
DTS: a Decentralized Tracing System

Kenji Masui‡ and Benoit Donnet† ?

‡ Tokyo Institute of Technology kmasui@gsic.titech.ac.jp
† Université catholique de Louvain benoit.donnet@uclouvain.be

Abstract. A new generation of widely distributed systems to measure
the Internet topology at the interface level is currently being deployed.
Cooperation between monitors in these systems is required in order to
avoid over-consumption of network resources. This paper proposes an
architecture for a distributed topology measurement (DTM) system that,
for the first time, decentralizes probing information. The key idea of
our proposal is that, by utilizing a shared database as a communication
method among monitors and taking advantage of the characteristics of
the Doubletree algorithm, we can get rid of a specific control point, and
a DTM system can be constructed in a decentralized manner. In this
paper, we describe our implementation of a DTM, called Decentralized
Tracing System (DTS). Decentralization within DTS is achieved using
various distributed hash tables (DHTs), each one being dedicated to
a particular plane (i.e., control or data). We also provide preliminary
evaluation results.

1 Introduction

The past ten years have seen a growing body of important research work
on the Internet topology [1]. The work is based on maps built by systems such
as Archipelago [2], probing the Internet topology from multiple vantage points
using the technique of traceroute. We call these distributed topology measurement
(DTM) systems. Large-scale DTM systems are attracting researchers’ attention
due to their better capabilities of tracking network dynamics. Given we have
more number of monitors for probing specific networks, each monitor can take a
smaller portion of the topology and probe it more frequently. Changes that might
be missed by smaller systems can more readily be captured by the larger ones,
while keeping the workload per monitor constant. However, building such a large
structure leads to potential scaling issues: the quantity of probes launched might
consume undue network resources and the probes sent from many vantage points
might appear as a distributed denial-of-service (DDoS) attack on end-hosts [3, 4].
The NSF-sponsored CONMI Workshop [5] urged a comprehensive approach to
distributed probing, with a shared infrastructure that respects the many security
concerns that active measurements raise. DTMs must coordinate the efforts of
their individual monitors.

In this paper, we propose the first decentralized architecture for a DTM,
called Decentralized Tracing System (DTS). We build on our prior work [3] in
introducing cooperation among tracing monitors, through the Doubletree topol-
ogy discovery algorithm. Doubletree takes advantage of the tree-like structure of
? Benoit Donnet is funded by the Fonds National de la Recherche Scientifique (FNRS

– Rue d’Egmont 5, 1000 Brussels).

routes, either emanating from a single source to multiple destinations or routes
converging from multiple sources to a single destination, in order to avoid du-
plication of effort for topology discovery. With Doubletree, tracing monitors
cooperate by exchanging information about which interfaces were previously
discovered through probing specific interfaces. Doubletree describes what must
be shared but, prior to this work, we did not specify precisely how it should be
shared in a distributed environment.

Our DTS makes use of a storage built on the technique of distributed hash
table (DHT) for decentralizing its control and data planes. Moreover, because
of the uncertain environment that DTMs must run in, where host machines are
susceptible to varying network load and possible disconnection, they require an
architecture that is not just scalable, but is also flexible and robust. We also
consider these matters on designing DTS (Sec. 2), and discuss the preliminary
evaluation of DTS (Sec. 3). Our implementation is freely available.1

2 Design and Implementation of DTS

2.1 DTM Systems Requirements

Control Plane The control plane of a DTM system refers to the management
of information regarding probing targets as well as information needed to decide
when probing must stop for a given target.

First, a DTM system has to share the target list, i.e., the list of IP addresses
(or names) of probe targets, between probing monitors. A target list must be
permanent in the system. However, one must have the opportunity to perform on
the fly some changes in the list, such as adding or removing items. For instance,
a target can refuse to be probed in the future and its IP address must be then
blacklisted and removed from the current target list. For the rest of this paper,
we refer to the target list as probing target (PT).

Second, a DTM system has to share information to guide probing in order to
make measurements more efficient. This information can help a probing monitor
to decide when to stop probing a given target. By definition, such an informa-
tion is volatile. In the following, we refer to this information as probing control
information (PC).

A DTM system must be dynamic. It should accept dynamic arrivals and
departures (volunteer or not) of monitors. Monitors join and leave the system
when they wish (flexibility). Such a dynamic behavior must have limited impact
on the shared information (robustness).

Finally, the control plane of a DTM system must ensure that each probing
monitor can perform measurements at its own pace. A slower monitor cannot
slowdown others monitors, which is another property for flexibility.

Data Plane The data plane of a DTM system refers to the topological data
collected during probing. In the fashion of the Archipelago data, the result data
set should be accessible by the research community. A DTM system has to keep
1 See http://www.n-tap.net/

... ...CiDi

... ...Ti

Probing Control

} }

Probing Data

}Probing Target

Fig. 1. Relationship between
shared information.

Probing Target DHT

Probing Control DHT Probing Data DHT

GetiiTarget

Geti
Puti
Rmi

iPC

Puti

Monitor

Fig. 2. DTS and the dedicated DHTs.

track of each probing result, for each probing monitor, from the beginning and
must ensure the long-term persistence of this data set.

The DTM system must provide an easy access to the data storage system. On
the one hand, probing monitors must be able to efficiently and easily store the
data collected so that the whole system avoids a bottleneck issue when storing
data. On the other hand, the information must be easily retrieved for research
purposes. In the following, we refer to the collected data as probing data (PD).

2.2 Design and Implementation

In this section, we describe the Decentralized Tracing System (DTS), the first
entirely distributed topology discovery system, and explain how our implemen-
tation meets the requirements provided in Sec. 2.1.

Previous works on Internet topology discovery include, among others, DIMES
[6] (publicly released as a daemon), Rocketfuel [7] (focusing on the topology of
a given ISP), Scriptroute [8] (a system that allows an ordinary Internet user
to perform network measurements from several distributed vantage points), and
iPlane [9] (construction of an annotated map of the Internet). All of these sys-
tems operate under central control. Indeed, unlike DTS, Rocketfuel and Scrip-
troute assume a centralized server to share stopping information (i.,e., the list of
previously observed IP addresses). Rocketfuel and Scriptroute do not consider
how the information regarding where to stop probing can be efficiently encoded
for exchange between monitors.

Global View of DTS In Sec. 2.1, we explained that a DTM system has to
share information for controlling probing but also for managing the data. DTS,
our implementation of a DTM system, requires three information to be shared
among monitors: the probing control information, the probing target, and the
probing data.

Sharing probing target and probing control information between a large set of
monitors might lead to scaling issues. For instance, it could be a problem if all the
monitors try to access the probing control information (or a particular item of the
probing control information) at the same time. Further, if all the monitors probe
the entire destination list at the same time, it is difficult to benefit from work
performed by others and, consequently, difficult to exchange probing control
information. A way to avoid such a problem would be to divide the target list into
chunks. A chunk is a portion of the entire target list and there is no overlapping

between chunks. Each monitor focuses, at a given time, on its own chunk. To
each probing target chunk is associated a specific probing information chunk
and a specific probing data chunk. Fig. 1 illustrates the relationship between a
specific probing target chunk, Ti, the related information used to guide probing,
Ci, and the topological data collected by monitors, Di.

The key idea of DTS is to enable communication between monitors through
the use of DHTs. For any information to share, DTS employs a dedicated DHT.
Given that each DTS monitor has to share three information, the whole system
requires three different DHTs, as depicted in Fig. 2.

Each value stored by a specific DHT refers to a chunk. For instance, the
Probing Target DHT on Fig. 2 stores target chunks. Further, a key in a DHT
will serve as the identifier for a particular chunk. For consistency reasons, the
key for a target chunk is the same that the key for the corresponding probing
information and data. To this end, a number is associated to each chunk and
the key of the chunk is calculated based on this number.

Control Plane The control plane of DTS is composed of several modules that
interact through the Agent engine.

A DTS monitor probes the network with its Prober engine, which implements
the Doubletree algorithm that is based on both backwards and forwards probing
as well as the stop sets [3]. The control plane of DTS interacts with the PC DHT
in order to store and retrieve the stop set corresponding to the current chunk.

Our approach in constructing DTS is somewhat similar to Chawathe et
al. [10] who evaluate whether it is possible to use DHTs as an application-
independent building block to implement a key component of an end-user posi-
tioning system. DTS is a DTM system that makes use of DHTs to share infor-
mation between monitors. One of the key ideas we had in mind when designing
DTS was its ease of deployment. We therefore choose to make DTS free from
DHT specifications. Instead, we provide a DHT Abstraction engine, making the
DHT transparent to a monitor as it interacts only with the DHT Abstraction.
In particular, the DHT Abstraction engine interacts with the interfaces provided
by N-TAP [11]. These interfaces allow other systems to utilize the features of
N-TAP including the shared database and communication channels among mon-
itors. The DHT Abstraction engine converts the information that are exchanged
between the control plane and N-TAP so that it can provide consistent interfaces
to other modules in DTS.

Data Plane Our implementation of the data plane is somewhat similar to
the control plane. The difference stands in the fact that the Prober engine is
replaced by a Data engine. The objective of the Data engine is to transform
the raw replies (i.e., ICMP received) into well formatted data that contains
additional information useful for the research community, such as timestamps,
stopping reasons, DTS monitor name, chunk identifier, etc.. The collected data
is, then, sent through the DHT abstraction to the PD DHT.

Adaptation to N-TAP According to the design presented so far, we describe
how DTS is implemented on an existing measurement platform, N-TAP [11].

0
50

0
15

00
25

00
35

00

of chunks

R
eq

ui
re

d
tim

e
/ m

se
c.

1 2 4 8 16 32 64 128 256 512

Fig. 3. Required time for retrieving one
chunk from PT DHT.

1 4 16

 5
0

10
0

15
0

20
0

25
0

0

5

10

15

of chunks

of

 fa
ilu

re
 m

on
ito

rs

A
vg

. #
 o

f p
ro

be
s

(b
y

al
iv

e
m

on
ito

rs
)

●
●

●

●

●
●

●

●
●

●

●
●

●

Completed chunks on failures

0% 25% 50% 75%

Fig. 4. Impact of the failure of monitors
and the chunk size on the number of probes.

Basically, the N-TAP platform consists of N-TAP agents that are assumed to
reside in multiple administrative domains. Besides the agents perform measure-
ment, the agents also play a role in forming a measurement overlay network with
the technique of Chord [12]. The overlay network is called the N-TAP network,
which provides some high-level functions such as shared database among agents.
In N-TAP, there are two roles of agents: core and stub [13]. The core agents have
to maintain a Chord-based peer-to-peer network for its DHT service, meanwhile,
the stub agents do not need to maintain the network but join the network via a
core agent. These two kinds of agents form a bi-layered peer-to-peer network.

For constructing the DTS, we prepare several stable nodes as core agents
that can serve the shared database. Since the number of the core agents has an
impact on the scalability of DTS, we should carefully choose the number. On
the other hand, in principle, DTS monitors play a role of a stub agent and do
not engage in the maintenance of the DHT service. The monitors, of course,
perform topology discovery based on the Doubletree algorithm, and can utilize
the dedicated DHTs (for PC/PT/PD) via a core agent. Briefly, core agents work
as a gateway of the DHT service for stub agents.

3 Evaluation

The decentralized architecture of DTS, which is based on the DHT-based
storage and the intercommunication among monitors via the storage (not the
direct communication among the monitors), provides some advantages. We can
summarize them with four points: flexibility, robustness, scalability, and modu-
larity. The robustness in DTS is related to the impact of monitor failures. When
a monitor (or several monitors) fails, the entire system must continue to work.
Further, the information lost (probing data and probing control) due to the fail-
ure must be limited. In this section, we evaluate the robustness of DTS through
the impact of the chunk size and monitor failure.

Even though DTS can maintain its function, the failure of monitors causes
the loss of data that are expected to be collected by the failed monitors. With
the scheme of chunks, the impact of data loss depends on the size of chunks:
the larger the chunks, larger the loss. Since collected data are handled in a
unit of a chunk and committed to the shared database after a monitor finishes

working on the chunk, the failure of a monitor causes the loss of the collected
data contained in a working chunk. Such data loss can be avoided by making
chunks smaller, however, this will increase the burdens on monitors due to more
frequent interaction with the shared database. Therefore, the chunk size is an
important factor to decide the robustness of DTS.

In order to investigate the relationship between the chunk size and the inter-
action with the shared database, we first performed an experiment that invokes
the handle of various sizes of chunks. We randomly chose 16 PlanetLab nodes and
deployed DTS on them. These nodes are set to the core agents that form a DHT-
based database. We also prepared a probing target list that contains 1024 valid
IPv4 addresses, and evenly divided them into C chunks

(
C = 2i; i = 1, 2, ..., 9

)
,

i.e., each chunk contains 1024/C IP addresses. These chunks were stored in the
PT DHT. In respective cases, we made all monitors retrieve all chunks from the
PT DHT and recorded the monitors behavior.

Fig. 3 illustrates the distribution of required time among all monitors for
retrieving one chunk in the respective cases of C. In this figure, the bottom
and top of a box respectively show the 25th and 75th percentiles of the required
time, and a bold line across a box shows the median value. The ends of a whisker
indicate the minimum and maximum values except for the outliers that lie more
than 1.5 times IQR (inter-quartile range) lower than the 25th percentile or 1.5
times IQR higher than the 75th percentile. One can see that the required time
decreases as the chunk number increases from 1 to 4, however the time just
shows a slight change from C = 4 to C = 512. This is because a dominant
element in the required time switches between the chunk size and the overhead
caused by the interaction with the PT DHT. In DTS, chunks are exchanged
based on the N-TAP’s messaging protocol. An N-TAP message usually contains
a 16-byte length header, a 47-byte length additional header, and user data. The
message is transmitted by TCP. The length of user data increases by 10 bytes
per one target IPv4 address. Therefore, the length of the received message for
retrieving one chunk is (63 + 10240/C) bytes. Up to C = 4, when the message
length was 2,623 bytes or more, the dominant part of the required time was the
time for transferring a considerable length of a message that contains a chunk.
When the value of C was larger than 4, the message length became short enough,
meanwhile, the overhead that derives from a routing procedure in DHT cannot
be ignored compared to the time for transferring a message.

Then how the chunk size affects the overall workload in the case of the failure
of monitors? This is also a considerable problem because DTS ensures monitors’
arbitrary joining and leaving and must also be robust to unexpected events,
such as monitor failure. In order to deal with this problem, we conducted an
experiment that involve the failure of some monitors in process of probing.

For the experiment, we randomly selected 16 PlanetLab nodes that reside
in different sites, and deployed DTS on these nodes. We also selected other 16
PlanetLab nodes as probing targets. Then we made the monitors perform the
procedures for topology discovery to these targets. We prepared three sizes for
chunks: one chunk, 4 chunks, and 16 chunks for 16 targets (these chunks contain

the same number of targets without overlapping). Some of the monitors were
configured to fail and unexpectedly leave the system at one of these timings:
when a monitor performed no probe (0 %), or when a monitor completed probes
for 25 %, 50 %, or 75 % of chunks. For example, the proportion of 25 % in the
case of 4 chunks means that a monitor fails after it finishes topology probing for
one of 4 chunks. We also changed the number of failed monitors between 0, 5, 10,
and 15, where the value of 0 means that all monitors finished probing without
failure. After the rest of the monitors, i.e., alive monitors, have finished topology
discovery to the targets, we looked into the number of probes performed by the
alive monitors.

Fig. 4 indicates the number of probes performed on each condition. The num-
ber of probes shown in this figure is the average values of the probes performed
by alive monitors. From these values, we can find how the failure of monitors on
each condition affects the overall workload in DTS. We note that, in the case
that the number of chunks is 1, the plots when the proportion of completed
chunks is 25 %, 50 %, or 75 % are not shown, because the monitors have only one
chunk to handle.

One significant point is that, when monitors have just one chunk, the number
of probes scarcely changes depending the number of failed monitors. In this case,
the failure of a monitor causes the complete loss of the data collected by the
monitor because the data are not committed to the shared database until the
monitor finishes the work for only one chunk.

We can also see that, in the case of the number of failure monitors is 15 and
the proportion of completed chunks is 0%, the number of probes shows little
change against the variation of the number of chunks. This is because only one
monitor kept alive and other monitors failed without performing probes, the
alive monitor cannot take advantage of the global stop sets originated by other
monitors. As a result, the merit of the Doubletree algorithm is decreased, and the
efficiency of topology discovery by the alive monitor was not improved so much.
Except for the cases that the number of failure monitors is 15, the number of
probes decreases as the chunk size becomes smaller (i. e., the number of chunks
gets larger). This means that the smaller chunk size ensures more rapid reflection
to the global stop sets, which results in the utilization of the stop sets from other
monitors.

Additionally, even if monitors fail, the chunks the failed monitors have al-
ready completed contribute to the overall efficiency of topology discovery. As seen
in this figure, the higher proportion of completed chunks basically decreases the
number of probes more. Especially in the cases where the proportion of com-
pleted chunks is 50 % or more, its impact is notable. The reason why we see it
brings a bigger impact on the number of probes when the number of chunks is
larger (16) will be similar to the one stated in the previous paragraph, i. e., more
rapid reflection to the global stop sets.

4 Conclusion

Current systems for discovering the Internet topology at the IP interface level
are undergoing a radical shift. Whereas the present generation of systems oper-
ates on largely dedicated hosts, numbering between 20 and 200, a new generation
of easily downloadable measurement software means that infrastructures based
on thousands of hosts could spring up literally overnight. These systems must be
carefully engineered in order to avoid abuse and duplication of efforts between
tracing monitors. To this end, monitors must share information to guide probing.
We stated, in this paper, that this sharing must be decentralized in order to be,
among others, scalable and robust. We identified the needs of such a system and
discuss how we implement them into what is, to the best of our knowledge, the
first fully decentralized tracing system. We are currently exploring the possibil-
ities of our implementation through the investigation of basic characteristics of
DTS deployed on the PlanetLab testbed.

References

1. B. Donnet and T. Friedman. Internet topology discovery: a survey. IEEE Com-
munications Surveys and Tutorials, 9(4):2–15, December 2007.

2. kc claffy, Y. Hyun, K. Keys, and M. Fomenkov. Internet mapping: from art to
science. In Proc. IEEE CATCH, March 2009.

3. B. Donnet, P. Raoult, T. Friedman, and M. Crovella. Efficient algorithms for
large-scale topology discovery. In Proc. ACM SIGMETRICS, June 2005.

4. N. Spring, D. Wetherall, and T. Anderson. Reverse-engineering the internet. In
Proc. HotNets-II, November 2003.

5. kc claffy, M. Crovella, T. Friedman, C. Shannon, and N. Spring. Community-
oriented network measurement infrastructure (COMNI) workshop report. ACM
SIGCOMM Computer Communication Review, 36(2):41–48, April 2006.

6. Y. Shavitt and E. Shir. DIMES: Let the internet measure itself. ACM SIGCOMM
Computer Communication Review, 35(5), October 2005.

7. N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with Rock-
etfuel. In Proc. ACM SIGCOMM, August 2002.

8. N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public internet mea-
surement facility. In Proc. USENIX USITS, March 2002.

9. H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishnamurthy,
and A. Venkataramani. iPlane: An information plance for distributed services. In
Proc. USENIX OSDI, November 2006.

10. Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker, and
J. Hellerstein. A case study in building layered DHT applications. In Proc. ACM
SIGCOMM, August 2005.

11. K. Masui and Y. Kadobayashi. N-TAP: A platform of large-scale distributed mea-
surement for overlay network applications. In Proc. DAS-P2P, January 2007.

12. I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. IEEE Transactions on Networking (ToN), 11(1):17–32, February
2003.

13. K. Masui and Y. Kadobayashi. A role-based peer-to-peer approach to application-
oriented measurement platforms. In Proc. AINTEC, November 2007.

