Skip to main content

A Modified Staggered Correction Arithmetic with Enhanced Accuracy and Very Wide Exponent Range

  • Conference paper
Book cover Numerical Validation in Current Hardware Architectures

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5492))

Abstract

A so called staggered precision arithmetic is a special kind of a multiple precision arithmetic based on the underlying floating point data format (typically IEEE double format) and fast floating point operations as well as exact dot product computations. Due to floating point limitations it is not an arbitrary precision arithmetic. However, it typically allows computations using several hundred mantissa digits.

A set of new modified staggered arithmetics for real and complex data as well as for real interval and complex interval data with very wide exponent range is presented. Some applications will show the increased accuracy of computed results compared to ordinary staggered interval computations. The very wide exponent range of the new arithmetic operations allows computations far beyond the IEEE data formats.

The new modified staggered arithmetics would be extremely fast if an exact dot product was available in hardware (the fused accumulate and add instruction is only one step in this direction).

This paper describes work in progress. Updates of the software as well as additional documentation may be downloaded from our web site http://www. math.uni-wuppertal.de/~xsc

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)

    MATH  Google Scholar 

  2. American National Standards Institute/Institute of Electrical and Electronics Engineers: IEEE Standard for Binary Floating-Point Arithmetic; ANSI/IEEE Std 754–1985, New York (1985)

    Google Scholar 

  3. Auzinger, W., Stetter, H.J.: Accurate Arithmetic Results for Decimal Data on Non-Decimal Computers. Computing 35, 141–151 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blomquist, F., Hofschuster, W., Krämer, W.: Realisierung der hyperbolischen Cotangens-Funktion in einer Staggered-Correction-Intervallarithmetik in C-XSC. Preprint 2004/3, Scientific Computing/Software Engineering, University of Wuppertal (2004)

    Google Scholar 

  5. Blomquist, F.: Verbesserungen im Bereich komplexer Standardfunktionen, interne Mitteilung. Scientific Computing/Software Engineering, University of Wuppertal (2005)

    Google Scholar 

  6. Blomquist, F., Hofschuster, W., Krämer, W.: Real and Complex Staggered (Interval) Arithmetics with Wide Exponent Range (in German). Preprint 2008/1, Scientific Computing/Software Engineering, University of Wuppertal (2008)

    Google Scholar 

  7. Blomquist, F., Hofschuster, W., Krämer, W., Neher, M.: Complex Interval Functions in C-XSC, Preprint BUW-WRSWT 2005/2, Scientific Computing/Software Engineering, University of Wuppertal, pp. 1–48 (2005)

    Google Scholar 

  8. Blomquist, F., Hofschuster, W., Krämer, W.: Real and Complex Taylor Arithmetic in C-XSC. Preprint BUW-WRSWT 2005/4, Scientific Computing/Software Engineering, University of Wuppertal (2005)

    Google Scholar 

  9. Böhm, H.: Berechnung von Polynomnullstellen und Auswertung arithmetischer Ausdrücke mit garantierter maximaler Genauigkeit. Dissertation, Universität Karlsruhe (1983)

    Google Scholar 

  10. Bohlender, G.: What Do We Need Beyond IEEE Arithmetic? In: Ullrich, C. (ed.) Computer Arithmetic and Self-Validating Numerical Methods. Academic Press, London (1990)

    Google Scholar 

  11. Braune, K., Krämer, W.: High Accuracy Standard Functions for Real and Complex Intervals. In: Kaucher, E., Kulisch, U., Ullrich, C. (eds.) Computerarithmetic: Scientific Computation and Programming Languages, pp. 81–114. Teubner, Stuttgart (1987)

    Google Scholar 

  12. Braune, K.: Standard Functions for Real and Complex Point and Interval Arguments with Dynamic Accuracy. Computing Supplementum 6, 159–184 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brent, R.P.: A Fortran Multiple-Precision Arithmetic Package. ACM Transactions on Mathematical Software (TOMS) 4(1), 57–70 (1978)

    Article  Google Scholar 

  14. Cuyt, A., Kuterna, P., Verdonk, B., Vervloet, J.: Arithmos: a reliable integrated computational environment (2001), http://www.cant.ua.ac.be/arithmos/index.html

  15. Cuyt, A., Petersen, V.B., Verdonk, B., Waadeland, H., Jones, W.B.: Handbook of Continued Fractions for Special Functions. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  16. Dekker, T.J.: A Floating-Point Technique for Extending the Available Precision. Num. Math. 18, 224–242 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A multiple-precision binary floating-point library with correct rounding. Transactions on Mathematical Software (TOMS) 33(2) (2007)

    Google Scholar 

  18. Griewank, A., Corliss, G. (eds.): Automatic Differentiation of Algorithms: Theory, Implementation, and Applications. SIAM, Philadelphia (1991)

    Google Scholar 

  19. Grimmer, M., Petras, K., Revol, N.: Multiple Precision Interval Packages. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Numerical Software with Result Verification (Dagstuhl Seminar 2003). LNCS, vol. 2991, pp. 64–90. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox for Verified Computing: Basic Numerical Problems. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  21. Herzberger, J. (ed.): Topics in Validated Computations. Proceedings of IMACS-GAMM International Workshop on Validated Numerics, Oldenburg, 1993. North Holland, Amsterdam (1994)

    MATH  Google Scholar 

  22. Hofschuster, W., Krämer, W.: C-XSC – A C++ Class Library for Extended Scientific Computing. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Numerical Software with Result Verification (Dagstuhl Seminar 2003). LNCS, vol. 2991, pp. 15–35. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Hofschuster, W., Krämer, W., Neher, M.: C-XSC and closely related software packages. In: Cuyt, A., et al. (eds.) Numerical Validation in Current Hardware Architectures (Dagstuhl Seminar 2008). LNCS, vol. 5492, pp. 68–102. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Klatte, R., Kulisch, U., Lawo, C., Rauch, M., Wiethoff, A.: C-XSC, A C++ Class Library for Extended Scientific Computing. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  25. Klotz, G.: Faktorisierung von Matrizen mit maximaler Genauigkeit. Dissertation, Universität Karlsruhe (1987)

    MATH  Google Scholar 

  26. Krämer, W.: Inverse Standardfunktionen für reelle und komplexe Intervallargumente mit a priori Fehlerabschätzungen für beliebige Datenformate, Dissertation, Universität Karlsruhe (1987)

    Google Scholar 

  27. Krämer, W.: Mehrfachgenaue reelle und intervallmäßige Staggered-Correction Arithmetik mit zugehörigen Standardfunktionen, Bericht des Instituts für Angewandte Mathematik, Universität Karlsruhe, pp. S.1–80 (1988)

    Google Scholar 

  28. Krämer, W., Walter, W.: FORTRAN-SC: A FORTRAN Extension for Engineering/Scientific Computation with Access to ACRITH, General Information Notes and Sample Programs. IBM Deutschland GmbH (1989)

    Google Scholar 

  29. Krämer W., Kulisch U., Lohner, R.: Numerical Toolbox for Verified Computing II. Springer. Draft tb2.ps.gz (1994), http://www.rz.uni-karlsruhe.de/~Rudolf.Lohner/papers/

  30. Krämer, W.: Introduction to the Maple Power Tool intpakX. Serdica Journal of Computing, Bulgarian Academy of Sciences 1(4), 467–504 (2007)

    MATH  Google Scholar 

  31. Kulisch, U.: The Fifth Floating-Point Operation for Top-Performance Computers or Accumulation of Floating-Point Numbers and Products in Fixed-Point Arithmetic. Bericht 4/1997 des Forschungsschwerpunkts Computerarithmetik, Intervallrechnung und Numerische Algorithmen mit Ergebnisverifikation, Universität Karlsruhe (1997)

    Google Scholar 

  32. Kulisch, U.: Advanced Arithmetic for the Digital Computer. Design of Arithmetic Units. Springer, Wien (2002)

    Book  MATH  Google Scholar 

  33. Kulisch, U.: Computer Arithmetic and Validity – Theory. Implementation and Application. de Gruyter Studies in Mathematics 33 (2008)

    Google Scholar 

  34. Lohner, R.: Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben mit Anwendungen. Dissertation, Universität Karlsruhe (1988)

    Google Scholar 

  35. Lohner, R.: Enclosing all Eigenvalues of Symmetric Matrices. In: Ullrich, C., Wolff von Gudenberg, J. (eds.) Accurate Numerical Algorithms, Research Reports ESPRIT. Springer, Heidelberg (1989)

    Google Scholar 

  36. Lohner, R.: Interval arithmetic in staggered correction format. In: Adams, E., Kulisch, U. (eds.) Scientific Computing with Automatic Result Verification, pp. 301–321. Academic Press, San Diego (1993)

    Chapter  Google Scholar 

  37. Lozier, D.W.: The NIST Digital Library of Mathematical Functions Project. Annals of Mathematics and Artificial Intelligence 38 (2003)

    Google Scholar 

  38. Markstein, P.: IA-64 and Elementary Functions: Speed and Precision. Hewlett-Packard Professional Books

    Google Scholar 

  39. Muller, J.-M.: Elementary Functions Algorithms and Implementation, 2nd edn (2006) ISBN: 978-0-8176-4372-0

    Google Scholar 

  40. Neher, M.: Complex Standard Functions and Their Implementation in the CoStLy Library. ACM Transactions on Mathematical Software 33(1), 27 pages (2007)

    Article  MathSciNet  Google Scholar 

  41. Ogita, T., Rump, S.M., Oishi, S.: Accurate Sum and Dot Product. SIAM Journal on Scientific Computing (SISC) 26(6), 19552̱0131988 (2005)

    Google Scholar 

  42. Overton, M.L.: Numerical Computing with IEEE Floating Point Arithmetic. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  43. Priest, D.: Algorithms for arbitrary precision floating point arithmetic. In: 10th IEEE Symposium on Computer Arithmetic, pp. 132–143 (1991)

    Google Scholar 

  44. Revol, N.: Motivation for an Arbitrary Precision Interval Arithmetic and the MPFI Library (2002), http://www.cs.utep.edu/interval-comp/interval.02/revo.pdf

  45. Revol, N., Rouillier, F.: MPFI, a multiple precision interval arithmetic library based on MPFR (2005), http://mpfi.gforge.inria.fr/

  46. Rotmaier, B.: Die Berechnung der elementaren Funktionen mit beliebiger Genauigkeit. Dissertation, Universität Karlsruhe (1971)

    Google Scholar 

  47. Rump, S.M.: Kleine Fehlerschranken bei Matrixproblemen. Dissertation, Universität Karlsruhe (1980)

    Google Scholar 

  48. Smith, D.M.: Algorithm 693; a FORTRAN package for floating-point multiple-precision arithmetic. ACM Transactions on Mathematical Software (TOMS) 17(2), 273–283 (1991)

    Article  MATH  Google Scholar 

  49. Stetter, H.J.: Staggered Correction Representation, a Feasible Approach to Dynamic Precision. In: Cai, Fosdick, Huang (eds.) Proceedings of the Symposium on Scientific Software. China University of Science and Technology Press, Beijing (1989)

    Google Scholar 

  50. Temme, N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. John Wiley & Sons Inc., Chichester (1996)

    Book  MATH  Google Scholar 

  51. Toussaint, F.: Implementierung reeller und intervallmäßiger Standardfunktionen für eine staggered-correction Langzahlarithmetik in C-XSC. Diplomarbeit, Institut für Angewandte Mathematik, Universität Karlsruhe (1993)

    Google Scholar 

  52. XSC website on programming languages for scientific computing with validation, http://www.xsc.de

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blomquist, F., Hofschuster, W., Krämer, W. (2009). A Modified Staggered Correction Arithmetic with Enhanced Accuracy and Very Wide Exponent Range. In: Cuyt, A., Krämer, W., Luther, W., Markstein, P. (eds) Numerical Validation in Current Hardware Architectures. Lecture Notes in Computer Science, vol 5492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01591-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01591-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01590-8

  • Online ISBN: 978-3-642-01591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics