Skip to main content

An Improved Support Vector Machine Classifier for EEG-Based Motor Imagery Classification

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5552))

Included in the following conference series:

Abstract

Electroencephalogram (EEG) recordings during motor imagery tasks are often used as input signals for brain-computer interfaces (BCIs). We analyze the EEG signals with Daubechies order 4 (db4) wavelets in 10 Hz and 21Hz at C3 channel, and in 10 Hz and 20 Hz at C4 channel, for these frequencies are prominent in discrimination of left and right motor imagery tasks according to EEG frequency spectral. We apply the improved support vector machines (SVMs) for classifying motor imagery tasks. First, a SVM is trained on all the training samples, then removes the support vectors which contribute less to the decision function from the training samples, finally the SVM is re-trained on the remaining samples. The classification error rate of the presented approach was as low as 9.29 % and the mutual information could be 0.7 above based on the Graz BCI 2003 data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolpaw, J.R., Birbaumer, N., McFarlanda, D.J., Pfurtschellere, G., Vaughan, T.M.: Brain–Computer Interfaces for Communication and Control. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  2. Burke, D.P., Kelly, S.P., Chazal, P.D., Reilly, R.B., Finucane, C.: A Parametric Feature Extraction and Classification Strategy for Brain–Computer Interfacing. IEEE Trans. Neural Syst. Rehab. Eng. 13(1), 12–17 (2005)

    Article  Google Scholar 

  3. Anderson, C.W., Stolz, E.A., Shamsunder, S.: Multivariate Autoregressive Models for Classification of Spontaneous Electroencephalographic Signals. IEEE Trans. Biomed. Eng. 45(3), 277–286 (1998)

    Article  Google Scholar 

  4. McFarland, D.J., McCane, L., Miner, L.A., Vaughan, T.M., Wolpaw, J.R.: EEG mu and beta Rhythm Topographies with Movement Imagery and Actual Movement. Society for Neuroscience Abstracts, 1277 (1997)

    Google Scholar 

  5. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-Based Brain–Computer Interface for Cursor Control. Electroenceph Clin. Neurophysiol. 78(3), 252–259 (1991)

    Article  Google Scholar 

  6. Steven, L., Christin, S., Gabriel, C.: BCI Competition 2003—Data Set III: Probabilistic Modeling of Sensorimotor μ Rhythms for Classification of Imaginary Hand Movements. IEEE Transactions on Biomedical Engineering 51(6) (2004)

    Google Scholar 

  7. Belousov, A.I., Verzakov, S.A., Von, F.J.: A Flexible Classification Approach with Optimal Generalization Performance: Support Vector Machines. Chemometrics and Intelligent Laboratory Systems 64, 15–25 (2002)

    Article  Google Scholar 

  8. Guo, J., Norikazu, T., Tetsuo, N.: A Learning Algorithm for Improving the Classification Speed of Support Vector Machines. In: Proceedings of the 2005 European conference on Circuit Theory and Design, vol. 3, pp. 381–384 (2005)

    Google Scholar 

  9. Duda, R., Hart, P., Stock, D.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    Google Scholar 

  10. Graz Dataset Results, http://ida.first.fraunhofer.de/projects/bci/competition/results/TRBCI2003III.pdf

  11. Pfurtscheller, G., LopesdaSilva, F.H.: Event-related EEG/MEG Synchronization and Desynchronization: Basic Principles. Clin. Neurophysiol. 110, 1842–1857 (1999)

    Article  Google Scholar 

  12. Torrence, C., Compo, G.: A Practical Guide to Wavelet Analysis. Bull. Amer. Meterol. 79, 61–78 (1998)

    Article  Google Scholar 

  13. Lottel, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A Review of Classification Algorithms for EEG-based Brain–Computer Interfaces. J. Neural. Eng. 4, R1–R13 (2007)

    Article  Google Scholar 

  14. Chapelle, O., Vapnik, V., Bousquet, O., Mukerjee, S.: Choosing Multiple Parameters for Support Vector Machines. Machine Learning 46(1), 131–159 (2002)

    Article  MATH  Google Scholar 

  15. Zhou, S.M., Gan, J.Q., Sepulveda, F.: Information Sciences 178, 1629–1640 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, H., Xu, Q., Wang, Y., Huang, J., Wu, J. (2009). An Improved Support Vector Machine Classifier for EEG-Based Motor Imagery Classification. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01510-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01509-0

  • Online ISBN: 978-3-642-01510-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics