Skip to main content

Function of EEG Temporal Complexity Analysis in Neural Activities Measurement

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5551))

Included in the following conference series:

Abstract

We investigate the correlation between temporal complexity of EEG signal and the underlining neural activities. Fractal geometry has been proved useful in quantifying complexities of dynamical signals. Temporal fractal dimension of EEG signals provides a new neurophysiological measure. In order to better understand what the complexity measure reveals about the underling brain process, a further exploration on the neuronal generators of fractal geometry characteristics of EEG is conducted in this study. Our investigation suggests that the temporal fractal measure of EEG signals can be related to the activity diversity of neuronal population activities. The complexity measure also gives an indication on the change in synchronization state under certain mental conditions. These assumptions are supported by experimental evidence from the visual cortex and sensorimotor cortex. This work helps give an interpretation of the obtained results of the temporal complexity analysis on EEG signals and may be useful in further investigating the covert steps of brain information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Epstein, C.M.: Introduction to EEG and Evoked Potentials. Lippincott Williams & Wilkins, Philadelphia (1983)

    Google Scholar 

  2. Takens, F.: Detecting Strange Attractors in Turbulence. In: Rand, D.A., Young, L.S. (eds.) Dynamical Systems and Turbulence, Warwick. LNM, vol. 898, pp. 361–381. Springer, Heidelberg (1981)

    Google Scholar 

  3. Faure, P., Korn, H.: Is There Chaos in the Brain? I. Concepts of Nonlinear Dynamics and Methods of Investigation. C. R. Acad. Sci. Paris, Ser. III 324, 773–793 (2001)

    Google Scholar 

  4. Korn, H., Faure, P.: Is There Chaos in the Brain? II. Experimental Evidence and Related Models. C. R. Biologies 326, 787–840 (2003)

    Article  Google Scholar 

  5. Lutzenberger, W., Preissl, H., Pulvermiiller, F.: Fractal Dimension of Electroencephalographic Time Series and Underlying Brain Processes. Biological Cybernetics 73, 477–482 (1995)

    Article  MATH  Google Scholar 

  6. Babloyantz, A., Salazar, J.M., Nicolis, G.: Evidence of Chaotic Dynamics of Brain Activity During the Sleep Cycle. Phys. Lett. A 111, 152–156 (1985)

    Article  Google Scholar 

  7. Kannathal, N., Acharya, R.U., Alias, F., Tibelong, T., Sadasivan, P.K.: Nonlinear Analysis of EEG Signals at Different Mmental States. Biomedical Online Journal 16, 3–7 (2004)

    Google Scholar 

  8. Soe, N.N., Nakagawa, M.: Chaos and Fractal Analysis of Electroencephalogram Signals during Different Imaginary Motor Movement Tasks. Journal of the Physical Society of Japan 77, 1–8 (2008)

    Google Scholar 

  9. Jing, H., Takigawa, M., Benasich, A.A.: Relationship of Nonlinear Analysis, MRI and SPECT in the Lateralization of Temporal Lobe Epilepsy. European Neurology 48, 11–19 (2002)

    Article  Google Scholar 

  10. Preissl, H., Aertsen, A.: Reconstruction and Characterization of Neuronal Dynamics: How Attractive is Chaos? In: Information Processing in the Cortex: Experiments and Theory, pp. 285–297. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  11. Theiler, J., Rapp, P.E.: Re-examination of the Evidence for Low-dimensional Non-linear Structure in the Human Electroencephalogram EEG. Clin. Neurophysiol. 98, 213–222 (1996)

    Article  Google Scholar 

  12. Mandell, A.J., Slez, K.A.: The Impact of Chaos on Science and Society. Hunan Science & Technology Press, Changsha (2001)

    Google Scholar 

  13. Fernandez, E., Jelinek, H.F.: Use of Fractal Theory in Neuroscience: Methods, Advantages, and Potential Problems. Methods 24, 309–321 (2001)

    Article  Google Scholar 

  14. Heymans, O., Fissette, J., Vico, P., Blacher, S., Masset, D., Brouers, F.: Is Fractal Geometry Useful in Medicine and Biomedical Sciences? Med. Hypotheses 54, 360–366 (2000)

    Article  Google Scholar 

  15. Bashashati, A., Ward, R.K., Birch, G.E., Hashemi, M.R., Khalilzadeh, M.A.: Fractal Dimension-Based EEG Biofeedback System. In: 25th Annual International Conference of the IEEE EMBS, pp. 17–23. IEEE Press, New York (2003)

    Google Scholar 

  16. Cabukovski, V., Rudolf, N.M., Mahmood, N.: Measuring the Fractal Dimension of EEG Signals: Selection and Adaptation of Method for Real-time Analysis. Transactions on Biomedicine and Health 1, 285–292 (1993)

    Google Scholar 

  17. Liu, J.Z., Yang, Q., Yao, B., Brown, R.W., Yue, G.H.: Linear Correlation between Fractal Dimension of EEG Signal and Handgrip Force. Biological Cybernetics 93, 131–140 (2005)

    Article  MATH  Google Scholar 

  18. Mandelbrot, B.B.: The Fractal Geometry of Nature. W. H. Freeman, New York (1983)

    Google Scholar 

  19. Higuchi, T.: Approach to an Irregular Time Series on the Basis of Fractal Theory. Physica D 31, 277–283 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG Synchronization and Desynchronization: Basic Principles. Clinical Neurophysiology 110, 1842–1857 (1999)

    Article  Google Scholar 

  21. Dewan, E.M.: Occipital Alpha Rhythm Eye Position and Lens Accommodation. Nature 214, 975–977 (1967)

    Article  Google Scholar 

  22. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  23. Elul, R.: The Genesis of the EEG. International Review of Neurobiology 15, 227–272 (1972)

    Article  Google Scholar 

  24. Dornhege, G., Blankertz, B., Curio, G., Müller, K.R.: Boosting Bit Rates in Non-invasive EEG Single-trial Classifications by Feature Combination and Multi-class Paradigms. IEEE Trans. Biomed. Eng. 51, 993–1002 (2004)

    Article  Google Scholar 

  25. Zhang, D., Wang, Y.J., Gao, X.R., Hong, B., Gao, S.K.: An Algorithm for Idle-State Detection in Motor-Imagery-Based Brain-Computer Interface. Computational Intelligence and Neuroscience 2007, Article ID 39714, 9 (2007)

    Google Scholar 

  26. Chatrian, G.E., Magnus, C.P., Lazarte, J.A.: The Blocking of the Rolandic Wicket Rhythm and Some Central Changes Related to Movement. Electroencephalogr. Clin. Neurophysiol. 11, 497–510 (1959)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X., Deng, Z., Zhang, J. (2009). Function of EEG Temporal Complexity Analysis in Neural Activities Measurement. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5551. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01507-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01507-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01506-9

  • Online ISBN: 978-3-642-01507-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics