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Abstract. We investigate the computational complexity of several de-
cision, enumeration and counting problems related to pseudo-intents. We
show that given a formal context and a set of its pseudo-intents, checking
whether this context has an additional pseudo-intent is in conp and it is
at least as hard as checking whether a given simple hypergraph is satu-
rated. We also show that recognizing the set of pseudo-intents is also in
conp and it is at least as hard as checking whether a given hypergraph is
the transversal hypergraph of another given hypergraph. Moreover, we
show that if any of these two problems turns out to be conp-hard, then
unless p = np, pseudo-intents cannot be enumerated in output poly-
nomial time. We also investigate the complexity of finding subsets of a
given Duquenne-Guigues Base from which a given implication follows.
We show that checking the existence of such a subset within a specified
cardinality bound is np-complete, and counting all such minimal subsets
is #p-complete.

1 Introduction

Pseudo-intents are of significant importance in Formal Concept Anal-
ysis [8]. They are the premises of the implications in the Duquenne-
Guigues Base [10], which is a minimum cardinality set of implica-
tions, from which all valid implications of the underlying formal con-
text follow. Since their introduction, computational problems related
to pseudo-intents has attracted attention among the researchers in
the community.

One central computational problem related to pseudo-intents is
determining whether a given set is a pseudo-intent of a given for-
mal context. It has been shown in [14, 15] that this problem is in
conp. Unfortunately, the lower complexity bound for this problem
is still open. One other natural problem is enumerating the pseudo-
intents of a given formal context. The most well known algorithm
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for this purpose is the algorithm known as next closure [7]. However,
this algorithm always enumerates the concept intents as well as a
by product. Recently, an attribute incremental algorithm that com-
putes the pseudo-intents by processing a single attribute at a single
step has been introduced in [17]. In [18], an algorithm for checking
whether a set is pseudo-intent, has been presented. This algorithm
runs in time exponential in the size of the attribute set of the given
context. There, it has also been shown that this algorithm can be
optimized by using it on the reduced context. Another problem re-
lated to pseudo-intents is given a formal context, determining the
number of its pseudo-intents. In [13], it has been shown that this
counting problem is #p-hard, and in addition to this, the number of
pseudo-intents can be exponential in the size of the incidence rela-
tion of the formal context. Given this fact, it is clearly not possible
to enumerate all pseudo-intents of a formal context in time polyno-
mial time in the size of its incidence relation. In complexity theory,
for analyzing the performance of enumeration algorithms where the
number of solutions can be exponential in the size of the input, one
considers other measures. One such measure is to take into account
not only the size of the input, but also the size of the output. An
algorithm is said to run in output polynomial time [12] if it enumer-
ates the solutions in time polynomial in the size of the input and the
output. One advantage of an output polynomial algorithm is that it
runs in polynomial time (in the size of the input) when there are
only polynomially many solutions.

In the present work we investigate whether pseudo-intents can
be enumerated in output polynomial time. To this purpose we for-
mulate two decision problems that are of significant importance to
answer this question. In Section 3 we show that given a formal con-
text K and a set of its pseudo-intents P , checking whether K has an
additional pseudo-intent, i.e., a pseudo-intent that does not already
appear in P , is in conp and it is at least as hard as checking whether
a given simple hypergraph is saturated [3], which is a prominent
open problem in hypergraph theory [2]. In Section 4 we show that
recognizing the set of pseudo-intents, i.e., given a formal context K

and a set P of subsets of its attribute set, checking whether P is pre-
cisely the set of pseudo-intents of K is also in conp and it is at least
as hard as checking whether a given hypergraph is the transversal



hypergraph of another given hypergraph [3], which is also an open
problem. Moreover, we show that if any of these two problems turns
out to be conp-hard, then unless p = np, pseudo-intents cannot be
enumerated in output polynomial time. In Section 5 we investigate
the complexity of finding subsets of a given Duquenne-Guigues Base
from which a given implication follows. We show that checking the
existence of such a subset within a specified cardinality bound is np-
complete, and counting all such minimal subsets is #p-complete.

2 Preliminaries

We briefly introduce basic notions of Formal Concept Analysis [8].
Given a formal context K = (G,M, I) with the derivation operator
(·)′, and an implication P → Q, where P,Q ⊆ M , we say that
P → Q holds in K if the objects that have the attributes in P also
have the attributes in Q, i.e., P ′ ⊆ Q′. A set A ⊆ M respects an
implication P → Q if P 6⊆ A or Q ⊆ A. An implication P → Q

follows semantically from a set of implications L (written L |= P →
Q) if each subset of M respecting the implications in L also respects
P → Q. We denote the implicational theory of L, i.e, the set of all
implications that follow from L, with Imp(L).

In [10], a minimum cardinality set of implications from which all
valid implications of a given context follow has been characterized.
It is called the Duquenne-Guigues Base of a formal context. The left
handsides of the implications in a Duquenne-Guigues Base are called
the pseudo-intents of the underlying formal context. A set P ⊆ M is
a pseudo-intent if P 6= P ′′ and Q′′ ( P holds for every pseudo-intent
Q ( P . Equivalently, a set P ⊆ M is a pseudo-intent if P 6= P ′′, it
is a quasi-intent, and for every quasi-intent Q ( P , Q′′ ( P holds,
where a quasi-intent is defined as a set Q ⊆ M that satisfies R′′ ⊆ Q

or R′′ = Q′′ for any R ⊆ Q.

2.1 Hypergraphs and related problems

A hypergraph [2] H = (V, E) consists of a set of vertices V = {vi |
1 ≤ i ≤ n}, and a set of (hyper)edges E = {Ej | 1 ≤ j ≤ m}
where Ej ⊆ V . A set W ⊆ V is called a transversal of H if it
intersects all edges of H, i.e., ∀E ∈ E . E ∩ W 6= ∅. A transversal is



called minimal if no proper subset of it is a transversal. The set of
all minimal transversals of H constitute another hypergraph on V

called the transversal hypergraph of H, which is denoted by Tr(H).
Generating Tr(H) is an important problem which has applications
in many fields of computer science. It is defined as follows:

Problem: transversal enumeration (trans-enum)
Input: A hypergraph H = (V, E) on a finite set V .
Output: The edges of the transversal hypergraph Tr(H).

The well known decision problem associated to this computation
problem is defined as follows:

Problem: transversal hypergraph (trans-hyp)
Input: Two hypergraphs H = (V, EH) and G = (V, EG).
Question: Is G the transversal hypergraph of H, i.e., does Tr(H) = G
hold?

Computational complexity of these problems have now been ex-
tensively studied [3, 5, 6] and many important applications of these
problems have been identified in logic and artificial intelligence [4],
databases [16] and data mining [11]. trans-hyp is known to be
in conp, but so far neither a polynomial time algorithm has been
found, nor has it been proved to be conp-complete. Similarly, it is an
open problem whether trans-enum can be solved in output poly-
nomial time. We say that a decision problem Π is trans-hyp-hard
if trans-hyp can be reduced to Π by a standard polynomial trans-
formation. In the following we are often going to make use of this
notion for reducing some problems on hypergraphs to some problems
on pseudo-intents.

3 Complexity of enumerating pseudo-intents

For enumerating pseudo-intents, unfortunately no output polyno-
mial algorithm is known currently. The most well known algorithm
next closure [7] for enumerating the pseudo-intents always enumer-
ates the concept intents as well, i.e, its running time depends not
only on the number of pseudo-intents but also on the number of con-
cept intents. Since the number of concept intents can be exponential
in the number of pseudo-intents, this algorithm in general does not



run in output polynomial time. Similarly, the attribute-incremental
algorithm in [17] has also time complexity depending on both the
number of pseudo-intents and the number of concept intents. In the
light of our current knowledge, it is not even clear whether there
can be an algorithm at all that enumerates pseudo-intents in out-
put polynomial time. In order to investigate this further, let us first
formally define the problem.

Problem: pseudo-intent enumeration (pie)
Input: A formal context K.
Output: The set of pseudo-intents of K.

For solving this enumeration problem, the following decision problem
has crucial importance:

Problem: additional pseudo-intent (api)
Input: A formal context K = (G,M, I), and a set P of pseudo-intents
of K, i.e., P = {P | P ⊆ M, P pseudo-intent of K}.
Question: Is there an additional pseudo-intent, i.e., Q ⊆ M s.t. Q is
a pseudo-intent of K and Q 6∈ P?

Because, as Proposition 1 below shows, if this problem cannot be
decided in polynomial time, then unless p = np, pie cannot be solved
in output polynomial time.

Proposition 1. If api cannot be decided in polynomial time, then
unless p = np, pie cannot be solved in output-polynomial time.

Proof. Assume that we have an algorithm A that solves pie in
output-polynomial time. Let its runtime be bounded by a polyno-
mial p(IS,OS) where IS denotes the size of the input context and
OS denotes the size of the output, i.e., the set of all pseudo-intents
of the input context.

In order to decide api for an instance given by the context K and
a set P of pseudo-intents of K, we construct another algorithm A′

that works as follows: It runs A on K for at most p(|K|, |P|)-many
steps. If A terminates within p(|K|, |P|)-many steps, it means that P
contains all pseudo-intents of K, i.e., there is no additional pseudo-
intent. So A′ returns no. If A does not terminate after p(|K|, |P|)-
many steps, this implies that there is an additional pseudo-intent



that is not contained in P , so A′ returns yes. It is easy to see that
the runtime of A′ is bounded by a polynomial in |K| and |P|, that
is A′ decides api in time polynomial in the size of the input. 2

The proposition shows that determining the complexity of api
is indeed crucial for determining the complexity of pie. In the fol-
lowing we show that api is in conp, and it is at least as hard as the
complement of a prominent open problem on hypergraphs. However,
whether api is conp-hard remains unfortunately open.

Proposition 2. api is in conp.

Proof. Given an instance of api with the input K and P , construct
the set of implications L = {P → P ′′ | P ∈ P} and nondetermin-
istically guess a set Q ⊆ M . We can verify in polynomial time that
Q → Q′′ does not follow from L, i.e., the complement of the problem
is in np, thus api is in conp. 2

Before we can continue with the proof of lower bound, we need
to introduce some more notions from hypergraphs. A hypergraph
H = (V, E) is called saturated [3] if every subset of V is contained
in at least one of the edges of H, or it contains at least one edge of
H, i.e., for every W ⊆ V , W ⊆ E holds, or E ⊆ W holds for some
E ∈ E . It has been shown in [3] that checking whether a hypergraph
is saturated is conp-complete. There, a special case of the problem
where the given hypergraph is restricted to be simple, has also been
considered. A hypergraph is called simple if no edge contains another
edge.

Problem: simple hypergraph saturation (simple-h-sat)
Input: A simple hypergraph H = (V, E), i.e., ∀E,E ′ ∈ E .E ⊆ E ′ ⇒
E = E ′.
Question: Is H saturated, i.e., is it true that for every W ⊆ V ,
W ⊆ E holds or E ⊆ W holds for some E ∈ E?

It is not difficult to see that this problem is in conp. However, up to
now there has neither been a proof that it is conp-hard, nor a proof
that it is in p. It has been shown in [3] that this problem is under
polynomial transformations computationally equivalent to trans-
hyp, which as mentioned before is a prominent open problem in



hypergraph theory. In the following we show that our problem api
is at least as hard as the complement of simple-h-sat:

Theorem 1. api is cosimple-h-sat-hard.

Proof. Let an instance of simple-h-sat be given with the simple
hypergraph H = (V, E) where E = {E1, . . . , En}. From H we con-
struct the formal context KH = (G,M, I) where M = V , and G

and I are defined as follows: For every Ei, 1 ≤ i ≤ n, we create the
following objects: For every D ( Ei such that |D| = |Ei| − 1, we
create an object with the intent D. Ei has |Ei|-many such subsets.
We name these objects as gij where 1 ≤ i ≤ n and 1 ≤ j ≤ |Ei|. In
total, G contains

∑n

i=1
|Ei| objects. We construct P by just taking

the the edges of H, i.e, P = {E1, . . . , En}. Obviously, both KH and
P can be constructed in time polynomial in the size of H.

Note that KH has the following property: Since H is simple no
edge is contained in another edge, and obviously not in strict subsets
of any other edge. Then, for every i such that 1 ≤ i ≤ n, E ′

i = ∅
and E ′′

i = M . That is Ei is not closed. Moreover its all strict subsets
are closed. Because for every D ( Ei either there is an object whose
intent is D, or there is a set of objects such that the intersection of
their intents is D. This is due to the objects gij, where 1 ≤ j ≤ |Ei|,
whose intents are strict subsets of Ei with cardinality |Ei|−1. Thus,
the edges Ei are pseudo-intents of KH, which means that KH and P
indeed form an instance of api. We claim that H is not saturated if
and only if KH has an additional pseudo-intent.

(⇒) Assume H is not saturated. Then, there exists a W ⊆ V such
that for every i such that 1 ≤ i ≤ n, W 6⊆ Ei holds and Ei 6⊆ W

holds. Assume without loss of generality that W is minimal with
respect to property W 6⊆ Ei. Since W is not contained in any Ei,
and obviously not contained in any strict subset of any Ei, W ′ = ∅
and W ′′ = M . That is W is not closed. Take any X ( W . Since W is
minimal, X ⊆ Ei holds for some 1 ≤ i ≤ n. We know that Ei 6⊆ W ,
then X = Ei cannot hold, thus X satisfies X ( Ei. Since all strict
subsets of Ei are closed, X is closed. We have shown that W is not
closed but its all strict subsets are closed, thus W is a pseudo-intent.
Moreover, it is an additional pseudo-intent since W 6= Ej, for all
1 ≤ j ≤ n.



(⇐) Assume KH has an additional pseudo-intent, i.e., a pseudo-
intent Q such that Q 6= Ei for every 1 ≤ i ≤ n. Since strict subsets
of Ei are closed, Q cannot be a strict subset of any Ei. Thus Q 6⊆ Ei

for every 1 ≤ i ≤ n. Moreover, by definition Q contains the closure
of strictly smaller pseudo-intents. We know that for every 1 ≤ i ≤ n,
Ei is a pseudo-intent, and E ′′

i = M . Since Q does not strictly contain
M , it cannot strictly contain any Ei either. Together with Q 6= Ei,
this implies that Ei 6⊆ Q. We have shown that there exists a Q ⊆ V

such that Q 6⊆ Ei and Ei 6⊆ Q for every 1 ≤ i ≤ n, thus H is not
saturated. 2

The following is an immediate consequence of Theorem 1 above
and Theorem 4.12 in [3]:

Corollary 1. api is cotrans-hyp-hard.

Theorem 1 has some interesting consequences. The formal con-
text we have constructed in the proof has a special property; namely,
subsets of object intents also closed in this formal context. The proof
suggests that for the formal contexts of this form, the problem api
and the complement problem of simple-h-sat are computationally
equivalent problems, i.e., api is cosimple-h-sat-complete. For such
formal contexts, in addition to the reduction given in the proof, one
can also easily reduce api to the complement of simple-h-sat, i.e,
take an instance of api given with such a context and a set of pseudo-
intents of this context, construct an instance of simple-h-sat and
show that there is an additional pseudo-intent if and only if the con-
structed simple hypergraph is not saturated. It would definitely be
interesting to investigate whether formal contexts of this form are
natural in some application domains.

One other point that should be noted here is that simple-h-
sat lies at the boundary of intractability. As mentioned before, for
arbitrary graphs it is conp-complete [3]. The proof of Theorem 1
depends on the fact that the given hypergraph is simple. Whether
this restriction can be eliminated and thus the intractability result
carries over to api for arbitrary formal contexts, is definitely an
interesting question that should be investigated.



4 Complexity of recognizing the set of

pseudo-intents

Next we consider another problem about pseudo-intents, namely rec-
ognizing the set of pseudo-intents. More precisely, given a formal
context K = (G,M, I) and a set P ⊆ P(M) it is the problem of de-
ciding whether P is precisely the set of pseudo-intents of K. Clearly,
this problem can also be formulated as: Given a formal context K and
a set of implications L, decide whether L is the Duquenne-Guigues
Base of K. In the following we are going to investigate its computa-
tional complexity. We start with defining the problem formally:

Problem: pseudo-intents (pis)
Input: A formal context K = (G,M, I), and a set P ⊆ P(M).
Question: Is P precisely the set of pseudo-intents of K?

The following proposition shows that like computational complexity
of api, the complexity of pis has also crucial importance for the
solvability of pie in output polynomial time.

Proposition 3. If pis cannot be decided in polynomial time, then
unless p = np, pie cannot be solved in output-polynomial time.

Proof. The proof is almost the same as the proof of Proposition 1.
Again we assume that we have an algorithm A that solves pie in
output-polynomial time and construct another algorithm A′ that
runs A for at most p(|K|, |P|)-many steps. The only difference is
that, if A terminates within p(|K|, |P|)-many steps, then A′ first
compares the output of A with P and then returns yes if and only if
they are equal. If they are not equal, or if A has not yet terminated,
then A′ returns no. Thus if pie can be solved in output polynomial
time, pis can be decided in polynomial time. 2

In the following we show that just like in the case of api, pis
is also in conp, and it is at least as hard as trans-hyp. However,
whether pis is polynomial, or it is conp-hard also remains open.

Proposition 4. pis is in conp.



Proof. Given an instance with the input K = (G,M, I) and P , an
algorithm that decides pis for this instance first checks whether the
elements of P are pseudo-intents of K. If it encounters an element
that is not a pseudo-intent, it terminates and returns no. If every
P ∈ P is a pseudo-intent, then it continues with the second step.
This step is the same as the algorithm in the proof of Proposition 2.
The algorithm constructs the set of implications L = {P → P ′′|P ∈
P} and non-deterministically guesses a set Q ⊆ M . Obviously the
implication Q → Q′′ holds in K, thus if L is a base for K then
Q → Q′′ follows from L. Then the algorithm verifies that this is not
the case.

It is not difficult to see that this is a conp algorithm. In the
first step the algorithm performs polynomially-many checks each of
which can be done in conp by using the algorithm in [14]. In the
second step the algorithm non-deterministically guesses a Q and in
polynomial time verifies that Q → Q′′ does not follow from L, which
means that L is not a base, which implies that P is not the set of
all pseudo-intents of K. This step can be performed in conp as well,
thus the whole algorithm is a conp algorithm. 2

Theorem 2. pis is trans-hyp-hard.

Proof. Let an instance of trans-hyp be given by the hypergraphs
H = (V, EH) and G = (V, EG), where EH = {hi | 1 ≤ i ≤ n} and EG =
{gi | 1 ≤ i ≤ m}. From H we construct the context KH = (G,M, I)
where M = V , and G and I are defined as follows: for every edge
hi ∈ EH, create an object whose intent is the complement of hi, i.e.,
M \ hi. Let us denote this with hi. Moreover, for each set f ( hi

such that |f | = |hi| − 1, create an object with the intent f . hi has
|hi|-many such subsets. That is, for every edge hi ∈ EH we create
|hi|+1 objects, which means that KH contains

∑n

i=1
|hi|+n objects

in total. From G we construct PG by simply defining PG = EG. It
is easy to see that this construction indeed creates an instance of
pis and the context KH as well as the set PG can be constructed
in time polynomial in the sizes of H and G. Note that KH has the
following property: (∗) If B ⊆ M is an object intent, then any A ⊆ B

is closed since every such A can be expressed as the intersection of
some object intents. We claim that G is the transversal hypergraph
of H if and only if PG is precisely the set of pseudo-intents of KH.



(⇒) Assume G is the transversal hypergraph of H. Take an edge
of G, say g. g is a minimal transversal of H. By definition, for every
hi ∈ EH, g satisfies g ∩ hi 6= ∅, which is equivalent to g 6⊆ hi. This
means that g is not closed in KH. Because g is not contained in
any object intent, hence g′′ = M . Now take any f ( g. Since g

is a minimal transversal, f will not be a transversal. That is, for
some hi ∈ EH, f ∩ hi = ∅, which is equivalent to f ⊆ hi. Due to
Property (∗), such f are closed. This means that g is not closed in
KH, but its all proper subsets f are closed, which implies that g is a
pseudo-intent of KH. Thus we have shown that if G is the transversal
hypergraph of H, then PG is precisely the set of pseudo-intents of
KH.

(⇐) Assume PG is precisely the set of pseudo-intents of KH.
Take any pseudo-intent p ∈ PG. By definition, p is not closed. Due
to Property (∗), p is not contained in any object intent, i.e., p 6⊆ hi,
and thus p′′ = M . This means that p satisfies p ∩ hi 6= ∅ for every
edge hi ∈ EH, i.e., p is a transversal of H. Moreover, p is minimal.
Assume it were not. Then there would be another transversal q ( p,
and q would satisfy q 6⊆ hi for every hi ∈ EH as well. This would
mean that q is not closed in KH and has the same closure as p which
is M . This contradicts the fact that p is a pseudo-intent. Thus, p

is indeed a minimal transversal of H. We have shown that if PG is
precisely the set of pseudo-intents of KH, then G is the transversal
hypergraph of H, which completes the proof of our claim. 2

Theorem 2 has the following consequences: For the type of for-
mal contexts used in the reduction, i.e., where subsets of object in-
tents are also closed sets, pis and trans-hyp are computationally
equivalent with respect to polynomial transformations, that is pis is
trans-hyp-complete. One can take an instance of pis given with
such a formal context and easily reduce it to trans-hyp. In this
case, enumerating pseudo-intents (pie) and enumerating hypergraph
transversals (trans-enum) also become computationally equivalent
problems. In order to solve an instance of pie, one can construct the
corresponding hypergraph and solve trans-enum on this hyper-
graph for instance by using the algorithm in [6] by Fredman and
Khachiyan. The minimal transversals of this hypergraph will be the
pseudo-intents of the original formal context.



5 Finding explanations in the Duquenne-

Guigues Base

In the present section, we investigate the problem of finding explana-
tions in a Duquenne-Guigues Base, in other words, finding subsets
of a given Duquenne-Guigues Base that has a given implication as
consequence. In logic, for an arbitrary set of axioms, this problem
is known as axiom pinpointing. In [1] Baader et. al. have consid-
ered this problem for a Description Logic called EL+ and shown
that even for propositional Horn logic a given consequence can have
exponentially many minimal explanations, and finding a minimum
cardinality explanation is np-complete.

From a logical point of view, our implications in FCA are also
propositional Horn clauses. However, here we consider the above
problem when the given set of implications is not an arbitrary set of
implications, but it is the Duquenne-Guigues Base of a formal con-
text. Our motivation for considering the problem under this restric-
tion can be explained with the following scenario: Consider a domain
expert that explores a context with the attribute exploration method
and works with the resulting Duquenne-Guigues Base as a compact
representation of the implications holding in her formal context. She
notices that from this base, an implication that actually is not true
in her application domain follows. This means that during attribute
exploration she has wrongly confirmed some implication questions,
and needs to find which one of them lead to the erroneous impli-
cation. We start with the formal definition of an explanation in a
Duquenne-Guigues Base:

Definition 1. Let L be the Duquenne-Guigues Base of a formal con-
text on the set of attributes M , and P → Q be an implication such
that L |= P → Q. We say that a subset J ⊆ L explains P → Q if
J |= P → Q is satisfied. In this case we call J an explanation of
P → Q. We say that J is a minimal explanation of P → Q if no
proper subset of J explains P → Q.

In the following for a set of implications L we will sometimes
abuse the terminology and say “the Duquenne-Guigues Base of Imp(L)”
in order to mean the Duquenne-Guigues Base of the set of all im-
plications that follow from L. The following lemma gives a syntactic



characterization of the Duquenne-Guigues Base that will later help
us to recognize whether a given set of implications is a Duquenne-
Guigues Base.

Lemma 1. Let L = {Pi → Qi | 1 ≤ i ≤ n} be a set of implications
such that Pi, Qi ⊆ M and Qi 6⊆ Pi. L is the Duquenne-Guigues Base
of Imp(L) if and only if for every 1 ≤ i ≤ n the following two
conditions are satisfied:

– Pi is closed under L \ {Pi → Qi}, and
– Pi ∪ Qi is closed under L \ {Pi → Qi}.

Proof. (⇒) If L is the Duquenne-Guigues Base of Imp(L), then
P1, . . . , Pn are pseudo-closed sets of the closure system induced by
Imp(L). Take any Pi . By definition Pi contains the closure of all Pj

such that Pj ( Pi. Thus Pi is closed under L \ {Pi → Qi}. By the
definition of Duquenne-Guigues Base, Pi ∪ Qi is also closed under
L \ {Pi → Qi}.

(⇐) Assume L is a set of implications that satisfies the two con-
ditions. We claim that it is the Duquenne-Guigues Base of Imp(L).
In order to prove this we need to show:

i) Pi are the pseudo-closed sets of the closure system induced by
Imp(L), where 1 ≤ i ≤ n, and

ii) for every 1 ≤ i ≤ n, (Imp(L))(Pi) = Pi ∪ Qi holds.

Since for any X ⊆ M , L(X) = (Imp(L))(X) holds, we are going to
show these for L.

We start with ii): Take any Pi → Qi and let L′ = L\{Pi → Qi}.
We know that Pi ∪Qi is closed under L′, i.e., L′(Pi ∪Qi) = Pi ∪Qi.
Then Pi ∪ Qi is also closed under L, i.e., L(Pi ∪ Qi) = Pi ∪ Qi.
Obviously L(Pi) = L(Pi ∪ Qi) holds for every Pi → Qi ∈ L. Then
L(Pi) = Pi ∪ Qi holds. Thus we have shown ii.

In order to show i we need to show that:

1. Pi is not closed, i.e., Pi 6= L(Pi),
2. Pi is quasi-closed, i.e., for every R ⊆ Pi, L(R) ⊆ Pi holds or

L(R) = L(Pi) holds,
3. Pi strictly contains the closure of every strictly contained quasi-

closed set, i.e., for every quasi-closed set R ( Pi, L(R) ( Pi

holds.



We start with 1: We are given that for every 1 ≤ i ≤ n, Qi 6⊆ Pi.
Then Pi 6= L(Pi) holds trivially. For showing 2, take any Pi and
some R ⊆ Pi. Let L′ = L\ {Pi → Qi}. Since implicational closure is
monotone, L′(R) ⊆ L′(Pi). We are given that Pi is closed under L′,
i.e., L′(Pi) = Pi hence L′(R) ⊆ Pi. If L′(R) = Pi, then L(R) = L(Pi)
and we are done. If L′(R) ( Pi, then L′(R) = L(R) ( Pi and we are
done. Thus we have shown that Pi is quasi-closed.

Now we are going to show 3: Take any Pi and some quasi-closed
set R ( Pi. Since implicational closure is extensive, R ⊆ L(R) holds.
If L(R) = R then L(R) ( Pi and we are done. If R ( L(R), then
there exists an implication Pj → Qj, where 1 ≤ j ≤ n, such that
Pj ⊆ R and Qj 6⊆ R. Together with R ( Pi, this implies Pj ( Pi.

We know that Pi is closed under L \ {Pi → Qi}. Since Pj ( Pi,
this implies Qj ⊆ Pi, hence Pj∪Qj ⊆ Pi. Since Qi 6⊆ Pi, Qi 6⊆ Pj∪Qj.
We know that Pj ∪Qj is closed under L\{Pj → Qj}. If Pj ∪Qj = Pi

were satisfied, then Pj∪Qj would not be closed under L\{Pj → Qj}
since Qi 6⊆ Pj ∪Qj. Thus, Pj ∪Qj ( Pi. By using ii, we can rewrite
it as L(Pj) ( Pi.

We know that R is quasi-closed. Since Pj ⊆ R, L(Pj) ⊆ R holds
or L(Pj) = L(R) holds. By ii we know that L(Pj) = Pj ∪ Qj. Since
Qj 6⊆ R, L(Pj) ⊆ R cannot hold. Thus, L(Pj) = L(R) holds. To-
gether with L(Pj) ( Pi from above, this implies that L(R) ( Pi.
Thus we have shown 3, which completes the proof of i, which in
turn completes the proof of our claim. 2

Using Lemma 1, we can show that in the worst case, a given
implication can have exponentially many minimal explanations in a
given Duquenne-Guigues Base. The following example demonstrates
this situation:

Example 1. Consider the set of implications

L := {{x, bi−1} → {pi, qi}, {y, pi} → {bi}, {y, qi} → {bi} | 1 ≤ i ≤ n}

on the set of attributes M = {b0, x, y, }∪{bi, pi, qi | 1 ≤ i ≤ n}. Note
that none of the left handsides is contained in another left handside
or in the union of left and right handsides of another implication,
i.e., L satisfies the two conditions stated in Lemma 1 thus, L is the
Duquenne-Guigues Base of Imp(L).



Consider the implication {b0, x, y} → {bn} that follows from L. A
minimal explanation of this implication looks like either {{b0, x} →
{p1, q1}, {y, p1} → {b1}, . . .} or, {{b0, x} → {p1, q1}, {y, q1} → {b1}, . . .}.
That is at every step i such that 1 ≤ i ≤ n we have two choices
since the attribute bi can be generated either by the implication
{y, pi} → {bi}, or by the implication {y, qi} → {bi}. This means
that there are 2n minimal explanations. Since the size of L is lin-
ear in n, the example shows that there can be exponentially many
minimal explanations in a given Duquenne-Guigues Base.

5.1 Minimum cardinality explanation

Although there can be exponentially minimal explanations, given a
Duquenne-Guigues Base L and an implication ψ that follows from it,
it is not difficult to find one minimal explanation of ψ in L. We can
just start with L, iterate over the implications in L and remove an
implication if ψ still follows from the remaining set of implications.
Clearly, this algorithm terminates since L is finite. It is correct since
ψ still follows from the remaining set of implications and none of the
implications in the remaining set can be removed without destroying
this property.

However, if we want an explanation that is not only minimal
w.r.t. set inclusion, but also minimal w.r.t. cardinality, the problem
becomes harder. In [1], Baader et. al. have shown that for an ar-
bitrary set of implications (there called propositional Horn axioms)
finding an explanation within a specified cardinality bound is np-
complete. Here we consider this problem for the case when the given
set of implications is not arbitrary, but it is the Duquenne-Guigues
Base of implications holding in a closure system. It turns out that
under this restriction the problem does not become easier, i.e., it
remains np-complete.

Problem: minimum cardinality explanation (mce)
Input: A Duquenne-Guigues Base L, an implication L → R s.t.
L |= L → R and a natural number n.
Question: Is there an explanation of L → R in L with cardinality
less than or equal to n, i.e., is there an L′ ⊆ L such that L′ |= L → R

and |L′| ≤ n?



Theorem 3. mce is np-complete.

Proof. The problem is in np. We can nondeterministically guess a
subset L′ of L with cardinality n, and in polynomial time check
whether L′ |= L → R. This test can indeed be done in polynomial
time by checking whether R ⊆ L′(L).

In order to show np-hardness, we are going to give a reduction
from the np-complete problem vertex cover [9]. Recall that a
vertex cover of the graph G = (V,E) is a set W ⊆ V such that for
every edge {u, v} ∈ E, u ∈ W holds, or v ∈ W holds. The problem
vertex cover is defined as follows:

Problem: vertex cover
Input: Graph G = (V,E), a natural number n.
Question: Is there a vertex cover of G of size less than or equal to n?

Consider an instance of the vertex cover problem given by G =
(V,E), where V = {v1, . . . , vl}, E = {e1, . . . , ek}, and edge ei =
{vi1, vi2}. We construct an instance of the mce in the following way:
For every vertex v ∈ V we introduce an attribute mv, for every edge
ej, 1 ≤ j ≤ k, we introduce an attribute mej

, and finally two more
additional attributes ma and mb. Using these attributes we construct
the following set of implications:

L := {{mv} → {mej
| v ∈ ej, 1 ≤ j ≤ k} | v ∈ V } ∪

{{ma,me1
, . . . ,mek

} → {mb}}.

Note that none of the implications in L contains the left handside of
another implication in its left handside or in the union of its left and
right handsides. Thus, due to Lemma 1, L is indeed the Duquenne-
Guigues Base of Imp(L). In addition to L, we construct the following
implication ψ that follows from L: ψ : {ma}∪{mv | v ∈ V } → {mb}.
It is not difficult to see that both L and ψ can be constructed in time
polynomial in the size of G, and that ψ follows from L. We claim that
G has a vertex cover of size less than or equal to n, where n ≤ |V |,
if and only if L has a subset L′ that explains ψ, and the size of L′ is
polynomial in n.

(⇒) Assume W ⊆ V is a vertex cover of G. Then the following
set L′ ⊆ L constructed by using W is an explanation of ψ:

L′ := {{mw} → {mej
| w ∈ ej, 1 ≤ j ≤ k} | w ∈ W} ∪

{{ma,me1
, . . . ,mek

} → {mb}}.



Since W is a vertex cover, it contains at least one vertex from every
edge ej, 1 ≤ j ≤ k. Thus, {me1

, . . . mek
} ⊆ L′({mw | w ∈ W}). Since

{mw | w ∈ W} ⊆ {mv | v ∈ V }, this implies that {me1
, . . . mek

} ⊆
L′({mv | v ∈ V }), which in turn implies that {mb} ⊆ L′({ma}∪{mv |
v ∈ V }). Thus we have shown that L′ is indeed an explanation of ψ,
and that it contains exactly n + 1 implications.

(⇐) Now assume that L has a subset L′ of size m that is an expla-
nation of ψ. L′ should contain the implication {ma,me1

, . . . ,mek
} →

{mb}, since otherwise the attribute mb cannot be generated. More-
over, since the premise of this implication contains the attributes
me1

, . . . ,mek
, L′ should also contain implications of type {mw} →

{mej
| w ∈ ej} such that every mej

, 1 ≤ j ≤ k, is generated. This
means that the set W of such w is indeed a vertex cover since it
intersects every edge ej, 1 ≤ j ≤ k. Thus we have shown that W is
a vertex cover of G and it has size m − 1. This finishes the proof of
the claim that G has a vertex cover of size n if and only if L has a
subset of size n + 1 that explains ψ. 2

5.2 Counting minimal explanations

In applications where one is interested in all explanations that are
minimal w.r.t. set inclusion, it might be useful to know in advance
how many of them exist. Next we consider this counting problem. It
turns out that it is hard for the counting complexity class #p [19],
i.e., it is intractable.

Problem: #minimal explanation (#me)
Input: A Duquenne-Guigues Base L, and an implication L → R s.t.
L |= L → R.
Output: The number of all minimal explanations of L → R, i.e.,
|{L′ ⊆ L | L′ |= L → R and ∀L′′ ( L′.L′′ 6|= L → R}|.

Theorem 4. #me is #p-complete.

Proof. The problem is in #p. Given a Duquenne-Guigues Base L,
an implication L → R that follows from L, and a set L′ ⊆ L we
can in polynomial time verify whether L′ |= L → R just by checking
whether R ⊆ L′(L) holds.

In order to show #p-hardness, we are going to give a parsimo-
nious reduction from the #p-complete problem #minimal vertex



cover, which is the problem of counting the minimal vertex cov-
ers of a graph. It has been shown to be #p-complete in [20]. In
our reduction we are going to use the same construction as in the
proof of Theorem 3, i.e., from a given graph G we construct the
same Duquenne-Guigues Base L, and the same implication ψ as in
Theorem 3. What we additionally need to show here is that this con-
struction establishes a bijection between minimal vertex covers of G
and minimal explanations of ψ in L.

First we show that the construction in the proof of Theorem 3
establishes an injection: assume W ⊆ V is a minimal vertex cover
of G, then the following set of implications is a minimal explanation
of ψ in L:

L′ := {{mw} → {mej
| w ∈ ej, 1 ≤ j ≤ k} | w ∈ W} ∪

{{ma,me1
, . . . ,mek

} → {mb}}.

In the proof of Theorem 3 we have already shown that L′ is an
explanation. Here we need to show that it is minimal as well. If W is
minimal, then removal of any vertex w from W will result in a Y (

W such that vj1 6∈ Y and vj2 6∈ Y for some edge ej. This implies that
removal of the corresponding implication {mw} → {mej

| w ∈ ej}
from L′ will result in a L′′ such that the attribute mej

does not
appear on the right handside of any of the implications in L′′, which
means that L′′ cannot explain ψ, i.e., L′ is minimal.

Now we show that it establishes a surjection: assume L′ is a
minimal explanation. Then every mej

, 1 ≤ j ≤ k, occurs at least
once on the right handside of some implication of the form {mw} →
{mej

| w ∈ ej}, where w ∈ W , because otherwise L′ cannot explain
ψ. We have already shown in the proof of Theorem Theorem 3 that
such a W is a vertex cover. Moreover, removal of any implication
of this form from L′ results in a set of implications that is not an
explanation. This is because L′ is a minimal explanation. That is,
removal of any w from W results in a Y ( W such that vj1 6∈ Y and
vj2 6∈ Y for some 1 ≤ j ≤ k, i.e., W is minimal. Thus we have shown
that our construction establishes a bijection between minimal vertex
covers and minimal explanations. 2



5.3 Computing all minimal explanations

In Example 1 we have demonstrated that a given implication can
have exponentially many minimal explanations in a given Duquenne-
Guigues Base. Given this fact, it is clearly not possible to enumerate
all minimal explanations in time polynomial in the size of the input.
In this case one can investigate the existence of an output polynomial
algorithm for this problem:

Problem: minimal explanation enumeration (mee)
Input: A Duquenne-Guigues Base L and an implication L → R s.t.
L |= L → R.
Output: The set of all minimal explanations of L → R in L, i.e.,
{L′ ⊆ L | L′ |= L → R and ∀L′′ ( L′. L′′ 6|= L → R}.

In order to investigate the complexity of this enumeration problem,
we need to investigate the following decision problem:

Problem: additional minimal explanation (ame)
Input: A Duquenne-Guigues Base L, an implication L → R s.t.
L |= L → R, and a set of minimal explanations of L → R in L, i.e,
J = {Ji | Ji ⊆ L,Ji |= L → R and ∀J ′ ( Ji. J

′ 6|= L → R}
Question: Is there a minimal explanation that is not already listed
in J , i.e., J ⊆ L such that J |= L → R, ∀J ′ ( J . J ′ 6|= L → R

and J 6∈ J ?

Because if ame is not in p, there cannot be an algorithm that solves
mee in output polynomial time (unless p = np). We can show it by
the same argument used in the proofs of Propositions 1 and 3.

Proposition 5. If ame cannot be decided in polynomial time, then
mee cannot be solved in output-polynomial time unless p = np.

Proof. Assume there exists an algorithm that solves mee in output
polynomial time. In order to solve an instance of ame given with
the input (L, L → R,J ), we run this algorithm on the instance
of mee given with the input (L, L → R) for at most |J | steps. If
the algorithm terminates before |J | steps then we check whether
the output of the algorithm is equal to J . If the algorithm has
not terminated after |J | steps, J is not the set of all minimal
explanations. Since this algorithm runs in time polynomial in the



size of the set of all minimal explanations, we can decide ame in
polynomial time. 2

It is not difficult to see that ame is in conp. Given an instance of
ame with the Duquenne-Guigues Base L, the implication ψ and a
set of minimal explanations J , we can nondeterministically guess a
minimal subset of L that is not already contained in J and in poly-
nomial time verify that this subset does not explain ψ. Unfortunately
we do not know the lower bound of this problem at the moment. It
is definitely an interesting question whether this problem, like api
and pis, is also related to the decision problems simple-h-sat and
trans-hyp from hypergraph theory.

6 Concluding remarks and future work

We have considered several decision, enumeration and counting prob-
lems related to pseudo-intents. Among them, pie, the problem of
enumerating pseudo-intents has been the central point of our in-
terest. The question whether this problem can be solved in output
polynomial time or not remains unfortunately open. However we
have formulated two decision questions, namely api and pis, that
are crucial in determining the complexity of pie. Some interesting
consequences of our results can be summed up as follows:

– If any of the problems api, or pis turns out to be conp-hard, then
unless p = np, there cannot be an algorithm that solves pie in
output polynomial time (Proposition 1, Proposition 3).

– Showing that any of the problems api or pis is polynomial implies
that the open problems trans-hyp and simple-h-sat are also
polynomial (Theorem 1, Theorem 2, [3]).

– Even if trans-hyp and simple-h-sat turn out to be polyno-
mial, api and pis can still be conp-hard, thus it can still be the
case that pie is not solvable in output polynomial time.

– Even if api and pis turn out to be polynomial, it can still be the
case that pie is not solvable in output polynomial time.

Moreover, if checking whether a given set if a pseudo-intent of a
given formal context turns out to be conp-hard, then pie cannot be
solved in output polynomial time, since solutions that have inherent



complexity cannot be enumerated in output polynomial time unless
p = np [12]. We have also investigated the complexity of finding
explanations, i.e., subsets from which a given implication follows,
in a given Duquenne-Guigues Base. We have shown that finding
a minimum cardinality one is np-complete, and counting minimal
explanations is #p-complete.

As future work, we are going to work on determining the exact
complexity of the problems api and pis. For api, we are going to
investigate whether the hardness result [3] on hypergraph saturation
for arbitrary graphs carries over to api on arbitrary formal contexts.
For pis, we are going to investigate the types of formal context where
pis and trans-hyp (and thus pie and trans-enum) become com-
putationally equivalent problems, and find out whether this type of
formal contexts are natural in some applications, and how often they
occur in practice. One other interesting question is of course the lower
complexity bound for checking whether a set is pseudo-intent. We
are going to investigate whether this problem is also related to some
hypergraph problem. In addition to this, we are going to work on
determining the exact complexity of counting pseudo-intents.Note
that in [14, 15] it has been mentioned that this problem is in #p,
but this is not true. The results there only imply that this problem
is in #·conp, which contains #p. On the explanations side, we are
going to work on determining the exact complexity of ame.
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