Skip to main content

Relationship between Amino Acids Sequences and Protein Structures: Folding Patterns and Sequence Patterns

  • Conference paper
  • 755 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5542))

Abstract

Two crucial problems of protein folding are considered here. First, the hypothesis, that all proteins with an identical SSS, regardless of degree of sequence identity among sequences have common sequence pattern. To find conserved positions and create a sequences pattern a new algorithm of the structure-based multiple sequences alignment was developed. An essential feature of the algorithm is that the alignment is based on residues that form hydrogen bond contacts between strands in protein structures. It was shown that SSS-specific sequence patterns have very high sensitivity for identifying protein structure and can be used for SSS prediction without any prior structural information. Second, the rules by which secondary structure elements – beta strands come together into supersecondary structure (SSS) – folding patterns. Knowledge of these patterns that uncover the spatial arrangement of strands will likely prove useful in protein structure prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sela, M., White Jr., F.H., Anfinsen, C.B.: Reductive Cleavage of Disulfide Bridges in Ribonuclease. Science 125, 691–692 (1957)

    Article  CAS  PubMed  Google Scholar 

  2. Anfinsen, C.: Principles that Govern the Folding of Protein Chains. Science 181, 223–230 (1973)

    Article  CAS  PubMed  Google Scholar 

  3. Xiang, Z.: Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 7, 217–227 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dalton, J., Jackson, R.: n evaluation of automated homology modelling methods at low target template sequence similarity. Bioinformatics 3, 1901–1908 (2007)

    Article  Google Scholar 

  5. Gunalski, K.: Comparative modeling for protein structure prediction. Curr. Opin. Struct. Biol. 16, 172–177 (2006)

    Article  Google Scholar 

  6. Pugalenthi, G., Tang, K., Suganthan, P.N., Chakrabarti, C.: Identification of structurally conserved residues of proteins in absence of structural homologs using neural network ensemble. Bioinformatics 25, 204–210 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kister, A.E., Fokas, A.S., Papatheodorou, T.S., Gelfand, I.M.: Strict rules determine arrangements of strands in sandwich proteins. Proc. Natl. Acad. Sci. USA 103, 4107–4110 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chiang, Y.S., Gelfand, T.I., Kister, A.E., Gelfand, I.M.: New classification of supersecondary structures of sandwich-like proteins uncovers strict patterns of strand assemblage. Proteins 68(4), 915–921 (2007)

    Article  CAS  PubMed  Google Scholar 

  9. Levitt, M., Chothia, C.: Structural patterns in globular proteins. Nature 261, 552–558 (1976)

    Article  CAS  PubMed  Google Scholar 

  10. Sternberg, M.J.E., Thornton, J.M.: On the conformation of proteins: the handedness of the b-strand-a-helix-b-strand unit. J. Mol. Biol. 105, 367–382 (1976)

    Article  CAS  PubMed  Google Scholar 

  11. Cohen, F.E., Sternberg, M.J.E., Taylor, W.R.: Analysis of the tertiary structure of protein beta-sheet sandwiches. J. Mol. Biol. 148, 253–272 (1981)

    Article  CAS  PubMed  Google Scholar 

  12. Michalopoulos, I., Torrance, G.M., Gilbert, D.R., Westhead, D.R.: TOPS: an enhanced database of protein structural topology. Nucleic Acids Res. 32, D251–D254 (2004)

    Article  Google Scholar 

  13. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)

    CAS  PubMed  Google Scholar 

  14. Orengo, C.A., Michie, A.D., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH: A Hierarchic Classification of Protein Domain Structures. Structure 5, 1093–1108 (1997)

    Article  CAS  PubMed  Google Scholar 

  15. Rice, P., Longden, I., Bleasby, A.: EMBOSS: The European Molecular Biology Open Software Suite Trends in Genetics 16, 276–277 (2000)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kister, A. (2009). Relationship between Amino Acids Sequences and Protein Structures: Folding Patterns and Sequence Patterns. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds) Bioinformatics Research and Applications. ISBRA 2009. Lecture Notes in Computer Science(), vol 5542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01551-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01551-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01550-2

  • Online ISBN: 978-3-642-01551-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics