Skip to main content

A Bayesian Solution to the Modifiable Areal Unit Problem

  • Chapter
Book cover Foundations of Computational Intelligence Volume 2

Part of the book series: Studies in Computational Intelligence ((SCI,volume 202))

Summary

The Modifiable Areal Unit Problem (MAUP) prevails in the analysis of spatially aggregated data and influences pattern recognition. It describes the sensitivity of the measurement of spatial phenomena to the size (the scale problem) and the shape (the aggregation problem) of the mapping unit. Much attention has been recieved from fields as diverse as statistical physics, image processing, human geography, landscape ecology, and biodiversity conservation. Recently, in the field of spatial ecology, a Bayesian estimation was proposed to grasp how our description of species distribution (described by range size and spatial autocorrelation) changes with the size and the shape of grain. This Bayesian estimation (BYE), called the scaling pattern of occupancy, is derived from the comparison of pair approximation (in the spatial analysis of cellular automata) and join-count statistics (in the spatial autocorrelation analysis) and has been tested using various sources of data. This chapter explores how the MAUP can be described and potentially solved by the BYE. Specifically, the scale and the aggregation problems are analyzed using simulated data from an individual-based model. The BYE will thus help to finalize a comprehensive solution to the MAUP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levin, S.A.: The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992)

    Article  Google Scholar 

  2. Plimak, L.I., Walls, D.F.: Nonclassical spatial and momentum distributions in a Bose-condensed gas. Phys. Rev. A 54, 652–655 (1996)

    Article  Google Scholar 

  3. Whittaker, R.H.: Evolution and measurement of species diversity. Taxon 21, 213–251 (1972)

    Article  Google Scholar 

  4. Hui, C.: On species-area and species accumulation curves: a comment on Chong and Stohlgren’s index. Biol. Indic. 8, 327–329 (2008)

    Article  Google Scholar 

  5. Hui, C., McGeoch, M.A.: Does the self-similar species distribution model lead to unrealistic predictions? Ecology 89, 2946–2952 (2008)

    Article  Google Scholar 

  6. Hui, C., McGeoch, M.A., Warren, M.: A spatially explicit approach to estimating species occupancy and spatial correlation. J. Anim. Ecol. 75, 140–147 (2006)

    Article  Google Scholar 

  7. Openshaw, S.: The modifiable areal unit problem. Geo Books, Norwick (1984)

    Google Scholar 

  8. Unwin, D.J.: GIS, spatial analysis and spatial statistics. Prog. Human Geogr. 20, 540–551 (1996)

    Article  Google Scholar 

  9. Burger, O., Todd, L.: Grain, extent, and intensity: the components of scale in archaeological survey. In: Lock, G., Molyneaux, B.L. (eds.) Confronting scale in archaeological: issues of theory and practice, pp. 235–255. Springer, New York (2006)

    Google Scholar 

  10. Taylor, L.R.: Aggregation, variance and the mean. Nature 189, 732–735 (1961)

    Article  Google Scholar 

  11. Ratcliffe, J.H., McCullagh, M.J.: Hotbeds of crime and the search for spatial accuracy. Geogr. Sys. 1, 385–395 (1999)

    Article  Google Scholar 

  12. Wiens, J.A.: Ecological heterogeneity: ontogeny of concepts and approaches. In: Hutchings, M.J., Jones, E.A., Stewart, A.J.A. (eds.) The ecological consequences of environmental heterogeneity, pp. 9–31. Blackwell Science, Oxford (2000)

    Google Scholar 

  13. Li, H., Reynolds, J.F.: On definition and quantification of heterogeneity. Oikos 73, 280–284 (1995)

    Article  Google Scholar 

  14. Burrough, P.A., McDonnell, R.A.: Principles of geographical information systems. Oxford Univ. Press, Oxford (1998)

    Google Scholar 

  15. Perry, J.N., Liebhold, A.M., Rosenberg, M.S., Dungan, J.L., Miriti, M., Jakomulska, A., Citron-Pousty, S.: Illustrations and guidelins for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography 25, 578–600 (2002)

    Article  Google Scholar 

  16. Dungan, J.L., Perry, J.N., Dale, M.R.T., Legendre, P., Citron-Pousty, S., Fortin, M.J., Jakomulska, A., Miriti, M., Rosenberg, M.S.: A balanced view of scale in spatial statistical analysis. Ecography 25, 626–640 (2002)

    Article  Google Scholar 

  17. Anselin, L.: Local indicators of spatial association. Geogr Analysis 27, 93–116 (1995)

    Google Scholar 

  18. Hui, C.: Crossing the borders of spatial analysis and modelling: a rethink. In: Kelly, J.T. (ed.) Progress in Mathematical Biology Research, pp. 170–197. Nova Science, Hauppauge (2008)

    Google Scholar 

  19. Sato, K., Iwasa, Y.: Pair approximation for lattice-based ecological models. In: Dieckmann, U., Law, R., Metz, J.A.J. (eds.) The geometry of ecological interactions: simplifying spatial complexity, pp. 341–359. Cambridge Univ Press, Cambridge (2000)

    Google Scholar 

  20. Hui, C., Li, Z.: Distribution patterns of metapopulation determined by Allee effects. Popul. Ecol. 46, 55–63 (2004)

    Article  Google Scholar 

  21. Fortin, M.J., Dale, M.R.T., ver Hoef, J.: Spatial analysis in ecology. In: El-Shaarawi, A.H., Piegorsch, W.W. (eds.) Encyclopedia of environmentrics, pp. 2051–2058. Wiley and Sons, New York (2002)

    Google Scholar 

  22. Hui, C., McGeoch, M.A.: Spatial patterns of prisoner’s dillema game in metapopulations. Bull. Math. Biol. 69, 659–676 (2007)

    Article  MathSciNet  Google Scholar 

  23. Gehlke, C., Biehl, K.: Certain effects of grouping upon the size of the correlation coefficient in census tract material. J. Am. Stat. Assoc. 29, 169–170 (1934)

    Article  Google Scholar 

  24. Jelinski, D.E., Wu, J.: The modifiable areal unit problem and implications for landscape ecology. Land Ecol. 11, 129–140 (1996)

    Article  Google Scholar 

  25. Fotheringham, A.S., Wong, D.W.S.: The modifiable areal unit problem in multivariate statistical-analysis. Environ. Plan A 23, 1025–1044 (1991)

    Article  Google Scholar 

  26. Dorling, D.: The visualization of local urban change across Britain. Environ. Plan B 22, 269–290 (1995)

    Article  Google Scholar 

  27. Amrhein, C.G.: Searching for the elusive aggregation effect - Evidence from statistical simulations. Environ. Plan A 27, 105–119 (1995)

    Article  Google Scholar 

  28. Dark, S.J., Bram, D.: The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. 31, 471–479 (2007)

    Article  Google Scholar 

  29. Downey, L.: Using geographic information systems to reconceptualize spatial relationships and ecological context. Am. J. Soc. 112, 567–612 (2006)

    Article  Google Scholar 

  30. Flowerdew, R., Manley, D., Steel, D.: Scales, levels and processes: Studying spatial patterns of British census variables. Comp. Environ. Urban. Sys. 30, 2143–2160 (2006)

    Google Scholar 

  31. Lery, B.: A comparison of foster care entry risk at three spatial scales. Subs Use Misuse 43, 223–237 (2008)

    Article  Google Scholar 

  32. Sexton, K., Waller, L.A., McMaster, R.B., Maldonado, G., Adgate, J.L.: The importance of spatial effects for environmental health policy and research. Human Ecol. Risk Ass. 8, 109–125 (2002)

    Article  Google Scholar 

  33. Lembo, A.J., Lew, M.Y., Laba, M., Baveye, P.: Use of spatial SQL to assess the practical significance of the modifiable areal unit problem. Comp. Geosci. 32, 270–274 (2006)

    Article  Google Scholar 

  34. Wong, D.W.S.: Spatial decomposition of segregation indices: A framework toward measuring segregation at multiple levels. Geogra. Anal. 35, 179–194 (2003)

    Article  Google Scholar 

  35. Harrison, J.A., Allan, D.G., Underhill, L.G., Herremans, M., Tree, A.J., Parker, V., Brown, C.J.: The atlas of Southern African birds, BirdLife South Africa, Johannesburg (1997)

    Google Scholar 

  36. Fielding, A.H., Bell, J.F.: A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Cons. 24, 38–49 (1997)

    Article  Google Scholar 

  37. Kadmon, R., Farber, O., Danin, A.: A systematic analysis of factors affecting the performance of climate envelope models. Ecol. Appl. 13, 853–867 (2003)

    Article  Google Scholar 

  38. Hui, C., Li, Z.: Dynamical complexity and metapopulation persistence. Ecol. Model 164, 201–209 (2003)

    Article  Google Scholar 

  39. Hui, C., Yue, D.: Niche construction and polymorphism maintenance in metapopulations. Ecol. Res. 20, 115–119 (2005)

    Article  Google Scholar 

  40. Levin, S.A., Grenfell, B., Hastings, A., Perelson, A.S.: Mathematical and computational challenges in population biology and ecosystem science. Science 275, 334–343 (1997)

    Article  Google Scholar 

  41. Hui, C., McGeoch, M.A.: Evolution of body size, range size, and food composition in a predator-prey metapopulation. Ecol. Complex 3, 148–159 (2006)

    Article  Google Scholar 

  42. Hui, C., Li, Z., Yue, D.X.: Metapopulation dynamics and distribution, and environmental heterogeneity induced by niche construction. Ecol. Model 177, 107–118 (2005)

    Article  Google Scholar 

  43. Fortin, M.J., Dale, M.R.T.: Spatial analysis: a guide for ecologists. Cambridge Univ. Press, Cambridge (2005)

    Google Scholar 

  44. Fahrig, L., Nuttle, W.K.: Population ecology in spatial heterogeneous environments. In: Lovett, G.M., Jones, C.G., Turner, M.G., Weathers, K.C. (eds.) Ecosystem function in heterogeneous landscapes, pp. 95–118. Springer, Berlin (2005)

    Chapter  Google Scholar 

  45. Pacala, S.W., Levin, S.A.: Biologically generated spatial pattern and the coexistence of competing species. In: Tilman, D., Kareiva, P. (eds.) Spatial ecology: the role of space in population dynamics and interspecific interactions, pp. 204–232. Princeton Univ. Press, Princeton (1997)

    Google Scholar 

  46. Downing, J.A.: Biological heterogeneity in aquatic ecosystems. In: Kolasa, J., Pickett, S.T.A. (eds.) Ecological heterogeneity, pp. 160–180. Springer, Berlin (1991)

    Google Scholar 

  47. Morisita, M.: I d −index, a measure of dispersion of individuals. Res. Popul. Ecol. 4, 1–7 (1962)

    Article  Google Scholar 

  48. Lloyd, M.: Mean crowding. J. Anim. Ecol. 36, 1–30 (1967)

    Article  Google Scholar 

  49. Bliss, C.I., Fisher, R.A.: Fitting the negative binomial distribution to biological data. Biometrics 9, 176–200 (1953)

    Article  MathSciNet  Google Scholar 

  50. Ripley, B.D.: Spatial statistics. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  51. Moran, P.A.P.: Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950)

    MATH  MathSciNet  Google Scholar 

  52. Geary, R.C.: The contiguity ratio and statistical mapping. Incorp. Stat. 5, 115–145 (1954)

    Article  Google Scholar 

  53. Perry, J.N.: Spatial analysis by distance indices. J. Anim. Ecol. 64, 303–314 (1995)

    Article  Google Scholar 

  54. Perry, J.N.: Measures of spatial pattern for counts. Ecology 79, 1008–1017 (1998)

    Article  Google Scholar 

  55. Levins, R.: Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240 (1969)

    Google Scholar 

  56. Hanski, I.: Metapopulation dynamics. Nature 396, 41–49 (1998)

    Article  Google Scholar 

  57. Hanski, I.: Metapopulation ecology. Oxford Univ. Press, Oxford (1999)

    Google Scholar 

  58. Dieckmann, U., Law, R., Metz, J.A.J.: The geometry of ecological interactions: simplifying spatial complexity. Cambridge Unive. Press, Cambridge (2000)

    Google Scholar 

  59. Tilman, D., Karieva, P.: Spatial ecology: the role of space in population dynamics and interspecific interactions. Princeton Univ. Press, Princeton (1997)

    Google Scholar 

  60. Matsuda, H., Ogita, A., Sasaki, A., Sato, K.: Statistical mechanics of population: the lattice Lotka-Volterra model. Prog. Theor. Phys. 88, 1035–1049 (1992)

    Article  Google Scholar 

  61. Katori, M., Konno, N.: Upper bounds for survival probability of the contact process. J. Stat. Phys. 63, 115–130 (1991)

    Article  MathSciNet  Google Scholar 

  62. Tainaka, K.: Paradoxical effect in a three-candidate voter model. Phys. Lett. A 176, 303–306 (1993)

    Article  Google Scholar 

  63. Iwasa, Y., Sato, K., Nakashima, S.: Dynamic modeling of wave regeneration (Shimagare) in subalpine Abies forests. J. Theor. Biol. 152, 143–158 (1991)

    Article  Google Scholar 

  64. Harada, Y., Ezoe, H., Iwasa, Y., Matsuda, H., Sato, K.: Population persistence and spatially limited social interaction. Theor. Popul. Biol. 48, 65–91 (1994)

    Article  Google Scholar 

  65. Harada, Y., Iwasa, Y.: Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res. Popul. Ecol. 36, 237–249 (1994)

    Article  Google Scholar 

  66. Moran, P.A.P.: Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950)

    MATH  MathSciNet  Google Scholar 

  67. Hui, C., McGeoch, M.A.: A self-similarity model for the occupancy frequency distribution. Theor. Popul. Biol. 71, 61–70 (2007)

    Article  MATH  Google Scholar 

  68. Hui, C., McGeoch, M.A.: Modeling species distributions by breaking the assumption of self-similarity. Oikos 116, 2097–2107 (2007)

    Article  Google Scholar 

  69. McGeoch, M.A., Gaston, K.J.: Occupancy frequency distributions: patterns, artefacts and mechanisms. Biol. Rev. 77, 311–331 (2002)

    Article  Google Scholar 

  70. De Grave, S., Casey, D.: Influence of sample shape and orientation on density estimates on intertidal macrofauna. J. Marine Biol. Assoc. UK 80, 1125–1126 (2000)

    Article  Google Scholar 

  71. He, F., Hubbell, S.P.: Percolation theory for the distribution and abundnce of species. Phys. Rev. Lett. 91, 198103 (2003)

    Article  Google Scholar 

  72. Hui, C., McGeoch, M.A.: Capturing the “droopy-tail” in the occupancy-abundance relationship. Ecoscience 14, 103–108 (2007)

    Article  Google Scholar 

  73. Meynard, C.N., Quinn, J.F.: Predicting species distributions: a critical comparison of the most common statistical models using artificial species. J. Biogeogr. 34, 1455–1469 (2007)

    Article  Google Scholar 

  74. Holt, A.R., Gaston, K.J., He, F.: Occupancy-abundance relationships and spatial distribution: a review. Basic Appl. Ecol. 3, 1–13 (2002)

    Article  Google Scholar 

  75. Kunin, W.E.: Extrapolating species abundance across spatial scales. Science 281, 1513–1515 (1998)

    Article  Google Scholar 

  76. Wilson, R.J., Thomas, C.D., Fox, R., Roy, D.B., Kunin, W.E.: Spatial patterns in species distributions reveal biodiversity change. Nature 432, 393–396 (2004)

    Article  Google Scholar 

  77. Hartley, S., Kunin, W.E.: Scale dependency of rarity, extinction risk, and conservation priority. Cons. Biol. 17, 1559–1570 (2003)

    Article  Google Scholar 

  78. Fotheringham, A.S.: Scale-independent spatial analysis. In: Goodchild, M.F., Gopal, S. (eds.) Accuracy of spatial databases, pp. 221–228. Taylor and Francis, London (1989)

    Google Scholar 

  79. Scheiner, S.M.: Six types of species-area curves. Global Ecol. Biogeogr. 12, 441–447 (2003)

    Article  Google Scholar 

  80. Bell, G.: The co-distribution of species in relation to the neutral theory of community ecology. Ecology 86, 1757–1770 (2005)

    Article  Google Scholar 

  81. Gotelli, N.J., Graves, G.R.: Null models in ecology. Smithsonian Institution Press, Washington (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hui, C. (2009). A Bayesian Solution to the Modifiable Areal Unit Problem. In: Hassanien, AE., Abraham, A., Herrera, F. (eds) Foundations of Computational Intelligence Volume 2. Studies in Computational Intelligence, vol 202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01533-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01533-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01532-8

  • Online ISBN: 978-3-642-01533-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics