions that are found in Scoll correspond to the optimal solutions
(Definition 2).

Theorem 1 (Correctness and completeness). Given an incomplete policy
system with a set of safety and availability constraints and the Scoll program
modeling the system and constraints as described in Section 4 we have that:

— Any restriction set calculated by Scollar is an optimal solution.
— Any optimal solution is found by Scollar.

6 Conclusions and Future Work

We have shown that trust management research, particularly in DTM, can be-
nefit from general techniques for safety analysis, in particular from analysis tech-
niques that can model entity behavior.

We have shown how authorization and delegation policies can be modeled
as subject behavior in the Scoll language, and how such models can be used to
calculate how the cooperating principals can limit their policies to bound their
direct and indirect consequences in the presence of unknown policies.

We have applied the Scollar tool to calculate the ways to restrict a principal’s
policy no more than necessary to avoid unwanted authorizations effects.

We have shown that Scollar can also take availability requirements into ac-
count when calculating the necessary restrictions. Even if these availability re-
quirements are not guaranteed in a system of which the Scoll program is a con-
servative model, they are useful to detect and avoid solutions that would only
model systems that cannot possibly comply to the availability requirements.

The advantages of Scoll and Scollar thus become available in the domains of
Trust Management as well as Security research:

— The state predicates, behavior predicates and knowledge predicates can be
chosen to model the effects and influences relevant for TM systems.

— The system rules can be chosen in accordance with the protection system
that controls the modeled systems.

— The behavior types can be modeled in accordance with the relevant assump-
tions, trust, and knowledge about the entities or principals in the system.

— The detail of modeling can be adjusted to the requirements, and adapted for
different parties in the same model. Scoll supports mechanisms for refinement
of state, knowledge, and behavior.

Future Work: Since DTM requirements include proving availability as well
as safety, we intend to adapt Scollar in the near future so that it supports
availability and safety equally well.

We could consider modeling use-behavior as well in Scoll, should we want to
bound the role activations of the cooperating principals, or guarantee dynamic
mutual exclusion constraints.

The problem modeled in this paper is relatively simple and calculates a-priori
properties and trust requirements for the cooperating principals . Future work
may also focus on applying the proposed method to analyze trust management
and usage control policies in a runtime system, during (updates in) actual dele-
gation, authorization, and use. Future applications may for instance provide for
dynamic adaptation of authorization, delegation, and use policies in accordance
to knowledge gained from a-posteriori auditing or reputation systems.

The TAS3 project develops trusted architectures for shared services in do-
mains such as healthcare and employability. This architecture implements trust
policies which can depend both on structural and behavioral rules.

The Poseidon project, which conducts research on secure interoperation in ad
hoc coalitions of heterogeneous parties in the maritime domain, could consider
applying the approach and improving its scalability to match their demands for
safety and trust analysis.

Scoll is available as open source at http://www.scoll.evoluware.eu, in the
hope of attracting researchers and developers to help boost the scalability of the
tool to the level necessary for more demanding research.

References

1. Spiessens, F.: Patterns of Safe Collaboration. PhD thesis, Université catholique
de Louvain, Louvain-la-Neuve, Belgium (2007)

2. Spiessens, F., Van Roy, P.: A Practical Formal Model for Safety Analysis in
Capability-Based Systems. In: TGC 2005. Volume 3705 of Lecture Notes in Com-
puter Science., Berlin, Heidelberg, Springer-Verlag (2005) 248-278

3. Li, N., Mitchell, J., Winsborough, W.: Design of a Role-based Trust-management
Framework. In: Proc. IEEE Symposium on Security and Privacy, IEEE Computer
Society Press (2002) 114-130

4. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web.
Journal of Web Semantics (2007)

5. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In Press,
I.C.S., ed.: Proc. 1996 IEEE Symposium on Security and Privacy. (1996) 164-173

6. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The KeyNote trust-
management system, version 2. IETF RFC 2704 (1999)

7. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI
Certificate Theory. IETF RFC 2693 (1999)

8. Kagal, L., Cost, S., Finin, T., Peng, Y.: A framework for distributed trust man-
agement. In: Proc. of [JCAI-01 Workshop on Autonomy, Delegation and Control.
(2001)

9. Kagal, L., Cost, S., Finin, T., Peng, Y.: A framework for distributed trust man-
agement. In: Proceedings of IJCAI-01 Workshop on Autonomy, Delegation and
Control. (2001) http://citeseer.nj.nec.com/kagal0lframework.html.

10. Etalle, S., Winsborough, W.H.: Integrity constraints in trust management (ex-
tended abstract). In Ahn, G.J., ed.: 10th ACM Symp. on Access Control Models
and Technologies (SACMAT), Stockholm, Sweden, New York, ACM Press (2005)
1-10

11. Li, N., Mitchell, J.C., Winsborough, W.H.: Beyond proof-of-compliance: security
analysis in trust management. J. ACM 52 (2005) 474-514

12. Czenko, M.R., Etalle, S., Li, D., Winsborough, W.H.: An introduction to the
role based trust management framework RT. Technical Report TR-CTIT-07-34,
University of Twente, Enschede (2007)

13. Gallaire, H., Minker, J., eds.: Logic and Data Bases. Perseus Publishing (1978)

14. Spiessens, F., Jaradin, Y., Van Roy, P.: Using Constraints To Analyze And Gen-
erate Safe Capability Patterns. Research Report INFO-2005-11, Département
d’Ingénierie Informatique, Université catholique de Louvain, Louvain-la-Neuve Bel-
gium (2005) Presented at CPSec’05. Available at
http://www.info.ucl.ac.be/~fsp/rr2005-11.pdf.

