Skip to main content

Efficient Algorithms for Self Assembling Triangular and Other Nano Structures

  • Conference paper
Book cover Bioinformatics Research and Applications (ISBRA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5542))

Included in the following conference series:

  • 706 Accesses

Abstract

Nano fabrication with biomolecular/DNA self assembly is a promising area of research. Building nano structures with self assembly is both efficient and inexpensive. Winfree [1] formalized a two dimensional (2D) tile assembly model based on Wang’s tiling technique. Algorithms with an optimal tile complexity of (\(\Theta(\frac{\log(N)}{\log(\log(N))})\)) were proposed earlier to uniquely self assemble an N×N square (with a temperature of α= 2) on this model. However efficient constructions to assemble arbitrary shapes are not known and have remained open. In this paper we present self assembling algorithms to assemble a triangle of base 2N − 1 (units) and height N with a tile complexity of Θ(log(N)). We also describe how this framework can be used to construct other shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal on Computing 36(6), 1544–1569 (2007)

    Article  Google Scholar 

  2. LaBean, T.H., Winfree, E., Reif, J.H.: Experimental progress in computation by self-assembly of dna tilings. Proc. DNA Based Computers 54, 123–140 (2000)

    Google Scholar 

  3. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional dna crystals. Nature 394(6693), 539–544 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Seeman, N.C.: Nucleic acid junctions and lattices. Journal of Theoretical Biology 99(2), 237–247 (1982)

    Article  CAS  PubMed  Google Scholar 

  5. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna sierpinski triangles. PLoS Biology 2(12) (2004)

    Google Scholar 

  6. Paciotti, G.F., Myer, L.: Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents 11(3), 169–183 (2008)

    Article  Google Scholar 

  7. Chhabra, R., Sharma, J., Liu, Y., Yan, H.: Patterning metallic nanoparticles by dna scaffolds. Advances in experimental medicine and biology 620(10), 107–116 (2004)

    Google Scholar 

  8. Ando, M., Kawasaki, M.: Self-aligned self-assembly process for fabricating organic thin-film transistors. Applied Physics Letters 85(10), 1849–1851 (2004)

    Article  CAS  Google Scholar 

  9. Zimmler, M.A., Stichtenoth, D.: Scalable fabrication of nanowire photonic and electronic circuits using spin-on glass. Nano letters 8(6), 1895–1899 (2008)

    Article  Google Scholar 

  10. Rothemund, P.W.K., Winfree, E.: Program-size complexity of self-assembled squares. In: ACM Symposium on Theory Of Computation (STOC), pp. 459–468 (2000)

    Google Scholar 

  11. Wang, H.: An unsolvable problem on dominoes. Technical Report BL-30 (1962)

    Google Scholar 

  12. Adleman, L., Cheng, Q., Goel, A., Huang, M.: Running time and program size for self-assembled squares. In: Annual ACM Symposium on Theory of Computing, pp. 740–748 (2001)

    Google Scholar 

  13. Aggarwal, G., Cheng, Q.I., Goldwasser, M.H., Kao, M., De Espanes, P.M., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM Journal on Computing 34(6), 1493–1515 (2005)

    Article  Google Scholar 

  14. Kao, M., Schweller, R.: Randomized self-assembly for approximate shapes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Kao, M., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 571–580 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kundeti, V., Rajasekaran, S. (2009). Efficient Algorithms for Self Assembling Triangular and Other Nano Structures. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds) Bioinformatics Research and Applications. ISBRA 2009. Lecture Notes in Computer Science(), vol 5542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01551-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01551-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01550-2

  • Online ISBN: 978-3-642-01551-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics