Skip to main content

Electronic Channel Equalization Techniques

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5412))

Abstract

This paper presents the key design approaches and results in the field of optical impairment distortion compensation by electronic means, as an outcome of the studies and research innovations developed within the COST 291 action. The research topics addressed are related with chromatic dispersion and nonlinearities, with particular reference on FFE/DFE and MLSE-based equalizers as well as with the assistance of different modulation formats. Additionally, the use of electronic compensation in metroaccess applications is examined with reference on studies related with the performance enhancement of DML transmitters.

The original version of the book was revised: The copyright line was incorrect. The Erratum to the book is available at DOI: 10.1007/978-3-642-01524-3_13

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proakis, J.G., Salehi, M.: Communication Systems Engineering. Prentice-Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  2. Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  3. Fonseca, D., Cartaxo, A., Monteiro, P.: On the use of electrical pre-compensation of dispersion in optical single sideband transmission systems. IEEE J. of Selected Topics in Quantum Electronics 12(4), 603–614 (2006)

    Article  Google Scholar 

  4. Poggiolini, P., Bosco, G., Prat, J., Killey, R., Savory, S.: Branch Metrics for Effective Long-Haul MLSE. In: Proc. of ECOC 2006, Sept. 24-29, 2005, paper We2.5 (2006)

    Google Scholar 

  5. Bosco, G., Poggiolini, P.: Long-Distance Effectiveness of MLSE IMDD Receivers. IEEE Photon. Technol. Lett. 18(9), 1037–1039 (2006)

    Article  Google Scholar 

  6. Franceschini, M., Bongiorni, G., Ferrari, G., Raheli, R., Meli, F., Castoldi, A.: Fundamental limits of electronic signal processing in direct-detection optical communications. J. Lightw. Technol. 25(7), 1742–1753 (2007)

    Article  Google Scholar 

  7. Alic, N., et al.: Experimental demonstration of 10 Gb/s NRZ extended dispersion-limited reach over 600 km-SMF link without optical dispersion compensation. In: Proc. of OFC 2006, Mar. 5-10, 2007, paper OWB7 (2007)

    Google Scholar 

  8. Chandrasekhar, S., et al.: Chirp-Managed Laser and MLSE-RX enables Transmission Over 1200 km at 1550 nm in a DWDM Environment in NZDSF at 10 Gb/s Without Any Optical Dispersion Compensation. IEEE Phot. Technol. Lett. 18(14), 1560–1562 (2006)

    Article  Google Scholar 

  9. Crivelli, D.E., Carrer, H.S., Hueda, M.R.: On the performance of reduced-state Viterbi receivers in IM/DD optical transmission systems. In: Proc. of ECOC 2004, Stockholm, Sweden, 5-9 Nov. 2004, We4.P.083 (2004)

    Google Scholar 

  10. Poggiolini, P., et al.: 1,040 km uncompensated IMDD transmission over G.652 fibre at 10 Gbit/s using a reduced-state SQRT-metric MLSE receiver. In: Proc. of ECOC 2006, Sep. 24-29, 2006, post-deadline paper Th4.4.6 (2006)

    Google Scholar 

  11. Otte, S.: Nachrichtentheoretische Modellierung und elektronische Entzerrung hochbitratiger optischer Uebertragungssysteme. Dissertation, University of Kiel (2003)

    Google Scholar 

  12. Xia, C., Rosenkranz, W.: Performance enhancement for duobinary modulation through nonlinear electrical equalization. In: ECOC 2005, Glasgow, paper Tu4.2.3, vol. 2, pp. 257–258 (2005)

    Google Scholar 

  13. Xia, C., Rosenkranz, W.: Mitigation of optical intrachannel nonlinearity using nonlinear electrical equalization. In: ECOC 2006, 24-28 September 2006, Cannes, French, paper We3.P.244 (2006)

    Google Scholar 

  14. Winzer, P.J., Chandrasekhar, S., Kim, H.: Impact of filtering on RZ-DPSK reception. IEEE Photonics Technology Letters 15(6), 840–842 (2003)

    Article  Google Scholar 

  15. Gnauk, A.H., Winzer, P.J.: Optical phase-shift-keyed transmission. Journal of Lightwave Technology 23(1), 115–129 (2005)

    Article  Google Scholar 

  16. Xie, C., Moeller, L., Ryf, R.: Improvement of optical NRZ- and RZ-duobinary transmission systems with narrow bandwidth optical filters. IEEE Photonics Technology Letters 16(9), 2162–2164 (2004)

    Article  Google Scholar 

  17. Lyubomirsky, I., Pitchunani, B.: Impact of optical filtering on duobinary transmission. IEEE Photonics Technology Letters 16(8), 1969–1971 (2004)

    Article  Google Scholar 

  18. Kim, H., Yu, C.X.: Optical duobinary transmission system featuring improved receiver sensitivity and reduced optical bandwidth. IEEE Photonics Technology Letters 14(8), 1205–1207 (2002)

    Article  Google Scholar 

  19. Zaknich, A.: Principles of Adaptive Filters and Self-Learning Systems, pp. 257–265. Springer, Heidelberg (2005)

    Google Scholar 

  20. Proakis, J.G.: Digital Communications, 4th edn., pp. 660–708. McGraw-Hill, New York (1995)

    Google Scholar 

  21. Rosenkranz, W., Xia, C.: Electrical equalization for advanced optical communication systems. AEU - International Journal of Electronics and Communications 61(3), 153–157 (2007)

    Article  Google Scholar 

  22. Xia, C., Rosenkranz, W.: Nonlinear electrical equalization for different modulation formats with optical filtering. IEEE/OSA Journal of Lightwave Technology 25(4), 996–1001 (2007)

    Article  Google Scholar 

  23. Xia, C., Rosenkranz, W.: Electrical mitigation of penalties caused by group delay ripples for different modulation formats. IEEE Photonics Technology Letters 19(13), 954–956 (2007)

    Article  Google Scholar 

  24. Sieben, M., Conradi, J., Dodds, D.E.: Optical single sideband transmission at 10Gb/s using only electrical dispersion compensation. Journal of Ligthwave Technology 17(10) (1999)

    Google Scholar 

  25. Fonseca, D., Cartaxo, A., Monteiro, P.: Highly efficient electrical dispersion compensation scheme for optical single sideband systems. In: Proc. IEEE Lasers and Electro Optics Society Annual Meeting (LEOS), Sydney, Australia, Oct. 2005, pp. 898–899 (2005)

    Google Scholar 

  26. Fonseca, D., Luis, R., Cartaxo, A., Monteiro, P.: Near pseudo-linear transmission regime in 10 Gb/s single sideband-alternate mark inversion systems using electrical dispersion pre-compensation. IEEE Photon. Technol. Lett. 19(15), 1127–1129 (2007)

    Article  Google Scholar 

  27. Luis, R., Fonseca, D., Teixeira, A., Monteiro, P.: Dispersion management of electrically pre-compensated RZ single-sideband signals at 10 Gb/s without inline dispersion compensation. IEEE Photon. Technol. Lett. 19(14), 1039–1041 (2007)

    Article  Google Scholar 

  28. Tomkos, I., et al.: 10-Gb/s Transmission of 1.55-μm Directly Modulated Signal over 100 Km of Negative Dispersion Fibre. IEEE Photon. Technol. Lett. 13(3), 735–737 (2001)

    Article  Google Scholar 

  29. Nelson, L., Woods, I., White, J.K.: Transmission over 560 Km at 2. 5 Gb/s using a directly modulated buried heterostructure gain-coupled DFB semiconductor laser. In: OFC 2002, pp. 422–423.

    Google Scholar 

  30. Mahgerefteh, D., Cho, P.S., Goldhor, J., Mandelberg, H.I.: Penalty-free propagation over 600 Km of non-dispersion-shifted fibre at 2.5 Gb/s using a directly laser modulated transmitter. In: IEEE CLEO, May 1999, vol. 2, p. 182 (1999)

    Google Scholar 

  31. Mahgerefteh, D., Liao, C., Zheng, X., Matsui, Y., Johnson, B., Walker, D., Fan, Z.F., McCallion, K., Tayebati, P.: Error-free 250 Km transmission in standard fibre using compact 10 Gbit/s chirp-managed directly modulated lasers (CML) at 1550 nm. Electron. Lett. 41(9), 543–544 (2005)

    Article  Google Scholar 

  32. Winters, J.H., Gitlin, R.D.: Electrical Signal processing techniques in long-haul fibre-optic systems. IEEE Trans. Comm. 38(6), 1439–1453 (1990)

    Article  Google Scholar 

  33. Bulow, H.: PMD mitigation by optic and electronic signal processing. In: IEEE LEOS, Nov. 2001, vol. 2, pp. 602–603 (2001)

    Google Scholar 

  34. Watts, P.M., et al.: Performance of single mode fibre links using electronic feed forward and decision feedback equalizers. IEEE, Photon. Technol. Lett. 17(10) (2005)

    Google Scholar 

  35. Papagiannakis, I., et al.: Performance of 2.5 Gb/s and 10 Gb/s transient and adiabatic chirped directly modulated lasers using electronic dispersion compensation. In: Proc. ECOC 2007, Berlin, Germany (2007)

    Google Scholar 

  36. Tomkos, I., et al.: Extraction of laser rate equations parameters for representative simulations of metropolitan-area transmission systems and networks. Opt. Comm. 194, 109–129 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Papagiannakis, I. et al. (2009). Electronic Channel Equalization Techniques. In: Tomkos, I., Spyropoulou, M., Ennser, K., Köhn, M., Mikac, B. (eds) Towards Digital Optical Networks. Lecture Notes in Computer Science, vol 5412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01524-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01524-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01523-6

  • Online ISBN: 978-3-642-01524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics