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Abstract

Many domains in the real world are richly structured, containing a diverse set of agents char-
acterized by different set of features and related to each other in a variety of ways. Moreover,
uncertainty both on the objects observations and on their relations can be present. This is the
case of many problems as, for example, multi-target tracking, activity recognition, automatic
surveillance and traffic monitoring.

The common ground of these types of problems is the necessityof recognizing and under-
standing the scene, the activities that are going on, who arethe actors, their role and estimate
their positions. When the environment is particularly complex, including several distinct entities
whose behaviors might be correlated, automated reasoning becomes particularly challenging.
Even in cases where humans can easily recognize activities,current computer programs fail
because they lack of commonsense reasoning, and because thecurrent limitation of automated
reasoning systems. As a result surveillance supervision isso far mostly delegated to humans.

The explicit representation of the interconnected behaviors of agents can provide better
models for capturing key elements of the activities in the scene. In this Thesis we propose the
use of relations to model particular correlations between agents features, aimed at improving
the inference task. We propose the use of Relational DynamicBayesian Networks, an extension
of Dynamic Bayesian Networks with First Order Logic, to represent the dependencies between
an agent’s attributes, the scene’s elements and the evolution of state variables over time. In
this way, we can combine the advantages of First Order Logic (that can compactly represent
structured environments), with those of probabilistic models (that provide a mathematically
sound framework for inference in face of uncertainty).

In particular, we investigate the use of Relational DynamicBayesian Networks to represent
the dependencies between the agents’ behaviors in the context of multi-agents tracking and
activity recognition. We propose a new formulation of the transition model that accommodates
for relations and present a filtering algorithm that extendsthe Particle Filter algorithm in order
to directly track relations between the agents.

The explicit recognition of the relationships between interacting objects can improve the un-
derstanding of their dynamic domain. The inference algorithm we develop in this Thesis is able
to take into account relations between interacting objectsand we demonstrate with experiments
that the performance of our relational approach outperforms those of standard non-relational
methods.

While the goal of emulating human-level inference on scene understanding is out of reach
for the current state of the art, we believe that this work represents an important step towards
better algorithms and models to provide inference in complex multi-agent systems.



IV

Another advantage of our probabilistic model is its abilityto make inferenceonline, so that
the appropriate cause of action can be taken when necessary (e.g.,raise an alarm). This is an
important requirement for the adoption of automatic surveillance systems in the real world, and
avoid the common problems associated with human surveillance.

Keywords: Multi Target tracking, Probabilistic Relational Models, Bayesian Filtering, Particle
Filtering.
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Chapter 1

Introduction

There are finer fish in the sea than have ever been caught.

Irish proverb

Many domains in the real world are richly structured, containing a diverse set of objects
characterized by attributes and related to each other in a variety of ways. A central aspect
of human intelligence is the ability to make inference in these structured environments using
abstract knowledge. For example, human reasoning is able toeasily infer the participants and
their role in a particular activity or situation and it is able to recognize the activity itself.

The contextis often a key element that facilitates our understanding ofthe world around.
Imagine, for instance, a scene where someone in the street iswaving his hand. It can either
be that the subject is greeting someone, perhaps a friend, orthat is hailing a taxi. While we,
humans, are very good at making this kind of distinctions, automated reasoning encounters
great difficulties.

When the context is particularly complex, including several distinct entities whose actions
might be correlated, automated reasoning becomes particularly challenging. Imagine, for in-
stance, a road traffic scenario where driving behaviors are dependent on a quantity of variables,
as road and traffic conditions, time, etc. Detecting therelationsbetween the cars (who is trav-
eling together with who, the traffic due to an important matchin the nearby stadium) we can
identify suspicious behaviors and support traffic monitoring.

In several applications, as for example surveillance systems, it is important to provideonline
reasoning, so that the appropriate cause of action can be taken when necessary (e.g.,raise an
alarm).

As another example, consider the problem of the surveillance of a big port that use a sensor
network to monitor movements in the harbor. Criminals engaged in illicit trades on approaching
boats try to minimize exposure to the port authorities. The port’s sensor system might be able
only to catch a fraction of the boats trajectories, or identify a fraudulent activity when it is too
late for intervention; moreover, weather conditions couldpossibly limit the reliability of the
sensors.

Under noisy observations condition, an automated reasonerneeds to make use of all the
information available in order to assess the most probable situation both in terms of individual
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attributes (in our example, the most likely position of the boats) and joint attributes or relations
(the connection between the boats: legal exchange, illegalencounter, no connection).

Indeed, complex contexts reasoning are also characterizedby uncertainty not only on ob-
jects’ observation but also on their relations.

In this work, we focus on multi-target tracking for activityrecognition, in particular we
study how to use explicit recognition of the relationships between interacting objects to improve
the understanding of their dynamic model. The proposed approach has been validated on two
different scenarios: a traffic monitoring system and a harbor surveillance system.

1.1 Relational multi-target tracking

Traditional (positional)tracking is defined as the problem of associating an object moving in
a scene with its most likely trajectory over time. If performedonline it requires to make such
association at each time step. When more than one object is present in the scene, we have to
deal with the problem ofmulti target tracking. Multi target tracking is the problem of jointly
tracking a (possibly unknown) number of objects.

In this work we consider, in addition to the positions and theobject’s attributes, relations
that represent joint properties of the objects.Relational multi target trackingis the problem
of associating a set of objects or agents1 with a full specification of the evolution of the value
of their attributes and relations over time. Relational tracking is a paradigm first introduced in
(Guibas, 2002) that we think can be seen as a general abstraction for many problems of context
understanding.

In our work we model the relations in the context as a set of First-Order Logic (FOL) pred-
icates. In any given situation, the state of the system is characterized by the evaluation of these
predicates. In domains as sport, different players often move towards a specific coordinated
action. In this case, the state represents the players’ position, the type of action (e.g.,move on
the side, cross in the center and shoot) and the participants(the players). The relations are not
usually observed directly2 as, for instance, we cannot recognize the type of action by simply
looking at a single still frame extracted from a video. Instead, relations are inferred using the
history of past observations and prior knowledge. Because of the uncertainty of observations (as
motivated in the previous section), we represent our knowledge probabilistically, maintaining
beliefs(conditional probabilities of the state given the observations) and updating them upon
the acquisition of new information.

Furthermore, probabilistic inference can provide information that can be used to reason
about the most likely course of action that will happen next.Returning to the sport example,
the observations of previous phases of the game, combined with prior knowledge about playing
habits, can be used to recognize the beginning of a particular pattern, and predict future moves.

An important contribution of this work is to show how modeling relations is useful with
respect to two different goals:

1In this work we use the terms object, target or agent quite interchangeably; however we might use the term
agent to underline the ability of proactive and deliberative reasoning.

2This will be discussed in details in Chapter 3
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• Relations can improve the efficiency of the positional tracking. The information contained
in the relationships can improve prediction, resulting in abetter estimation of objects’
trajectories with respect to the state of the art algorithms.

• Relations can be monitored as a goal in itself. Reasoning about relationship between
different moving objects can be helpful to identify a particular activity. This is the case in
many applications like traffic prediction or consumer monitoring, anomaly detection or
activity recognition.

The achievement of these goals is based on the use of tools that extend the state of the art of
probabilistic relational reasoning to dynamic domains. Tothis aim, we useRelational Dynamic
Bayesian Networks(RDBNs) (see Chapter 2) as a formalism to model objects and relations
between moving objects in the domain. In our relational dynamic Bayesian network-based
model, relationships are considered as random variables whose values may change over time.
While tracking the objects in the domain, we also track the evolution of their relationships,
using a novel algorithm calledRelational Particle Filter(RPF) (see Chapter 3).

1.1.1 Relational Dynamic Bayesian Networks

Logical and probabilistic reasoning have been traditionally seen as very different fields by Ar-
tificial Intelligence community. first-order logic systemscan deal with rich representations but
they cannot treat uncertainty. On the other hand, probabilistic models can deal well with uncer-
tainty in many real-world domains, but they operate on a propositional level, and cannot scale
to cases where several instances are present. Moreover, logic languages give an advantage in
terms of expressivity.

Recently a lot of interest has arise towards approaches thatintegrate these two types of
models; a prominent example is the work of Jaeger (Jaeger, 1997) on Relational Bayesian
Networks (RBNs). A relational Bayesian network is a probabilistic graphical model whose
nodes represent first-order logic predicates and whose probability distribution takes into account
first-order logic quantifiers.

However in many situations the state evolves over time. As far as we know, not much
work has been done to incorporate logical reasoning into dynamic domains; inference in such
domains has been carried on only in propositional terms, forinstance using Dynamic Bayesian
Networks (DBNs) (Murphy, 2002).

In this Thesis we present relational dynamic Bayesian networks that are an extension of
dynamic Bayesian network to first-order logic3.

A relational dynamic Bayesian network is defined as a couple of relational Bayesian net-
works: the first provides the prior of the state of the relational domain, the second gives the
probability distribution between time steps.

3The authors are aware of the works of Sanghai, Weld and Domingos on Relational Dy-
namic Bayesian Networks; however the paper presenting their work has been retracted. Refer to:
http://www.aaai.org/Library/JAIR/Vol24/jair24-019.php
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1.1.2 Relational Particle Filter

To accomplish both the task of tracking related multiple targets and recognizing complex activ-
ities, in this Thesis, we introduce a novel inference algorithm able to track both the position of
the objects in the scene and their possible relations.

We extend the particle filter algorithm to deal with relations, introducing a new algorithm
calledRelational Particle Filter(RPF). A particle filtering technique recursively implements
a Monte Carlo sampling on the belief over the state of the domain. In order to deal with the
increased complexity of the state due to the introduction ofrelations, we adopt a particular
state representation that factors the state in two parts: the state of the attributesand thestate of
relations. Our relational particle filtering takes advantage of this factorization and implements
a two phases sequential Monte Carlo sampling.

1.2 Context Modeling

Context interpretation and context-based reasoning have been shown to be key factors in the
development of algorithms for object recognition. In this field the context is the scene where ob-
jects are and the knowledge about it, is expressed by the beliefs over the scene (see (Derek Hoiem
& Hebert, 2006) and (Elidan, Heitz, & Koller, 2006) as examples). Knowing the scene can im-
prove the task of objects recognition; the knowledge about the identity of the objects improves
the belief over the scene.

In this work we loosely consider the concept of context as “what is happening around the
object we are tracking”. We take advantage of the knowledge about what is happening in the
scene (which “relations” are believed to be true in the scene) to improve the tracking and of the
knowledge about the state of the objects to improve our knowledge about the relation between
the objects in the scene (i.e. the context).

In the last years, computer vision has mostly dealt with the recognition of activities com-
posed by the sequence of simple movements (Yan Ke & Hebert, 2007): in this Thesis we show
how reasoning about relations between objects and/or the sequence of single different actions
can help us in recognizing more complex activities.

To understand how relations can be used for context modeling, we describe the two scenarios
that have been used as validating examples in this Thesis.

1.2.1 Scenario 1: traffic monitoring

Consider several vehicles traveling on a one-lane highway along which several highway en-
trances and exits are present. We want to track the vehicles,which are moving non-determi-
nistically so that the future speed - and thus future position - cannot be exactly predicted by
knowing the current state. As we have a limited number of possibly faulty and noisy sensors,
we want to exploit the information that we can acquire from recognizing common behaviors
due to relations.

The goal is to be able to track moving objects taking into account relations between them.
For example, a vehicle moving at very high speed will eventually have to slow down if the cars
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in front are moving substantially slower. Or we might want tomonitor which cars are likely
to be traveling together (because on a trip together or delivering to the same place). The value
of the relationTravelingTogether(X, Y ) for a givenX andY cannot be computed on the
basis of the current values of the other variable values. We need, instead, to infer this relation
from the scene and from previous observations, and reason about ourbeliefsthat two cars are
traveling together.

A simple prior definition of this probability might express that two cars are very likely to
be traveling together if they have the same size and color andenter at the same entrance in
temporal proximity.

During the tracking, we update the belief with increased or decreased evidence about the
fact that carX and carY are traveling together. For example, the update should satisfy the
following intuition:

• if car X exits but not carY , the belief they are traveling together is greatly decreased:
two cars that take different directions are not usually traveling together

• if X andY are at a great distance for a long period; the belief probability decreases with
respect to the number of time steps in which they are far away:the longer and the farther
away, the less likely they are to travel together

• the closerX andY are, the more likely the belief to travel together increases

Furthermore for this relation we can express the correlation between objects in the same
relation: the observation that two vehicles are behaving similarly, produces evidence that they
are in relation (TravelingTogether), but once we are quite sure that two vehicles are traveling
together we can use this belief to predict that they will behave similarly in the future. We can
then anticipate the behavior of all components of a group, predicting the value of other variables
and relations.

These intuitive patterns for belief update are given by a precise and sound probabilistic
semantics in the graphical model that we use.

1.2.2 Scenario 2: harbor surveillance system

Consider the problem of monitoring the approaches to a harbor from the sea and in particular
the problem of detecting any behavior that might indicate that a ship represents a security risk
or a law infringement. Monitoring the coast is complicated by the sparse, irregular, imprecise,
and not always reliable nature of the surveillance data. Of course, the problem becomes even
worst when multiple ships are approaching the coast.

Taking into account relations can improve the tracking. Forexample, if we know that a
couple of ships are sailing together because in a tour together or because they belong to the
same company (i.e., if we have a certain belief over their relation), we know theywill have a
similar behavior or a similar motion and this will help us in tracking them. On the other hand, if
we know there are multiple boats approaching the coast, we presume they will avoid collision,
so we can predict their behavior such that they will not come too near one to the other.
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Taking into account the relations between objects allows usto recognize complex activities
like, for example, the “rendezvous” between ships. The activity of rendezvous is the activity of
two ships that stop or travel slowly together to exchange goods. Common surveillance systems
cannot detect the good that has been exchanged and have to detect those encounters from the
behavior of the two ships.

A priori probability of two ships doing a rendezvous can be learned from data. During the
tracking, we update the belief with increased or decreased evidence about the fact that two boat
are involved in a rendezvous or not. For example, given two ships (X andY ) just entered the
scene,p(rendezvous(X, Y ) = true) should satisfy the following intuition:

• if the distance between boatX and boatY increases, the belief they are doing a ren-
dezvous greatly decreased: two boats should be close to do a rendezvous

• if boat X decreases its speed but not boatY the belief they are doing a rendezvous de-
creased: to do a rendezvous, two boats have to decrease theirspeed at almost the same
time

Dealing with relations between moving objects allows us to distinguish the activity of ren-
dezvous from the “pick up” (a vessel dropping a package into the water, that is quickly found
and picked up by another vessel). Both these encounters havethe common pattern of the two
ships that approach each other and subsequently go apart, but in the rendezvous activity the two
ships travel for a while together. Studying relations between ships allows us to recognize each
of these two incidents and distinguish both of them from two ships that are avoiding each other,
when one stop to let the other pass.

Furthermore, once we are quite sure that two boats are (or arenot) involved in an encounter,
we can use this belief to predict their future behavior.

1.3 Objectives and Contributions

This Thesis has the goal of studying how it is possible to reason with relations between moving
objects in the context of multi-target tracking. An important part is devoted to literature review
in both fields of probabilistic reasoning (and in particularrelational reasoning) and computer
vision. We mainly focus on the concept of relations in dynamic domains.

One of the main contributions of the Thesis is the development of an inference algorithm
able to handle with relations between moving objects. The algorithm is a two-phases sequential
Monte Carlo technique that samples the probability of the state of the objects given the previous
state in two steps: the first step predicts the state of the objects’attributes and the second deals
with the prediction of the relations between them. The key point is to divide the state of the
relational domain instate of the attributesandstate of relationsand make the state of relations
being probabilistically independent by the state of the attributes at the previous time-step.

A large part of this work concentrates on the validation of these techniques in different
scenarios. In particular we show some results in the domain of traffic monitoring and activity
recognition.
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We evaluate the performance of the proposed method comparing it to a method that uses a
standard sequential Monte Carlo technique and to heuristicalgorithms that make use of static
rules. Results show that our technique improves the abilityof detecting anomalous behaviors
without increasing the computational cost of the system. Wealso validate the hypothesis (dis-
cussed before) that relational reasoning gives us predictions that improve positional tracking.

1.4 Overview

In the following, we present the organization of the Thesis.This chapter has introduced the
basic ideas and the motivations of this work. The remain of the Thesis can be divided in two
parts. In the first part, we start describing the problem of relational reasoning and the problem of
reasoning in dynamic domains, introducing the proposed modeling approach based on relational
dynamic Bayesian networks (Chapter 2). Then we introduce the inference problem and our
relational particle filter algorithm (Chapter 3).

In the second part of this Thesis, we discuss possible applications of our model compared
with the state of the art (Chapter 4) and we evaluate our approach on different scenarios (Chap-
ter 5); finally, we describe possible improvements (Chapter6) considering other possible
applications and draw our conclusions.

Chapter 2 We present the state of the art for reasoning with relations in uncertain domains. We
define first-order logic, probabilistic relational models and dynamic Bayesian networks.
Finally we introduce relational dynamic domains and relational dynamic Bayesian net-
works.

Chapter 3 We address the problem of inference in relational dynamic domains introducing our
relational particle filtering algorithm.

Chapter 4 In this chapter we consider particular applications and discuss the fundamental
problems and challenges posed by the design of activity recognition and surveillance
systems, reviewing relevant works from the computer visionfield.

Chapter 5 This chapter presents the results obtained applying our method to both the problem
of traffic monitoring and harbor surveillance.

Chapter 6 We provide a brief summary of the contributions and limitations of this Thesis and
we discuss promising future research directions.





Chapter 2

Modeling uncertainty in Relational
Dynamic Domains

I’m Winston Wolfe. I solve problems.

from the movie “Pulp fiction”

Uncertainty is a fundamental and irreducible aspect of our knowledge about the world;
probabilistic models provide a natural, sound and coherentfoundation for its representation.

In this chapter we present a novel framework to model uncertainty in dynamic relational
domains. The uncertainty about the state of the world can be modeled with a joint distribution
for a set of random variables representing the attributes ofthe objects in our world. In principle
we could just list all the complete instantiations of the objects’ attributes and specify a proba-
bility for each one (this is the “atomic” or “naive” representation); as long as the probabilities
we specify add up to one, then this specification will indeed define a unique distribution. How-
ever, this approach is not generally feasible for real-world scenarios: the number of cases grows
exponentially with the number of variables. This is a problem both computationally, because
the model requires exponential space and time to answer queries, and statistically, because the
number of probabilities to estimate from data will be exponentially large.

Probabilistic graphical models, instead, allow a compact representation of the uncertainty
about the state of the world. They provide a graphical structure that shows the dependencies
between objects’ attributes and constraint the probabilistic model only on this dependencies.

We present a probabilistic graphical model able to take intoaccount relations in dynamic
domains. In this chapter we first review the literature aboutprobabilistic graphical models for
static and dynamic domains; then we review probabilistic relational graphical models, that sup-
port first-order logic; finally we extend the latter to model dynamic domains defining relational
dynamic Bayesian networks.

2.1 Probabilistic Graphical Models

Probabilistic graphical models are graphs in which nodes represent random variables, and arcs
represent conditional dependence assumptions. These models provide a compact representation
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of the joint probability distribution of the set of random variables representing the world in a
compact and natural way.

There are two main kinds of graphical models: undirected anddirected. Undirected graph-
ical models, also known as Markov networks or Markov random fields (Chellappa & Jain,
1993), are more popular with the physics and vision communities. Directed graphical models
(Computer, Russell, Pearl, & Russell, 1994), also known as Bayesian networks, belief net-
works, generative models, causal models, etc. are more popular with the Artificial Intelligence
and Machine Learning communities. It is also possible to have a model with both directed and
undirected arcs, which is called a chain graph (Studeny & Bouckaert, 1998).

While in a directed graphical model an arc fromA to B can be informally interpreted as
indicating the existence of a causal dependency betweenA andB, in an undirected graphical
model this would show the simple existence of a (symmetric) connection between the two vari-
ables. Since it is a common sense rule to think about the past “causing” the future, directed
graphical model can more naturally be extended to model dynamic domains and for this reason
in this Thesis we will use them to model relations between objects in dynamic domains.

In the following, we first introduce Bayesian networks and dynamic Bayesian networks
(for problems in static and dynamic domains) then we introduce relations in static domains
introducing relational Bayesian networks. Finally, we extend relational Bayesian networks to
dynamic domains introducing relational dynamic Bayesian networks that are a new framework
to model relations between moving objects using first-orderlogic.

Relational dynamic Bayesian networks extend dynamic Bayesian networks with first-order
logic as Bayesian networks has been extended to relational Bayesian networks, combining the
representative power of first-order logic to reason about moving objects in the world.

2.1.1 Bayesian Networks

Bayesian Networks (BNs) (Pearl, 1986) encode the joint probability distribution of a set of
variables,x1, · · · , xn, exploiting independence properties. We will introduce BNs with the
following simple example, first used by Pearl in (Pearl, 1986).

Example 1 Suppose I have a home alarm system that is designed to be triggered by would-be
burglars, but can also be set off by small earthquakes, whichare common where I live. If my
alarm goes off while I am at work, my neighbors John and Mary may call to let me know.

My beliefs about this scenario can be formalized with a probability distribution over the
product space of five variables:Burglary (represented by letterB), Earthquake (E), Alarm
(A), JohnCalls (J), andMaryCalls (M). Each of these variables is Boolean, taking values
in the set{T, F}. Figure 2.1 shows a BN for this example. A BN consists of two parts,

1. the BN structure and

2. the Conditional Probability Distributions (CPDs).

Hence directed cycles are disallowed, the BN structure is a directed acyclic graph with a
node for each random variable. Random variables represent objects’ attribute in the domain.
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Figure 2.1: A BN for the Example 1, including the BN structureand conditional probability
tables (figure from (Russell & Norvig, 2002)).

The nodes with an arc tox are theparentsof x. We will denote the set of parents of a variable
x in the BN B asPaB(x). An edge in the graph represents the dependency of an object’s
attributes (or variable) from its parents.

In our example the variableAlarm depends on the variablesBurglary andEarthquake,
we will say:

Pa(A) = {B, E}. (2.1)

For each variablex, B specifies a CPD forx givenPaB(x). The structure of the network
encodes the assertion that each node is conditionally independent of its non-descendants given
its parents. The probability of an arbitrary eventX = (x1, · · · , xd) can then be computed as
p(X) =

∏d

i=1 p(xi|PaB(xi)). A formal definition of BN is the following:

Definition 1 A BN is a direct acyclic graph which nodes are conditionally independent of its
non-descendants given its parents (this is also calledlocal Markov property).

If we topologically order the nodes (parents before children) as1, · · · , N , we can write the
joint distribution as follows (Russell & Norvig, 2002):
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p(x1, ..., xN) = p(x1)p(x2|x1)p(x3|x1, x2) · · ·p(xN |x1, · · · , xN−1)

=
N∏

i=1

p(xi|x1:i−1)

=

N∏

i=1

p(xi|PaB(xi)) (2.2)

wherex1:i−1 = (x1, · · · , xi−1). The first line follows from the chain rule of probability (see
Appendix A), the second line is the same as the first, and the third line follows because node
xi is independent of all its ancestors,x1:i−1, given its parents. In our example,

p(B = T,E = F,A = T, J = F,M = T ) =

p(B = T )p(E = F )p(A = T |B = T,E = F )p(J = F |A = T )p(M = T |A = T ). (2.3)

Whenxi and all its parents can assume a finite set of discrete values,a CPD forxi can
be represented as a Conditional Probability Table (CPT) with a row for each instantiation of
PaB(xi). This is illustrated in Figure 2.1. Note that in this example, the CPTs contain only
20 probability values. In fact, since the values in each row of each CPT must sum to one,
this representation has only 10 free parameters. By contrast, a table listing probabilities for
all 32 instantiations of these 5 binary variables would have31 free parameters. Thus, even for
this small example, the BN is considerably more compact thanan atomic representation. The
advantage of a BN increases with the number of variables: while an explicit representation of a
joint distribution forn k-ary variables haskn−1 parameters, a BN representation in which each
variable has at mostm parents has onlyO(nkm) parameters.

A BN can be used to reason about any attribute of the objects inthe domain, given any set
of observations. It can thus be used for a variety of tasks, including classification (Friedman,
Geiger, & Goldszmidt, 1997), prediction (Jansen, Yu, Greenbaum, Kluger, Krogan, Chung,
Emili, Snyder, Greenblatt, & Gerstein, 2003), and decisionmaking (wu Liao, Wan, & Li, 2008).
For instance, imagine we observed that both John and Mary call, which is the probability of the
variableBurglary to be true? We can compute the probability of the variableBurglary to be
true as follow:

p(B = T |, J = T,M = T ) = α
∑

E

∑

A

p(B = T )p(E)p(A|B = T,E)p(J = T |A)p(M = T |A),

(2.4)
where we marginalized (see Appendix A) over the variableA andE to compute the probability
of each value of that variable. To compute this expression, we have to add four terms (one for
each possible combination of the values of the variableAlarm andEarthquake) each com-
puted by multiplying five numbers using the probability tables in Figure 2.1. The probability
of theburglary being true given that both John and Mary called is0.00059236.

The probabilistic semantics also gives a strong foundationfor the task of learning models
from data. Techniques currently exist for learning both thestructure and the parameters, for
dealing with missing data and hidden variables, and for discovering causal structure.
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2.2 Modeling sequential data

Most of the events that we meet in our everyday life are not detected based on a particular point
in time, but they can be described through a multiple states of observations that yield a judge-
ment of one complete final event. Statisticians have developed numerous methods for reasoning
about temporal relationships among different entities in the world. This field is generally known
as time-series analysis. Time-series is a sample realization of a stochastic process, consisting of
a set of observations made sequentially over time.

Time is also an important dimension in the field of artificial intelligence and reasoning.
However, BNs do not provide direct mechanism for representing temporal dependencies. In
attempting to add temporal dimension into the BN models various approaches has been sug-
gested. Between others, hidden Markov models and Kalman filter models are popular models
because they are simple and flexible. For example, hidden Markov models have been used for
speech recognition and bio-sequence analysis, and Kalman filter models have been used for
problems ranging from tracking planes and missiles to predicting the economy. However, hid-
den Markov models and Kalman filter models are limited in their “expressive power”. Hidden
Markov models constrain the state to be represented as a single random variable, Kalman filter
models constrain the probability distributions to be Gaussian.

Dynamic Bayesian Networks (DBNs) generalize hidden Markovmodels by allowing the
state to be represented in factored form and generalize Kalman filter models using arbitrary
probability distributions.

2.2.1 Dynamic Bayesian Networks

DBNs are an extension of BNs for modeling dynamic domains. Ina DBN, the state depends on
the timet and is represented by a set of random variablesXt = (x1,t, ..., xd,t). The state at time
t depends on the states at previous time steps.

Typically, we assume that each state only depends on the immediately preceding state (i.e.,
the system isfirst-order Markov), and thus we need to represent the probability distribution
p(Xt|Xt−1). This can be done using a two-time-slice BN fragment (2TBN):

Definition 2 A 2TBN is a BN that contains variables fromXt whose parents are variables
fromXt−1 and/or fromXt, and variables fromXt−1 without their parents.

A 2TBN (Bt) definesp(Xt|Xt−1) by means of a directed acyclic graph as follows:

p(Xt|Xt−1) =
N∏

i=1

p(Xi,t|PaBt
(Xi,t)). (2.5)

The nodes in the first slice of a2TBN do not have any parameters associated with them, but
each node in the second slice of the2TBN has associated a CPD, which definesp(xi,t|PaBt

(xi,t))
for all t > 1. The distribution given by a2TBN can be divided in two:

• the inter-slice distribution, that models the probability of variables inXt with parents at
time t − 1 and
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• the intra-slice distributionthat models the probability of variable inXt with parents in
the same time slice.

We assume that the parameters of the CPDs are time-invariant, i.e., the model is time-homoge-
neous.

Typically, we also assume that the process is stationary,i.e., the transition models for all
time slices are identical:B1 = B2 = ... = Bt = B→.

Definition 3 A DBN is defined to be a pair of BNs (B0, B→), where

• B0 represents the initial distributionp(X0), and

• B→ is a2TBN , which defines the distributionp(Xt|Xt−1).

The setXt is commonly divided into two sets: the unobserved state variablesSt and the
observed variablesZt. The observed variablesZt are assumed to depend only on the current
state variablesSt. The joint distribution represented by a DBN can then be obtained by unrolling
the2TBN :

p(S0, ..., ST , Z0, ..., ZT ) = p(S0)p(Z0|S0)

T∏

t=1

p(St|St−1)p(Zt|St) (2.6)

wherep(S0)p(Z0) is the distribution given byB0 and
∏T

t=1 p(St|St−1)p(Zt|St) highlights the
intra-slicep(Zt|St) and the inter-slicep(St|St−1) distributions:

p(Xt|Xt−1) = p(St|St−1)p(Zt|St) (2.7)

To show the different parts of a DBN we consider the followingoversimplified example
(Russell & Norvig, 2003);

Example 2 Suppose you are the security guard at some secret underground installation. You
want to know whether it is raining today, but your only accessto the outside world occurs each
morning when you see the director coming in with, or without an umbrella.

In this example,

• the intra-slice distribution is represented by the probability that the director has taken the
umbrella if it is raining (or not),

• the inter-slice distribution is given by the probability of a rainy day given the weather of
the previous day.

For each dayt, the setZt contains a single observed variable:Ut, whether the director takes
the umbrella or not. The set of the unobserved state variables contains a single variable:Rt,
whether it is raining or not. In Figure 2.2 the DBN is reportedand the2TBNs are highlighted.

Note that the term dynamic means we are modeling a dynamic system, not that the network
changes over time.

DBNs are a good tradeoff between expressiveness and tractability, and include the vast
majority of models that have been proved successful in practice.
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Figure 2.2: A DBN for the Example 2. In the figure, the the intra-slice and inter-slice distribu-
tions are reported together with the2TBN . (figure from (Russell & Norvig, 2002)).

2.3 Modeling relations

One of the main limitations of BNs is that they represent the world in terms of a fixed set
of variables. Consider the Example 1) and consider the case in which I have more than two
neighbors and they have neighbors themselves Figure 2.3: weneed to explicitly represent each
neighbor as a variable with its specific CPT. Indeed, graphical models are incapable of reasoning
explicitly about classes of objects (e.g.,classNeighbor), and thus cannot represent models over
domains where the set of entities and the relations between them are not fixed in advance. They
are propositional, as opposed to first-order: in other words, they do not support quantification
over objects. As a consequence, BNs are limited in their ability to model large and complex
domains.

Probabilistic Relational Models (PRMs) are a language for describing probabilistic models
based on the significantly more expressivity of first-order logic. They allow the domain to be
represented in terms of object classes, their properties (or attributes), and the relations between
them. These models represent the uncertainty over the properties of an entity, representing its
probabilistic dependence both on other properties of that entity and on properties of related
entities.

2.3.1 First-Order Logic

First-order logic (FOL) is a formal language interpreted bymathematical structures. FOL is a
system of deduction that extends propositional logic by allowing quantification over classes of
a given domain (the universe). Objects, relationsandquantifiersare the three main components
of FOL.
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Figure 2.3: A BN for the Example 1 extended to relational domains. If we have more than
2 neighbors we have to instantiate a variable for each neighbor. Thanks to Mark Chavira for
providing us with this image.

Murphy in (Murphy, 2002) states that: “Objects (objects classes) are basically groups of at-
tributes which “belong together”, c.f.r. a structure in a programming language, once completely
instantiated (grounded) they give rise to a particular object in the domain”. Object classes are
characterized byattributesand are related one another through relations.Propositionsover
objects can be expressed by quantifiers.

While propositional logic deals with simple declarative propositions, FOL additionally cov-
ers predicates and quantification. Take for example the following sentences: ”John is my neigh-
bor”, ”Mary is my neighbor”. In propositional logic these will be two unrelated propositions,
denoted for example byp andq. In FOL however, both sentences would be connected by the
same attribute:x.MyNeighbor, wherex.MyNeighbor means thatx is one of my neighbors.
Whenx = John we get propositionp, and whenx = Mary we get propositionq. Such a
construction allows for a much more powerful logic when quantifiers are introduced. Consider
for example the quantifier “for every” (∀): “∀ x, if x.MyNeighbor → x.CallMe”, enounce a
proposition that is valid for eachx..

Without quantifiers, every valid argument in FOL is valid in propositional logic, and vice-
versa.

The vocabulary of the FOL is composed of

1. Constants: symbols usually used to represent objects or their attributes; they are often
denoted by lowercase letters at the beginning of the alphabet a, b, c,... .

2. Variables: symbols that range over the objects; they are often denotedby lowercase letters
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at the end of the alphabetx, y, z,... . Both the constants and the variables can be typed, in
which case the variables take on values only of the corresponding type.

3. A set offunctions, each of some valence≥ 1 that fixes the number of inputs it can take.
Functions take objects as input and return object, and are often denoted by lowercase
lettersf , g, h,...

4. Predicates: symbols used to represent relations between objects in thedomain or at-
tributes of objects which are often denoted by uppercase lettersP , Q, R,... . Each pred-
icate symbol is associated with an arity. A ground predicateis a predicate with constant
as arguments (i.e.,not variables).

An interpretationfor a relational domain, assigns a semantic meaning to each object, func-
tion and relation in the domain. Each ground predicate is associated with a true value in an
interpretation.

Existential quantifiers in FOL are handled by checking whether the predicate is true for any
object in the current state of the domain.

A terml in the FOL can be

• a constant symbol, asa, b, 0, 1

• a variable, as for examplex, y

• a function of valencen applied ton termsf(l1, · · · , ln).

A first-order formulaassumes one of the following forms:

1. R(l1, · · · , ln) whereR is a predicate of arityn andli are terms,

2. ¬F or (F ′ ∧ F ′′) or (F ′ ∨ F ′′) whereF , F ′ andF ′′ are first-order formula,

3. ∃xF (x)′ or ∀xF (x)′, wherex is a variable andF (x)′ is a first-order formula,

4. ♯(= n)xF (x) or ♯(< n)xF (x) or ♯(> n)xF (x), wherex is a variable,F (x) a first-order
formula andn an integer.

2.3.2 Relational Domain

A relational domain contains a set of objects with relationsbetween them.

Definition 4 A relational domainis a set of constants, variables and predicates that represent
the objects and their relations in the domain.

The set of all true ground predicates can be represented explicitly as tuples in a relational
database. This corresponds to thestateof the world.

Definition 5 The state of a relational domain (relational state) is the set of all the ground pred-
icates that are true.
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In an uncertain domain, the truth value of a ground predicatecan be uncertain and the value
can potentially depend on the values of other ground predicates. These dependencies can be
specified using a BN on the ground predicates. However, the number of such ground predicates
is exponential in the size of the domain and hence the explicit construction of such a BN would
be infeasible.

Relational Bayesian networks were introduced to compactlyrepresent the uncertainty in this
setting.

2.3.3 Relational Bayesian Networks

A Relational Bayesian Network (RBN) specifies dependenciesbetween predicates at the first-
order level by using first-order expressions which include existential and universal quantifiers.

Definition 6 Given a relational domain, a RBN (RB) is a graph that, for every FOL predicate
R, contains:

• A node in the graph.

• A set of parentsPaRB(R) = {R1, ..., Rl} which are a subset of the predicates in the
graph.

• A conditional probability model forp(R|PaRB(R)) which is a function with range[0, 1]
defined over all the variables inPaRB(R).

We come back to the previous example and modify it to explain the differences between
BNs and RBNs.

Example 3 Suppose I live in a building where each owner has a home alarm system that is
designed to be triggered by would-be burglars, but can also be set off by small earthquakes,
which are common where we live. If one of these alarms goes offwhile the owner is at work,
his neighbors may call him to let him know. The neighbors havean uncertain knowledge about
whose alarm went off and they are less likely to call when there is noise or when they are not
paying attention.

The objects in this relational domain can be represented by the variables:Earthquake,
Burglar, House, Neighbor. Each object has some attributes that can characterize their in-
stantiation: for the objectHouse, it can beAlarmRinging indicating if the alarm of the house
is ringing, for the objectNeighbor, it can beAttentionDegree andNoiseAround, describ-
ing the reliability of the neighbor. The type space ofNeighbor is person and the attribute
Neighbor.AttentionDegree ranges over the set of constants{High, Low}. Moreover there
will be some relations between objects:e.g., the relationEnter of arity 2 will represent the
relation of aBurglar to enter anHouse, the relationToCall will relate aNeighbor to the
House.Howner which he will eventually call if he hears an alarm. Figures 2.4 and 2.5 report
the objects and the relations of the domain.

Following Definition 6 the RBN for this problem will be a graphwhich for every pred-
icate R (representing both objects’ attributes or relations) contains a node in the graph and
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Figure 2.4: The objects and the attributes of the relationaldomain of the example 3. We show
the objects as usually done for relational data bases, the dashed line refers to foreign keys.

a set of parentsPa(R) that “cause” the value of the predicateR. E.g., the parents of the
relationToCall(Neighbor, House.Owner) will be Neighbor.AttentionDegree, Neighbor.
NoiseAround andHouse.AlarmRinging (Figure 2.6 reports this RBN).

The RBN in the example presents more nodes than the BN of Figure 2.1 and it encapsulates
much more information, in fact it can be used to explain the dependencies in each neighborhood
we want to consider independently from the number or the typeof neighbors an owner has got.

A RBN defines a BN on the ground predicates in the relational domain. It has not to
be acyclic but its complete instantiation defining a BN has to1. For every ground predicate
R(c1, ..., cm) a node is created together with its parents’nodes obtained by instantiating the
predicates which appear inPaRB(R) . The conditional model for a ground predicate is, there-
fore, restricted to the particular ground predicate and itsparents. Thus, a RBN gives a joint
probability distribution on the state of the relational domain.

To avoid cycles appearing in the BN obtained after groundingit is necessary to restrict
the set of parents of a predicate assuming an ordering. The ordering≺ between the ground
predicates is given by the following rules:

1. R(x1, · · · , xn) ≺ R′(x′

1, · · · , x′

n) if R ≺ R′

1This means that an attribute of an object can depend by the same attribute of another object of the same class;
this leads to a cycle at the object level that reveals to be nota cycle at the grounding level.
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Figure 2.5: The relations of the relational domain of the example 3. With dashed bolt lines we
represent which objects participate in which relations.

2. R(x1, · · · , xn) ≺ R(x′

1, · · · , x′

n) if ∃i : xi ≺ x′

i andxj = x′

j , ∀j < i

The set of parents of a predicate in a RBN is restricted as follows:

• The parent setPa(R) can contain a predicateR′ only if eitherR′ ≺ R or R′ = R

• If Pa(R) containsR then, during the grounding,R(x1, · · · , xn) has parentsR(x′

1, · · · , x′

n)
only if R(x′

1, · · · , x′

n) ≺ R(x1, · · · , xn).

This ordering implies that in the resulting BN each ground predicate can only have higher
order ground predicates as parents.

The conditional model can be any first-order conditional model and can be chosen depend-
ing on the domain, the model’s applicability and the easy of use. We will use first-order proba-
bilistic trees.

First-Order Probabilistic Trees

The most general way to model the conditional model is to use an arbitrary CPT that can repre-
sent any possible distribution.
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Figure 2.6: The RBN for the example 3.

Generally a CPT representation has an high memory cost: because the number of entries
is exponential in the number of relations and attributes of the domain. Indeed, givenn objects
each withk attributes ofd possible values andr binary relations, the state of the attributes
requiresdnk cases, while each binary relation associates2 possible values (true or false) to any
pair of objects and there aren2 pairs. In total the entries of the required CPT would bednk2n2r.

For this reason, it is generally preferred to have a compact representation of the CPTs. A
way to encode this probability is to use aFirst-Order Probabilistic Tree(FOPT). FOPTs, also
called first-order decision diagrams (C. Wang & Khardon, 2008), are probabilistic trees whose
nodes are first-order logic formulas.

Definition 7 Given a predicateR and its parentsPa(R), a FOPT is a tree where:

• each interior node (k) is associated with a first-order logic formulaFk whose arguments
are a subset ofPa(R),

• each child ofk corresponds to either the true or false outcome ofFk

• the leaves are associated with a probability distributionfunction over the possible values
of R.

A FOPT’s node can contain a formula with free variables and quantifiers/aggregators over
them. Moreover, the quantification of a variable is preserved throughout the descendants,i.e.,
if a variablex is substituted by a constantc at a noden, thenx takesc as its value over all the
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descendants ofn. To avoid cycles in the network, quantified variables in a FOPT range only
over values that precede the child node’s values in the ordering. The function at the leaf gives
the probability of the ground predicate being true.

Just like a BN is completely specified by providing a CPT for each variable, a RBN is
completely specified by having an FOPT for each first-order predicate.

2.4 Related Works

In this section we review the relevant works done on relational probabilistic modelization. As
mentioned in the introduction (Chapter 1), a lot of work has been done to incorporate FOL
reasoning and Bayesian uncertainty. The definition of RBN weintroduced is most closely
related to the one ofRelational Bayesian Networkgiven by Jaeger in (Jaeger, 1997) even if
he constrains CPDs to be combination functions (such as noisy-or) while we use FOPTs. He
presents a sophisticated scheme for combination functions, including the possibility of their
nesting.

In (Friedman et al., 1999) and in (Koller, 1999) Probabilistic Relational Models (PRMs)
are defined with the formalism of frame systems used as a starting point. The language of
frames, similar also to relational databases, consists of defining a set of classes, objects and their
attributes. PRMs add probabilities to frame systems by specifying a probability distribution for
each attribute of each class as a generic CPT. The only difference from our definition of RBN
is the fact that parents of an attribute that are attributes of related classes are reached via some
slot chain. A slot chain in a frame-based system performs the same function of a foreign key
in a relational database. A slot chain can be viewed as a sequence of foreign keys enabling one
to move from one table to another. In our definition of RBN no restriction is imposed over the
reachability of the nodes.

RBNs as defined in this chapter subsume PRM (Friedman et al., 1999) in fact, replacing
the attributes of a PRM by FOL predicates would lead to define PRMs as a particular example
of RBNs (see Appendix B).

On the other hand, Domingoset al., (Domingos, Kok, Lowd, Poon, Richardson, Singla,
Sumner, & Wang, 2008) represent uncertainty in the domain bythe use of undirected graphs as
Markov logic networks and focus on the inference task. Markov logic networks are a recent and
rapidly evolving framework for probabilistic logic that has a very simple semantics while keep-
ing the expressive power of FOL. Markov logic networks consist of a set of weighted first-order
logic formulas and a universe of objects. Its semantics is simply that of a Markov network whose
features are the instantiations of all these formulas giventhe universe of objects. Markov logic
networks are a powerful language accompanied by well-supported software (called Alchemy)
which has been applied to real domains. Its major drawback isdue to its impossibility to repre-
sent quantification over objects, replaced by the disjunction of their grounding (this is possible
because the domains are assumed to be finite). For this reasondealing with very large networks
(as dynamic networks generally are) for Markov logic networks is very difficult.

Kersting and DeRaedt (Kersting & Raedt, 2000) introduce Bayesian logic programs to pro-
vide a language which is as syntactically and conceptually simple as possible while preserving
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the expressive power of the works presented so far. According to the authors, this is necessary
to understand the relationship between all these approaches, and the fundamental aspects of
probabilistic relational models.

Milch (Milch, 2006) introduced BLog (Bayesian Logic) that provides a language that uses
FOL to extend inference over set of objects belonging to the same class. However, he does not
seem to take into account the objects’ movement nor the relations that influence it.

There has been very limited work on extending relational models to dynamic domains. Dy-
namic object-oriented Bayesian networks (Friedman, Koller, & Pfeffer, 1998) combine DBNs
with object-oriented Bayesian networks, a predecessor of PRMs. Unfortunately, no efficient
inference methods were proposed for dynamic object-oriented Bayesian networks.

Glesner and Koller (Glesner & Koller, 1995) proposed the idea of adding the power of FOL
to DBNs. However, they only give procedures for constructing flexible DBNs out of first-order
knowledge bases, and consider inference only at the propositional level. Relational Markov
models (Anderson, Domingos, & Weld, 2002) and logical hidden Markov models (Kersting &
Raiko, 2005) are an extension of hidden Markov models to first-order domains and as hidden
Markov models present the shortcoming of being able to modelonly single-variable states.

2.5 Introducing Relations in Dynamic Domains

One of the purposes of this Thesis is the introduction of relations in dynamic domains. We want
to extend DBNs with FOL as BN has been extended to RBNs. In thisway we will combine the
representative power of FOL to reason about moving objects in the world.

While in the previous section we defined the state of a relational domain, in this section
we consider relational domains in which the state evolves with time, these are calleddynamic
relational domains.

2.5.1 Relational Dynamic Bayesian Networks

Relational Dynamic Bayesian Networks (RDBNs) extend RBNs to model dynamics in rela-
tional domains. To define relational dynamic Bayesian networks, we have first to define dy-
namic relational domains.

Dynamic relational domains are relational domains where the state can change at every time
step. In a dynamic relational domain a ground predicate can be true or false depending on the
time step. Therefore we have to add a time argument to each predicate:R(x1, ..., xn, t), where
t is a non-negative integer variable and indicates the time step.

Definition 8 A dynamic relational domain is a set of constants, variables, and predicates that
can change their value with time.

As done for the relational domain, we can define the (relational) state of a dynamic relational
domain as follows:

Definition 9 The state of a dynamic relational domain at timet is the set of all the ground
predicates in the domain that are true at timet.
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We now introduceRelational Dynamic Bayesian Network(RDBN) that model uncertainty
in a dynamic relational domain.

Following the definition of DBN reported in Section 2.2.1, todefine a RDBN we have first
to define atwo-time-slice RBN(2TRBN).

Definition 10 A 2TRBN is a graph which given the state of the domain at timet − 1 gives a
distribution on the state of the domain at timet. It contains

• predicates at timet (Rt) whose parents are predicate at timet − 1 and/ort, and

• predicates at timet − 1 without their parents.

As a DBN is defined as a pair of BNs, a RDBN can be defined as a pair of RBNs:

Definition 11 A RDBN is a pair of networks(BR0, BR→), whereBR0 is an RBN with allt = 0
andBR→ is a2TRBN .

• BR0 represents the probability distribution over the state of the Relational Domain at
time0.

• BR→ gives the probability distribution on the state of the domain at timet given the state
of the domain at timet − 1.

An RDBN gives rise to a DBN in the same way that a RBN gives a BN. At time t a node
is created for every ground predicate and edges added between the predicate and its parents
(if t > 0 then the parents are obtained fromBR→, otherwise fromBR0). The conditional
model at each node is given by the conditional model restricted to the particular grounding of
the predicate.

Let us consider another very simple example.

Example 4 Imagine you are monitoring the movements of a group of persons and you want to
know who is friend with who. You are given observations abouteach person’s location each day
(for simplicity we assume a single observation each day, andfixed number of possible places:
park, cinema, theater; we assume also that observations areacquired with a sensor placed at
the entrance of each place). The assumption is that friends are more likely to go together to
one place, rather than non-friends. At the same time, in thistoy example, people will prefer
to variate their activities, so if one is going to the park on agiven day, he will be more likely
to go to the cinema or the theater the next day. We can also accommodate individual specific
preferences, as the fact that one agent prefers going to the cinema, while another prefers going
to the park.

In this example, we have objectsPerson which are characterized by some attributes as
Location(t), Preference. The attributeLocation changes during time whilepreference is
fixed. Moreover, between objects it can exist the relation ofFriend, that relates two objects
that are friend (in Figure 2.7 we report the objectPerson and the2TRBN for our example).
The probability distribution of the state of the domain at timet given the state of the domain at
time t − 1 is specified by the probability distributionP (xt|xt−1, F riend). Wherext represents
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Figure 2.7: The2TRBN for Example 4 is depicted. On the left the objectPerson is reported.

the agents’Location at timet, andFriend is a 0-1 characteristic matrix representing all the
friendship relations in the domain (a cell(i, j) has value1 if agenti is friend of agentj).

Even in the case of noiseless observations (we observe who isgoing to the theater on a
given evening), the friendship relation (Friend) is not directly observable. However, by using
inference we can maintain a belief distribution (the probability distribution representing our
guesses, and the respective certitude factor, about the unknown features of the system) about
the friendship relation, represented by a table of probabilities, whose cells(i, j) indicate the
probability that agenti is friend with agentj. These probabilities will be initially set to a prior
(for instance,0.5) and then updated after each observation. So if, for instance, agenta goes to
the cinema alone and agentb and agentc both goes to the park, the probability (belief) of agent
a being friend with either agentb or c will decrease a little bit, while the probability of agentb
being friend with agentc will increase.

These decreases or increases of our beliefs are dictated by the observations and the transition
model. More precisely, the current belief can be obtained using the Bayes’ theorem, integrating
over all possible values that the unknown features could take (in this case, all possible values
of the tables representing the friendship relation). This exact approach however does not scale
well: if we consider5 agents, this already means integrating over210 possible combinations of
values for the table representing the relation. If we complicate the model assuming uncertain
observation (with some non-zero probability, the sensor might say that agenta is at the cinema
when in fact he is at the park), the number of cases to considerwould be even larger. It is
then easy to see that, as the model becomes more complex (multiple relations in the model), as
the observation model becomes more uncertain (fewer elements are observable), as the transi-
tion model becomes more complex, or as the number of agents increases, the exact approach
would be infeasible, as it has exponential complexity. In the next chapter we will discuss how
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to achieve tractable inference by considering probabilistic trees to compactly represent the tran-
sition model, and particle filtering for monte-carlo for inference.

2.5.2 Discussion

Introducing RDBNs to model the world offers two major advantages:

1. we are able to take directly into consideration relationsbetween the agents in the domain;

2. we can model the behavior of an infinite class of objects in acompact way.

For example, in the scenario of the harbor introduced in the previous chapter (Section 1.2.2)
and suppose the only information we have are relative to the position and the type of the boats.

A DBN-based framework would model each boat in the scene witha random variable. If a
new boat enters the scene, it would be necessary to constructa new (different) DBN. Moreover,
the inter-slice distribution that, gives the probability distribution on the state of the domain given
the previous state, would model the behavior of each boat independently, without taking into
account the existence of possible correlations between them.

A RBN-based framework would, instead, model each predicateof a class of objects with a
random variable. For this reason, if a new boat enters the scene it would not be necessary to
change the representation, because this framework is able to reason about classes of objects and
not only about particular objects. Dependencies between variables at the same time-step will
be given by the type of relation that can exist between boats.The inter-slice distribution will
model how the state of the domain can change with respect to the relations that exist between
the boats.

In this way a RBN-based framework would be able to model sequences of an arbitrary length
of states (as DBN does) and a not known a priori number of objects. Moreover, taking directly
into account relations between objects, it will be able to probabilistically model and tracking
the object behavior recognizing that on line.

2.6 Summary

The major contribution of this chapter is the introduction of relational dynamic Bayesian net-
works (RDBNs). RDBNs are FOL-based probabilistic graphical models. They extend both
RBNs to model dynamic domains (as DBNs extend BNs) and DBNs with the representative
power of FOL (as RBNs extend BNs). The last section (Section 2.5.2) showed that RDBNs
can be more compact than DBNs in representing a domain and more effective in dealing with
objects’ behavior.

In the next chapter (Chapter 3) we will introduce the problemof inference in relational dy-
namic domains, introducing an algorithm that takes advantage of the knowledge about relations
between objects to infer objects’position and doing it online with relations recognition. In the
remain of this work we will deal in particular with the tasks of activity recognition and multi
objects tracking.



Chapter 3

Inference in Dynamic Relational Domains

Not being able to control events, I control myself; and I adapt myself to them, if they do not
adapt themselves to me.

Michel de Montaigne

Reasonable people adapt themselves to the world. Unreasonable people attempt to adapt the
world to themselves. All progress, therefore, depends on unreasonable people

George Bernard Shaw

In this chapter we present a novel algorithm that can tackle inference in dynamic relational
domains. In particular, we consider the estimation of the relational state of a system that changes
over time using a sequence of noisy measurements (or observations) of some variables of the
system.

In the first part of this chapter we describe the general problem of inference and we show
how it is tackled in non-relational domains. In the second part we introduce our relational
particle filter algorithm that is able to track relations.

3.1 Systems that evolve over time

A dynamic system can be represented by a state-space model. Astate-space model is repre-
sented by some underlying hidden state of the world (the state vector) that generates the obser-
vations and evolves with time. A state-space model, usually, consists of two equations, one that
models the dynamic of the state vector and the other that models the observed state variables.
The state vector contains all relevant information required to describe the system under inves-
tigation. For example, in tracking problems, this information could be related to the kinematic
characteristics of the target. Alternatively, in an econometrics problem, it could be related to
monetary flow, interest rates, inflation, etc.

A statest will be calledcompleteif it is the best predictor of the future state of the system1.
Completeness entails that knowledge of past states carry noadditional information that would

1Recall that this is an assumption already taken introducingDBNs
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help us predict the future more accurately. Temporal processes that meet these conditions are
commonly known as satisfying theMarkov property.

In an online setting, the goal is to infer the hidden state given the observations up to the
current time,z1:t, we can define our goal as computing the probability distribution over the state
variable conditioned on all past measurements; this is called thebelief of the state:

bel(st) = p(st|z1:t) (3.1)

The measurement vector represents (possibly noisy) observations that are related to the state
vector. The measurement vector is generally (but not necessarily) of lower dimension than the
state vector.

The evolution of the state is governed by probabilistic laws. In general, the statest is
governed stochastically from the statest−1 . Thus, it makes sense to specify the probability
distribution from whichst is generated. At first glance, the emergence of the statest might be
conditioned on all past states; hence, the probabilistic law characterizing the evolution of the
state might be given by a probability distribution of the following form: p(st|s0:t−1, z1:t−1). An
important insight is the following: if the states is complete then it is a sufficient summary of all
that happened in previous time steps. In particular,st−1 is a sufficient statistic of all previous
measurements up to the point timet. In probabilistic terms, this insight is expressed by the
following equality:

p(st|s0:t−1, z1:t−1) = p(st|st−1). (3.2)

The conditional independence expressed in Equation 3.2 is the primary reason why the algo-
rithms we will present in this chapter are computational tractable.

One has also to model the process by which the observations are being generated from the
state. Again, ifst is complete, we have an important conditional independence:

p(zt|s0:t, z1:t−1) = p(zt|st). (3.3)

In other words, the statest is sufficient to predict the measurementzt.

Figure 3.1: The DBN that characterizes the evolution of the states and measurements.
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We can say that, in order to analyze and make inference about adynamic system, any state-
space model must define

• aprior, p(s0),

• a state-transition probability, p(st|st−1), to predict future observations given all the ob-
servations occurred to the present, and

• a measurement model, p(zt|st), to relate the noisy measurement to the state (sometimes
also calledobservation model.

The state transition probability and the measurement modeltogether describe the dynamic
stochastic system of the domain. Figure 3.1 illustrates theevolution of the states and measure-
ments defined through those probabilities. The state at timet is stochastically dependent on
the state at timet − 1. The measurementzt depends stochastically on the state at timet. Such
a temporal generative model can be represented by a DBN wherethe state transition model is
the inter-slice distribution and the measurement model theintra-slice distribution. Since we are
dealing with relational domains, we will say that the systemwill be represented with a RDBN.

3.1.1 Bayes Filter

The probabilistic state-space formulation and the requirement for the updating of information
on receipt of new measurements are ideally suited for the Bayesian approach that provides a
rigorous general framework for dynamic state estimation problems. In this approach to dynamic
state estimation, one attempts to construct the posterior probability density function of the state
based on all available information, including the set of received measurements.

In online analysis, an estimate is required every time that ameasurement is received. The
Bayes filter algorithm is the most general method for calculating the belief distribution from
measurements data. The Bayes filter is recursive, that is,bel(st) at timet is calculated from
the beliefbel(xt−1) at timet − 1. Received data can be processed sequentially rather than asa
batch; the advantage is that it is not necessary to store the complete data set nor to completely
reprocess previous observation if a new measurement becomes available.

In the Bayes filter algorithm the belief of the state is computed after the acquisition of the
measurementzt. In theprediction step, b̃el(xt) predicts the state at timet based on the previous
belief state, before incorporating the measurements at time t:

b̃el(st) = p(st|z1:t−1) =

∫
p(st|st−1)bel(st−1)dst−1 (3.4)

Computingbel(xt) from b̃el(xt) is calledupdate: at time t, a measurementzt becomes
available, and this may be used to update the prediction using theBayes’ law(see Appendix
A):
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bel(st) =
p(zt|st, z1:t−1)p(st|z1:t−1)

p(zt|z1:t−1)

=
p(zt|st)b̃el(st)

p(zt|z1:t−1)
(3.5)

where the likelihood functionp(zt|z1:t−1) (that can be view as a normalization factor and will
be often substituted by the letterα) is defined by the measurement model:

p(zt|z1:t−1) =

∫
p(zt|st, z1:t−1)p(st|z1:t−1)dst

=

∫
p(zt|st)b̃el(st)dst (3.6)

The prediction stage uses the state-transition probability to predict the state belief forward
from one measurement time to the next. Since the state is usually subject to unknown distur-
bances (modeled as random noise), prediction generally translates, deforms, and spreads the
state distribution. In the update stage (Equation 3.5), themeasurementzt is used to modify
the prediction to obtain the required belief of the current state. This is achieved using Bayes
theorem, which is the mechanism for updating knowledge about the target state in the light of
extra information from new data (a sketch of this process is given in Figure 3.2).

Figure 3.2: Graphical sketch of the Bayes filter iteration.

We assume that the transition and observation models are thesame for all time2; the models
are said to betime-invariantor homogeneous(without this assumption, we could not model
infinitely long sequences of data).

2Also this assumption was already taken introducing DBNs.
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3.1.2 Relational State

In the previous chapter (Chapter 2) we illustrated how a relational domain represents the objects
by means of constants or variables and the relations betweenobjects and their attributes by
means of predicates. In FOL predicates represent both relations and attributes. At the purpose
of this Thesis we have to differentiate the two. With reference to relational data bases, we will
call attributes(or attribute’s predicates when there is the risk of confusion) the predicates that
refer to an object’s attribute andrelations(or relation’s predicates) the predicates that refer to
relations between objects. We will maintain the term predicate to refer to both the relations
and the attributes. We will refer to ground relations or ground attributes when the respective
predicates are grounded.

Therefore the relational states can be divided in two parts: thestate of the attributessa and
thestate of the relationssr. We will write s = [sa, sr].

The state of the attributes assigns to each object’s attribute a value in its domain. Similarly,
the state of relations associates to each ground relation a truth value. The grounding of the
predicates is done over the objects present in the domain.

We define the relations to beunobservable: reasoning about relations can be done by in-
ference over objects’ attributes and their evolution over time, but it is not possible to measure
a relation directly (for example, we can measure the position of a boat but we will have to
infer from the positions of different boats if any of them is breaking any low). We will say
relations areintensional predicatesbecause their value can only be inferred and cannot be di-
rectly observed. Objects’attributes areextensional predicatesbecause their value can be directly
evaluated by a low-level pre-processing module (Minker & Seipel, 2002).

We think that this assumption is quite reasonable and, in most situations, natural. Anyway,
if a measurable relation exists, it is always possible to define an equivalent model where only
state attributes are measurable (i.e., it is always possible to define an object’s attribute that is
equivalent to the original measurable relation).

When dealing with relations we should take them into accountin both the measurements
and the transition model, in the following we introduce these two models for relational dynamic
domains.

3.1.3 Measurements model

The state is often observed by a noisy measurement system that can introduce uncertainty in the
Domain. Given a certain measurement system (e.g.,a radar) a measurement model is defined
that gives the probability of the state at timet given the measurements obtained at the same
time: it is appropriate to think of measurements (zt) as noisy projections of the state (st).

Since the part of the state relative to relations,sr, is not directly measurable: we can define

p(zt|st) = p(zt|sa
t , s

r
t ) = p(zt|sa

t ) (3.7)

as the observationzt is independent by the relations between objects. In other words, this
measurement model only depends on the part of the state relative to the attributes.
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3.1.4 Relational Transition model

The state-transition modelp(st|st−1) = p(sa
t , s

r
t |sa

t−1, s
r
t−1) is a joint probability of the state of

all objects and relations (Figure 3.3).

Figure 3.3: The relational transition model for the relational domain. The arrows mean prob-
abilistic dependence: relations are stochastic functionsof the attributes, relations at timet de-
pends by their history (sr

t−1) and the attributes at timet. The attributes at timet depends by the
whole story of the state (relations and attributes). We assume the relational state to be complete.

In this work we will assume that the state of relationssr does not evolve with respect to the
previous attributes but only conditioned on its previous values and the actual objects instantia-
tions. This assumption simplifies the transition model without loosing in generality: informa-
tion about the previous state of the attributes are includedin the respective state of relations.

In this particular circumstance we have to deal with a transition model that is a composition
of two distributions:p(sa

t |sa
t−1, s

r
t−1) andp(sr

t |sr
t−1, s

a
t )

Through the Bayes’ rule, the transition modelp(sa
t , s

r
t |sa

t−1, s
r
t−1) can be written as

p(sa
t , s

r
t |sa

t−1, s
r
t−1) = p(sa

t |sa
t−1, s

r
t−1)p(sr

t |sa
t−1, s

r
t−1, s

a
t ), (3.8)

given the independence ofsr
t from sa

t−1 givensa
t we can write:

p(sa
t , s

r
t |sa

t−1, s
r
t−1) = p(sa

t |sa
t−1, s

r
t−1)p(sr

t |sr
t−1, s

a
t ), (3.9)
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that is the product of the two transition models introduced above.

Often the state of an object at timet depends by the state of the attributes of other objects at
the previous time step; in this case it is necessary to establish anorder (≺) on the objects.

In our settings, theorder on the objects is scenario-dependent: in a traffic monitoring we
assume that the furthermost object from the camera ispreferredaccording to≺; in a harbor
surveillance system the order, instead, follows from the “rules of the road” for boats. The
introduction of this ordering while allowing the inferenceof those objects’state that depend by
the relations with other objects, disallows cycles in the network (as explained in Chapter 2).

3.2 Particle Filtering

The recurrence relations given in Equation 3.4 and in Equation 3.5 form the basis for the
recursive Bayesian filter. This recursive propagation of the posterior density is only a conceptual
solution in fact, generally, it is not possible to determined the posterior analytically. Solutions
do exist in a restrictive set of cases, including the Kalman filter model.

The Particle Filtering (PF) algorithm is a Monte Carlo method that forms the basis for most
sequential Monte Carlo filters developed over the past decades. It is a technique for implement-
ing a recursive Bayesian filter by Monte Carlo simulations. The key idea is to represent the
required posterior density function by a set of random samples with associated weights and to
compute estimates based on these samples and weights. As thenumber of samples becomes
very large, this Monte Carlo characterization becomes an equivalent representation to the usual
functional description of the posterior distribution, andthe PF filter approaches the optimal
Bayesian estimate (Arulampalam, Maskell, & Gordon, 2002).

In a PF algorithm, the samples of the posterior distributionare called particles and are
denoted with

χt := s
[1]
t , s

[2]
t , · · · , s

[M ]
t . (3.10)

Each particles[m]
t (with 1 ≤ m ≤ M) is a concrete instantiation of the state at timet. Put

differently, a particle is a hypothesis as to what the true world state may be at timet. HereM
denotes the number of particles in the particle setχt. In practice, the numberM is often a large
number. In some implementationM is a function oft or other quantities related to the belief
bel(st).

The intuition behind PF is to approximate the beliefbel(st) by the set of particles inχt.
Ideally, the likelihood for a state hypothesisst to be included in the particle setχt shall be
proportional to its Bayes filter posteriorbel(st)

s
[m]
t ∝ p(st|z1:t) = bel(st) (3.11)

As a consequence, the denser a subregion of the state space ispopulated by samples, the
more likely it is that the true state falls into this region.
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3.2.1 Importance Sampling

Let {χt, {ω[m]
t }M

m=1} characterize the belief of the statebel(st), where the set of particlesχt has
associated weights{ω[m]

t , m = 1, ..., M} and the weights are normalized such that
∑

m ω
[m]
t =

1. Then, the posterior density at timet can be approximated as

bel(st) ≈
M∑

m=1

ω
[m]
t δ(st − s

[m]
t ) (3.12)

whereδ() is the Dirac function. We therefore have a discrete weightedapproximation to the
true posterior,bel(st) = p(st|z1:t).

The weights are chosen using the principle ofimportance sampling. This principle relies
on the following. Supposep(s) ∝ π(s) is a probability density from which it is difficult to
draw samples but for whichπ(s) can be evaluated. In addition, lets[m] ∼ q(s), m = 1, ..., M
be samples that are easily generated from a proposalq(·) called importance density. Then, a
weighted approximation to the densityπ(·) is given by

p(s) ≈
M∑

m=1

ω[m]δ(s − s[m]) (3.13)

where

ω[m] ∝ π(s[m])

q(s[m])
(3.14)

is the normalized weight of theith particle.
Therefore, if the sampless[m]

t were drawn from an importance densityq(st|z1:t), then the
weights in Equation 3.12 are defined by Equation 3.14 to be

ω
[m]
t ∝ p(s

[m]
t |z1:t)

q(s
[m]
t |z1:t)

(3.15)

3.2.2 Basic Algorithm

Returning to the sequential case, at each iteration, one could have samples constituting an ap-
proximation ofp(st−1|z1:t−1) and want to approximatep(st|z1:t) with a new set of samples.

The PF algorithm constructs the beliefbel(st) recursively from the beliefbel(st−1) one time
step earlier. Since beliefs are represented by sets of particles, this means that PF constructs
the particle setχt recursively from the setχt−1. A pseudo-code description of the most basic
variant of this algorithm is given by the following Algorithm 1.

The input of this algorithm is the particle setχt−1, along with the most recent measurement
zt. The algorithm then first constructs a temporary particle set χ̃t that represents the belief
b̃elt. It does this by systematically processing each particles

[m]
t−1 in the input particle setχt−1.

Subsequently, it transforms these particles into the setχt, which approximates the posterior
distributionbel(st).
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Algorithm 1 : Pseudo code for the PF basic algorithm
1. χt = PF (χt−1, zt)
2. χ̃t = χt = 0;
for all m = 1 : M do

4. Samples[m]
t ∼ p(st|s[m]

t−1);

5. ω[m] = p(zt|s[m]
t );

6. χ̃t = χ̃t + 〈s[m]
t , ω[m]〉;

for all m = 1 : M do
9. Drawi with probability∝ ω[i];
10. Adds

[i]
t to χt;

The real “trick” of the PF algorithm occurs in line 9 and 10 in Algorithm 1, where the
resamplingstep is implemented. In the resampling step the algorithm draws, with replacement,
M particles from the temporary set̃χt, transforming a particle set ofM particles into another
particle set of the same size.

With the resampling process, the distribution of the particles changes: whereas before the
resampling step, they were distributed according tob̃el(st), after the resampling they are dis-
tributed (approximately) according to the posteriorbel(st) ∝ b̃el(st)p(zt|st). In fact, the result-
ing sample set usually contains many duplicates, since particles are drawn with replacement.
The particle not contained inχt are the particles with lower importance weights.

Thus, the resampling step has the important function of forcing particles back to the poste-
rior bel(st). There are different way to implement the resampling step: the one implemented in
Algorithm 1 is calledsimple random samplingand draws the particles with probability given
by their importance weigh. In the next subsection we presenta different procedure that is easier
to implement than the simple random sampling and provides smaller variance.

3.2.3 Residual Sampling

The resampling step has been introduced to overcome thedegeneracy problem. The degeneracy
problem is the problem where, after a few iterations, all buta particle has negligible weights.

With the resampling step, particles that have small weightsare eliminated and the algo-
rithm concentrates on particles with large weights diminishing the Monte Carlo variation of the
particles (Berzuini, Best, Gilks, & Larizza, 1997).

Residual Resamplingis a resampling technique that can replace the simple randomsampling
providing favorable computation time and diminishing particles’ Monte Carlo variation (Liu &
Chen, 1998). It consists of the following steps:

1. Retaink[m] = ⌊Mω[m]⌋ copies ofs[m]
t for each1 ≤ m ≤ M .

2. LetMr = M −
∑M

m=1 k[m].

3. DrawMr samples from̃χt with probabilities proportional toMω
[m]
t − k[m] for each1 ≤

m ≤ M .
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4. reset the weights to1/M .

The residual sampling does not seem to have disadvantages inany aspects.
A pseudo-code for the variant of the PF algorithm that makes use of the residual sampling

is given by the following Algorithm 2.

Algorithm 2 : Pseudo code for the PF algorithm with residual resampling
1. χt = PF (χt−1, zt)
2. χ̃t = χt = 0;
for all m = 1 : M do

4. Samples[m]
t ∼ p(st|s[m]

t−1);

5. ω[m] = p(zt|s[m]
t );

6. χ̃t = χ̃t + 〈s[m]
t , ω[m]〉;

for all m = 1 : M do
9. k[m] = ⌊Mω[m]⌋;
10. Addk[m] copies ofs[m]

t to χt;
11. ω[m]

r = Mω[m] − k[m];
13. Mr = M −

∑M

m=1 k[m];
for all m = 1 : Mr do

15. Drawi with probability∝ ω
[i]
r ;

16. Adds
[i]
t to χt;

3.3 Relational Particle Filter

Given our subdivision of the relational state insa (state of the attributes) andsr (state of the
relations), we want to express the beliefbel(st) and the predictioñbel(st) in terms ofsa andsr.
The belief of the relational state is:

bel(st) = p(sa
t , s

r
t |z1:t) (3.16)

A Bayesian filter algorithm requires to compute the belief distribution from measurement
data as:.

bel(st) = α p(zt|sa
t , s

r
t )

∫
p(sa

t , s
r
t |sa

t−1, s
r
t−1)bel(st−1)dst−1 (3.17)

Following the assumption that the relational part of the state sr is not measurable (see Sec-
tion 2.5), the observations depend exclusively on the attributes:p(z|sr, sa) = p(z|sa). The
previous equation becomes:

bel(st) = α p(zt|sa
t )

∫
p(sa

t , s
r
t |sa

t−1, s
r
t−1)bel(st−1)dst−1. (3.18)
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The predictioñbel(st) can be written as:

b̃el(st) = p(sa
t , s

r
t |z1:t−1) =

∫
p(sa

t , s
r
t |sa

t−1, s
r
t−1)bel(st−1)dst−1 (3.19)

Considering the relational transition model introduced inEquation 3.9, we can writẽbel(st)
as:

b̃el(st) = p(sa
t , s

r
t |z1:t−1) =

∫
p(sa

t |sa
t−1, s

r
t−1)p(sr

t |sr
t−1, s

a
t )bel(st−1)dst−1, (3.20)

that allows us to easily implement the filtering step.
The intuition behind our algorithm is the following. At eachtime step we have samples con-

stituting an approximation ofp(sa
t |sa

t−1, s
r
t−1) and we want to approximatep(sa

t , s
r
t |sa

t−1, s
r
t−1)

with a new set of samples. Since the transition model is such that p(sa
t , s

r
t |sa

t−1, s
r
t−1) =

p(sa
t |sa

t−1, s
r
t−1)p(sa

t |sa
t−1, s

r
t−1) we can obtain samples[sa,[m]

t , s
r,[m]
t ] ∼ p(sa

t , s
r
t |sa

t−1, s
r
t−1) by

augmenting each of the existing sampless
a,[m]
t ∼ p(sa

t |sa
t−1, s

r
t−1) with the new state of rela-

tionss
r,[m]
t ∼ p(sa

t |sa
t−1, s

r
t−1).

We introduce in Algorithm 3 our Relational Particle Filter (RPF) algorithm able to take
advantage of the decomposition introduced in the relational transition model.

Algorithm 3 : Pseudo code for the RPF algorithm
1. χt = RPF (χt−1, zt)
2. χ̃t = χt = 0;
for all m = 1 : M do

4. Samplesa;[m]
t ∼ p(sa

t |s
a;[m]
t−1 , s

r;[m]
t−1 ); Hypothesis for the state of the attributes

5. Samplesr;[m]
t ∼ p(sr

t |s
a;[m]
t , s

r;[m]
t−1 ); Hypothesis for the state of the relations

6. ω[m] = p(zt|sa;[m]
t ); Weights computation

7. χ̃t = χ̃t + 〈[sa;[m]
t , s

r;[m]
t ], ω[m]〉;

for all m = 1 : M do
10. k[m] = ⌊Mω[m]⌋; Residual Resampling step:
11. Addk[m] copies of[sa;[m]

t , s
r;[m]
t ] to χt;

12. ω[m]
r = Mω[m] − k[m];

14. Mr = M −
∑M

m=1 k[m];
for all m = 1 : Mr do

16. Drawi with probability∝ ω
[i]
r ;

17. Add[s
[a;i]
t , s

[r;i]
t ] to χt;

A particle (s[m]
t ) is a representation of the state, for this reason, in our setting, it is divided

in two parts: the part of the attributessa,[m]
t and the part relative to relationssr,[m]

t (see Figure
3.4(a)). The part of the particle relative to the attributesis sampled according to the first part
of the relational transition model (Line 4), subsequently the part of the particle relative to the
relations is sampled according to the second part of the relational transition model (Line 5).



40 CHAPTER 3. INFERENCE INDYNAMIC RELATIONAL DOMAINS

When the measurement is acquired, particles are weighted according to the sensor model (Line
6). The measurement model takes into account only the part ofthe particle relative to the
attributes, since the particle is composed by two parts, also the part relative to the relations is
weighted. After the weighting step, particle are resampledfollowing the Residual Resampling
procedure (Line 9). A sketch of the sampling and weighting steps is given in Figure 3.3.

(a) Particle representation. (b) First step of hypothesis.

(c) Second step of hypothesis. (d) Particle weighting.

Figure 3.4: Cartoon representation of the proposed algorithm.

3.3.1 Mathematical Derivation of the RPF

To derive the RPF mathematically we refer to (Thrun, Burgard, & Fox, 2005). We think of
particles as samples of the state sequences:

[s
a;[m]
0:t , s

r;[m]
0:t ] = [s

a;[m]
0 , s

r;[m]
0 ], [s

a;[m]
1 , s

r;[m]
1 ], · · · , [s

a;[m]
t , s

r;[m]
t ] (3.21)

It is easy to modify the algorithm accordingly: simply append to the particle[sa;[m]
t , s

r;[m]
t ]

the sequence of state samples from which it was generated[s
a;[m]
0:t−1, s

r;[m]
0:t−1]. This relational particle

filter calculates the posterior over all state sequences:

bel(sa
0:t, s

r
0:t) = p(sa

0:t, s
r
0:t|z1:t) (3.22)

instead of the beliefbel(sa
t , s

r
t ) = p(sa

t , s
r
t |z1:t). This definition is needed to derive the RPF

algorithm given in Algorithm 3.
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The posteriorbel(sa
0:t, s

r
0:t) is obtained by:

bel(sa
0:t, s

r
0:t) = p(sa

0:t, s
r
0:t|z1:t)

= αp(zt|sa
0:t, s

r
0:t, z1:t−1)p(sa

0:t, s
r
0:t|z1:t−1)

= αp(zt|sa
t , s

r
t )p(sa

0:t, s
r
0:t|z1:1−t)

= αp(zt|sa
t , s

r
t )p(sa

t , s
r
t |sa

0:t−1, s
r
0:t−1z1:1−t)p(sa

0:t−1, s
r
0:t−1|z1:1−t)

= αp(zt|sa
t , s

r
t )p(sa

t , s
r
t |sa

t−1, s
r
t−1)p(sa

0:t−1, s
r
0:t−1|z1:1−t)

= αp(zt|sa
t , s

r
t )p(sa

t |sa
t−1, s

r
t−1)p(sr

t |sr
t−1, s

a
t )p(sa

0:t−1, s
r
0:t−1|z1:1−t)

The absence of the integral signs is the result of maintaining all states in the posterior.
The derivation is now carried out by induction. The initial condition is trivial to verify.

Assume that our first particle set is obtained by sampling theprior p(sa
0, s

r
0). Let us assume that

the particle set at timet − 1 is distributed according tobel(sa
0:t−1, s

r
0:t−1). For them-th particle

[s
a;[m]
0:t−1, s

r;[m]
0:t−1] in the input set, the samplesa;[m]

t is generated from the proposal distribution:

p(sa
t |sa

t−1, s
r
t−1)bel(s

a
0:t−1, s

r
0:t−1) (3.23)

and the sample[sa;[m]
t , s

r;[m]
t ] is generated according to the proposal distribution:

p(sr
t |sr

t−1, s
a
t )p(sa

t |sa
t−1, s

r
t−1)bel(s

a
0:t−1, s

r
0:t−1) (3.24)

with sa
t = s

a;[m]
t .

To compute weights we use

ω
[m]
t =

target distribution
proposal distribution

(3.25)

where

target distribution= ηp(zt|sa
t , s

r
t )p(sa

t |sa
t−1, s

r
t−1)p(sr

t |sr
t−1, s

a
t )bel(s

a
0:t−1, s

r
0:t−1) (3.26)

and
proposal distribution= p(sr

t |sr
t−1, s

a
t )p(sa

t |sa
t−1, s

r
t−1)bel(s

a
0:t−1, s

r
0:t−1). (3.27)

ω
[m]
t =

ηp(zt|sa
t , s

r
t )p(sa

t |sa
t−1, s

r
t−1)p(sr

t |sr
t−1, s

a
t )bel(s

a
0:t−1, s

r
0:t−1)

p(sr
t |sr

t−1, s
a
t )p(sa

t |sa
t−1, s

r
t−1)bel(s

a
0:t−1, s

r
0:t−1)

(3.28)

from which follows:
ω

[m]
t = ηp(zt|sa

t , s
r
t ) (3.29)

The constantη plays no role since the resampling takes place with probability proportional
to the importance weights. By resampling particles with probability proportional toω[m]

t , the
resulting particles are distributed according to the product of the proposal and the importance
weightsω[m]

t :

ηω
[m]
t p(sr

t |sr
t−1, s

a
t )p(sa

t |sa
t−1, s

r
t−1)p(sa

0:t−1, s
r
0:t−1|z0:t−1) = bel(sa

t , s
r
t ) (3.30)
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Algorithm 3 follows from the simple observation that if[s
[m],a
0:t , s

[m],r
0:t ] is distributed ac-

cordingly tobel(sa
0:t, s

r
0:t) then the relational state sample[s

[m],a
t , s

[m],r
t ] is (trivially) distributed

accordingly tobel(sa
t , s

r
t ). The mathematical derivation of the filter, ensures the convergence of

the filter forM ↑ ∞.

3.4 Conclusion

In this chapter we presented the general problem of inference in dynamic domains, introducing
the Bayes filter, that is the most general algorithm for this problem. To face the increased
complexity posed by relational domains, we introduced one of the major contributions of the
Thesis, ourRelational Particle Filteralgorithm. This algorithm computes the belief of the state
taking into account relations between objects, and it is capable of track the relations as well.

In the last part of this chapter we derived the algorithm mathematically, proving that our
reasoning is sound and the algorithm converges.

We will now focus our attention on two principal problems: the problem of activity recog-
nition and the problem of multi target tracking. In the next chapters we first introduce these
problems, reviewing related works and then we show how our RPF outperforms the state of the
art algorithms.



Chapter 4

Anatomy of an Activity Recognition
System

You’ll never find your gold on a sandy beach,//You’ll never drill for oil on a city street.//I know
you’re looking for a ruby in a mountain of rocks.// But there ain’t no coupe de ville hiding //at

the bottom of a cracker jack box.

Jim Steinman

The techniques developed in this work can be used in a varietyof domains ranging from bio-
sequence analysis, where different genes participating inthe same interaction can be related, to
economy prediction, where the price is related to the trend of the demand of related shares.
We focus on behavior and scene understanding applications and in particular we will deal with
systems forvision-based activity recognition. In this chapter we describe the challenges of
designing a vision-based activity recognition system in all its main components and present the
state of the art and our approach.

4.1 Vision-based Activity Recognition Systems

An activity recognition systemaims to recognize the actions and the goals of one or more agents
from a series of observations on the agents’ positions, attributes and the environmental condi-
tions. In particular,vision-based activity recognitionconsists in tracking and understanding
the behavior of the agents through videos taken by a camera ora number of cameras. Vision-
based activity recognition has found many applications such as human-computer interaction,
user interface design, robot learning, and surveillance, among others.

A vision-based activity recognition system consists of multiple modules

1. Themotion detectionmodule has the goal to detect the objects in the scene that aremov-
ing significantly (i.e.,distinguish from background motion that is not of interest like leafs
moving on a tree).
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2. In thetrackingmodule the objects detected in the previous step are associated with the
“path” they are traveling. If only one object is moving in thescene this task if straight-
forward. If there are multiple objects in the scene the task becomes more complex (a
data associationstep is required) and if the objects are interacting the complexity of the
tracking task grows a lot.

3. Theactivity recognitionmodule associates each (or groups) of the detected paths with
a particular activity giving a meaning to the motion of the objects. Activity recognition
can be exploitedonline with the tracking (i.e., at each time step, a measurement is ac-
quired, the state of the domain is filtered given the hypothesis done over the domain by
the tracker and the belief over the activity computed) or off-line, when a sufficient amount
of knowledge about the domain has been acquired.

In some cases, applications are also required to raise an alarm when a particular dangerous
or forbidden situation arise. These systems, calledanomaly detection systems, may use activity
recognition in order to decide when rise an alarm and are discussed in (Section 4.5). In Figure
4.1 a sketch of the interactions of these module is reported.

Figure 4.1: Graphical sketch of the activity recognition modules iteration.

In this Thesis we use probabilistic relational models to both improve tracking thanks to the
prior about the ongoing activity and feed-back the knowledge acquired about the state to the
activity recognition module to compute the belief over the activity online.
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In the following sections we describe each layer of a vision-based activity recognition sys-
tem, discuss the design challenges, review existing works and propose our solutions.

4.2 Motion Detection

Motion detectionis the activity of extracting the pixels of the moving objects in the scene from
the images of a video. Most of the approaches presented in this section rely on the output of a
robust motion detection step and our method for tracking andactivity recognition relies on the
same hypothesis.

Motion detection methods are used to locate the presence (orabsence) of motion in a given
animated scene. We refer here to a specific class of motion detection methods for video surveil-
lance (McKenna, Jabri, Duric, & Wechsler, 2000), traffic monitoring (B.Gloyer & T.Kailath,
1995) and others using a static camera.

4.2.1 Traditional Approaches to Motion Detection

Several methods have been proposed to automatically detectthe objects’motion in an image
sequence. They can be classified in two major categories: techniques that compares each new
frame to a model of the scene background, calledbackground subtractiontechniques and tech-
niques based on the difference of consecutive frames, called inter frame differenceor temporal
difference techniques.

Background subtraction bases the detection of moving objects on the difference between
the current frame and a reference frame, often calledbackgroundimage. This implies that the
background image has to be reliable,i.e., it has to be an image of the scene without moving
objects. This turns into the need of computing and updating abackground model, which could
account for changes in light conditions or small movements of the scene and has to face with
a trade off: if the background model adapts too slowly to changes in the scene, then we will
construct a very wide and inaccurate model that will have lowdetection sensitivity. On the
other hand, if the model adapts too quickly, this will lead totwo problems: the background
model may include the target themselves, as their speed cannot be neglected with respect to the
background variations, and it may lead to poor estimation ofthe motion.

The techniques used to model the background can be classifiedin two major groups:

• Non-parametric approaches and

• Parametric approaches.

As an example ofnon-parametricapproaches to background modeling, consider the model
presented in (Elgammal, Harwood, & Davis, 2000) where the density function of the distri-
bution of each pixel in the scene is estimated at any moment oftime given only very recent (n
frames) history information. With the median filter approach, proposed in (R.Cutler & L.Davis,
1998) and in (R.Cucchiara & A.Prati, 2003), one computes each pixel of the background image
as the average of the corresponding pixels in then previous images. We also mention (Spag-
nolo, Leo, D’Orazio, Caroppo, & Martiriggiano, 2006) wherethe pixels’ energy information is
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exploited in order to distinguish static points from movingones: a low energy content means
that the considered point is a static one and the corresponding statistics are included in the back-
ground model, whereas high energy points, corresponding toforeground cannot contribute to
the model. Non-parametric approaches are based on the assumption that a pixel is part of the
background image for a certain amount of time (at leastn

2
frames).

A first class ofparametricalgorithms usesstatistical approachesto model background pix-
els. In (Stauffer & Grimson, 1999) a generalized mixture of Gaussians is used to model com-
plex non-static background, however the presence of foreground objects during the learning
phase could heavily alter the reliability of the model, as under sudden light changes (Cheung
& Kamath, 2004). Moreover, these methods are computationally intensive and their parame-
ters require careful tuning. A different class is composed by the approaches that usefilters for
temporal analysis. In (Luong, Weber, Koller, & Malik, 1995)the authors use a Kalman filter
approach for modeling the state dynamics for a given pixel. In (Doretto, Chiuso, Wu, & Soatto,
2003), instead, an autoregressive model was proposed to capture the properties of dynamic
scene. An improvement of this algorithm was implemented by (Monnet, Mittal, Paragios, &
Ramesh, 2003) to address the modeling of dynamic backgroundand perform foreground detec-
tion. The common assumption of these filter-based techniques is that the observed time series
is independent at each pixel.

To reduce the background changes, the temporal difference approach detects motion by
taking the absolute difference of consecutive images (thistechnique is also known assingle
difference (C. Zhang, 2003)). These approaches present the advantagesof requiring much
lower computational effort than the background subtraction methods and avoids errors typically
due to the use of a particular background model and of using a very up-to-date image of the
scene as background. The disadvantage of the temporal difference approach is that the image
used as background includes the moving objects as well, therefore frame difference is liable to
generate large areas of false foreground, known asghosts. Moreover, it may miss the detection
of that pixels that stop motion in the image frame (problem known asforeground aperture). To
solve the ghost issue the “double difference” has been proposed in (Yoshinari & Michihito,
1996) as a variation on this method. This approach computes athreshold difference between
frames at timet andt − 1 and between frames at timet − 1 andt − 2, combining them with a
logicalAND. However, if the moving objects have not enough texture thisprocedure does not
allow an accurate motion detection and the object position is not estimated in real time.

In the last years background subtraction and temporal difference has been integrated in new
methods to fix the drawbacks each method present. One of thesealgorithm has been described in
(Collins, Lipton, & Kanade, 1999), this algorithm exploitsimage difference between frames at
timet andt−1 and the difference betweent andt−2 to erase ghosting; it also keep in memory
a background model to solve the foreground aperture problem. Another algorithm proposed
as the integration of two different techniques is the one proposed in (Migliore, Matteucci, &
Naccari, 2006) where an image of background is updated according to the result of the single
difference on the current frame. Despite these approaches obtain good results, they spend a high
computational effort to solve problems introduced by the integration of the two methods.
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4.2.2 Context-aware Motion Detection

In this section we describe our approach to motion detection.
Context-based reasoning has been shown to be a key factor forcomputer vision in the de-

velopment of algorithms for object recognition (Derek Hoiem & Hebert, 2006), (Elidan et al.,
2006). These algorithms express the knowledge about the scene around the objects with a prob-
ability distribution and use it to accomplish the task of object recognition given their context.
In (Heitz & Koller, 2008), for example, a system that leverages “context” toward improving
detection is presented. The method clusters image regions based on their ability to serve as
context for the detection of objects. This method automatically groups regions based on their
appearance and computes the relationships between regionsto detect objects in the image.

Another approach that models the context for the object recognition task is that presented in
(Copsey & Webb, 2002). In this paper the uncertain causal relationships between the objects and
their environment is modeled with a Bayesian Networks (BNs)to recognize multiple military
targets. In particular they do that taking into account measurement information on the targets,
measurements on the terrain around the target and the knowledge about certain characteristics
of the target (preference in hiding, ability to traverse different types of terrain, . . . )

As far as we know, algorithms for motion detection have not considered context interpre-
tation. In (Archetti, Manfredotti, Messina, & Sorrenti, 2006b) we presented an approach that
detects moving objects performing a temporal difference method differentiating between fore-
ground and ghost areas with an heuristic. Here we describe this heuristic in terms ofcontext
reasoning.

Context to improve moving objects detection

The method we proposed is based on the difference between consecutive frames. Tradition-
ally, such difference is computed as the absolute value of the difference in the intensity (as in
Equation 4.1):

SDifft(x, y) =

{
|It(x, y) − I(t−1)(x, y)| if |It(x, y) − I(t−1)(x, y)| > T
0 otherwise

(4.1)

In SDiff motion is detected in two areas, one due to the image positionthe object had at
time (t − 1) (ghost), and the other due to the object position in the current frame (foreground).
The two instances have similar image intensity inSDiff , and the possibility of distinguish
between the two is lost.

In Figure 4.3, another relevant area, calledforeground aperture, is emphasized. It is formed
by the overlapping of the target positions inI(t−1) and It and its weightless depends by the
motion of the target in the image with respect to the frame rate. The foreground aperture(F.A.)
area is characterized by pixels where the intensity is closeto zero, due to the effect of the
subtraction of pixels more or less at the same intensity level: in this area no motion can be
detected.

Our method is based on the use of a Single Difference technique without computing its
absolute value. We will call itsigned single difference. We propose to use the signed single



48 CHAPTER 4. ANATOMY OF AN ACTIVITY RECOGNITION SYSTEM

Figure 4.2: Left: Image at time(t − 1), It−1. Right: Image at timet, It.

Figure 4.3: Left: SDiff: both foreground pixels and ghost pixels are set to1 in the motion image
shown. Right: SSDiff: ghost and foreground pixels have different intensity.

difference and to separate pixels of positive intensity from pixels of negative intensity: this
separation will be used to discriminate the foreground fromthe ghost, as shown in Figure 4.3
right. Given two consecutive frames,I(t−1) andIt (Figure 4.2, left and right) we consider the
signed single difference,SSDifft(x, y):

SSDifft(x, y) =

{
(It(x, y) − I(t−1)(x, y)) if |It(x, y) − I(t−1)(x, y)| > T
0 otherwise

(4.2)

We are left with some ghost and some foreground areas, which we want to discriminate. In
Figure 4.4 left a simple example with one foreground and one ghost area is shown.

We now reason about thecontextof each detected blob (set of pixels assigned to a moving
object). The context of a moving object is the background of the image. Our idea is based on
the observation that around each blob area we have background, but insidean area detected by
a blob:
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Figure 4.4: Left: The context (or neighborhood) for the heuristic are defined in theSSDiff
image. Right: The descriptor for the neighborhood are evaluated in the current image,It.

• if it is foregroundthere is somethingdifferentfrom the context: this is an area detected as
foreground that is indeed foreground;

• if it is ghost(i.e., background) there is somethingsimilar to the context all around the
blob: this is an area detected as foreground that is indeed background.

Similarity and difference can be defined in terms of color, light, etc.

Relational Reasoning to infer Foreground Aperture

Once we detect the foreground and the ghost areas, we are leftwith areas of background that
can be faulty detected.

A foreground aperture areais an area in the image between a blob of ghost and a blob of
foreground that has been detected as background but it is indeed foreground. We can use a
First-Order Logic (FOL) relation to detect such areas.

We observed that, for each blob of foreground that is formed by positive pixels in the
SSDiff , therelatedblob of ghost is formed by negative pixels.

With respect to the main theme of this Thesis (relational reasoning) we can consider this
intuition from a “relational” perspective. We can define this relation (between a positive fore-
ground and a negative ghost or vice-versa) based on the blobs’distance, their pattern in the
image or their behavior in the previousn frames.

We can detect the foreground aperture areas as those areas between the couples foreground
and ghost that are most probably related.

4.3 Multi-target Tracking

The problem of multi-target tracking is the problem of associating a (possibly unknown) number
of moving objects with their most likely trajectories (sequences of positions) over time. If
performedonline it requires to make such associations at each time step.
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Online tracking subsumes inference: it is the problem of infer the state of all the moving
objects in the domain given the observations up to the current time.

A lot of work has been done in the past years to deal with the problem of finding the tracks
of an unknown number of agents moving in the scene.

For non-interacting targets, the classical multi-target tracking literature approaches the prob-
lem by performing a data-association step after the acquisition of the measurement. The multi-
ple hypothesis tracker (Reid, 1979) and the joint probabilistic data association filter (Fortmann,
Bar-Shalom, & Scheffe, 1983) are the most influential algorithms in this class. These multi-
target tracking algorithms have been used extensively in the context of computer vision. Some
examples are the use of nearest neighbor tracking in (Deriche & Faugeras, 1990), the multiple
hypothesis tracker in (Cox & Leonard, 1994), and the joint probabilistic data association filter
in (Rasmussen & Hager, 2001).

Some of the works that deal with multi-target tracking integrate the low level motion detec-
tion step from a sequence of frames with the tracking. This iscalledtracking-by-detectionand
integrates the motion detection module with the tracking, taking advantage from the feedback
connection between the two modules to improve both tasks. The underlying idea is to derive
higher-level semantic information from the motion detection module and feed it back to the
tracking module in order to improve performance there. Having an hypothesis over the future
positions of the moving objects in the scene, will decrease the complexity of the motion detec-
tion. Between others an example of this approach is the work of Zhao et al., (Zhao, Nevatia,
& Wu, 2008).

In (Zhao et al., 2008) a model-based approach to interpret the image observations by mul-
tiple partially occluded human hypotheses in a Bayesian framework is presented. They define
a joint image likelihood for multiple humans based on their appearance, the visibility of their
body obtained by reasoning about occlusions and foreground/background separation. Their
“data driven Markov chain Monte Carlo” sampling method performs inference using image
observations as proposal probabilities.

In (Okuma, Taleghani, de Freitas, Little, & Lowe, 2004) the mixed particle filter algorithm
is combined with Adaboost algorithm to learn, detect and track objects of interest. The mixture
particle filter algorithm assigns a mixture component to each object, the Adaboost algorithm
generates the proposal distribution of each particle.

These approaches are appropriate when targets behave independently, and the problem is a
problem of “visual confusion”.

The works presented in (Isard & MacCormick, 2001) and in (MacCormick & Blake, 2000)
focus on the observation model, both these methods seem to “embed” the concept of relation in
the dynamic model. In (Isard & MacCormick, 2001) the fact that two objects cannot occupy
the same spot in the scene is used to constrain the object recognition module. In (MacCormick
& Blake, 2000) reasoning about the fact that objects nearer to the camera are more likely to be
recorded by it is used to detect of two objects which is occluding and which one is occluded.

Both of these approaches do not give an explicit descriptionof the relations and they do not
treat with them in a probabilistic way: relations are used as“rules of thumb” to constrain the
reasoning over the system.

In (Khan, Balch, & Dellaert, 2004) a multiple hypothesis particle filter is described able to
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track targets that are influenced by the proximity and/or thebehavior of other targets. They do
that defining a Markov random field at each time step to model the interactions between objects.
They argue that taking advantage of the knowledge about the interaction between objects greatly
help tracking two targets that pass close to one another. Their goal is only to track multiple
objects, they do not take advantage of the knowledge about the interaction between objects to
learn (or detect) what are the objects doing in the scene.

Mixed-states models, that we discuss next, are the models for tracking that most closely
relate to our approach.

4.3.1 Mixed-state models

There are scenarios in which the tracking task is complex (and we provided some examples
in the introduction) due to the unpredictability of the behavior of the targets: in these cases a
unique motion model is not enough to predict the future stateof the system, different motion
models would be necessary to handle the targets possible behaviors.Mixed-statemodels allow
automatic switching between multiple motion models as a natural extension of the tracking
process.

The work presented in (Isard & Blake, 1998) allows a mixed-state object representation
combining continuous-valued shape parameters with a discrete label encoding which of a dis-
crete set of motion models is in force. While the inference task is performed, the discrete label
says which model must be used to predict the future (continuous) state. In the prediction step,
model switching is performed when necessary.

Consider, for example, a mixed state model for tracking two billiard balls. When the balls
are far apart (first model) the system tracks the balls independently (i.e., predicts their posi-
tion using simple cinematic model), instead when they are close (second model) the system
considers a transition model that predicts collisions or bounces.

In a mixed-state models the label of the transition model relates the prediction of the future
state only to the time step previous to the current one, this assumption makes the prediction
over the motion model unrelated with the current state, thismay lead to a possible delay for the
tracker to correctly approximate the objects’ behavior. Inthe example, at timet the distance
between two billiard balls is computed taking into account the positions of the balls at time
t − 1 and the switching between the two models is done for the prediction of the state at time
t + 1; this leads to a delayed in the approximation of the state of the two balls. In our method,
instead, (see next paragraph) we use relations as the representation of the motion model in force.
The state of relations does depend by the previous relational state and by the current state of
attributes, the prediction step takes into account which relations are true to make its hypothesis
over the next state, that results in being more up-to-dated with respect to a mixed-state model
approach. Moreover, the use of FOL relations (as opposed to alist of possible motion models)
generalizes our models to different domains.
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4.3.2 RelationalMulti-target Tracking

In this Thesis we deal withrelational trackinga framework first presented by Guibas in (Guibas,
2002) that allows to track multiple agents taking into account the correlation between their be-
havior. In relational tracking one considers, in addition to the positions and the object’s at-
tributes, relations that represent joint properties of theobjects and associates a set of objects
with a full specification of the evolution of the value of their attributes and relations over time.

While tracking the state of attributes (i.e.,“usual” state of the domain, refer to Section 3.1.2)
we track also the relations between objects at the same time.The goal of relational tracking is
that of finding the trajectories over time of an (unknown) number of objects as well as the
evolution of the relations between them. We can say that relational tracking subsumes activity
recognition.

A complete description of the relations existing between objects gives us a description of
the activity they are involved in. Tracking relations meansbeing able to say at each time step
the activity (described as set of true relations) in which each object in the scene is involved. In
this Thesis we do not deal with the recognition of a single action performed by a single person
but we focus on recognizing activities that reflect semanticgoals.

4.4 Activity Recognition

Activity recognitionis the problem of model and detect specific, dynamic interaction between
moving objects (sometimes referred as agents) or part of objects. In the past years, the concept
of activity ranged from single-agent, short-duration action to the semantic goal (or intention) of
a group of targets. Recognizing single-agent, short-duration activities is also called event de-
tection (Laptev, Caputo, Schüldt, & Lindeberg, 2007) and has the goal of identify and localize
spatio-temporal patterns in videos.Complexactivities have been often defined as temporally
extended activities that can be fragmented in simple ones.

4.4.1 Traditional Approaches in Activity Recognition

In (Hongeng, Nevatia, & Brémond, 2004) simple activities (single threads) are characterized by
being executed by a single actor and multi-agent events (complex activities) are represented by a
number of single threads related by temporal constraints. Single threads are recognized from the
characteristic of the trajectories of the actors using Bayesian methods. Complex activities are
recognized by propagating temporal constraints of single threads in a temporal logic network.

We will focus on actions that see theinteractionbetween objects, instead of focusing on
complex actions that are temporal sequence of simple one.

In (Ivanov & Bobick, 2000), (Moore & Essa, 2002) and (Ryoo & Aggarwal, 2006) the
interactions between different agents is recognized. These methods recognize single-actor, sim-
ple activities and organize the detected simple activitieswith a stochastic grammar free parsing
to recognize complex activities. The recognition task is decoupled in two levels: a lower level
that detects single simple activities that are the inputs for the stochastic context-free grammar
used as a “bag of words” to interpret the structure of the system.
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The complexity of this interactions are still temporal based. Ivanov and Bobick report the
example of a domain where the problem is to recognize the activities that can occur in a parking
lot of a building. The interaction between a person exiting the building and a car entering the
parking lot is recognized as “pick-up” if the person approaches the car and then “disappears”
from the scene. As in (Intille & Bobick, 1999), Ivanov and Bobick detect complex actions
that contain many components that occur in an ordered temporal relation to one another, that
generally reflect causal connection. We are, instead, interested in modeling and recognizing
activities that see theintegrationandcoordinationof multiple objects.

A good example of such activities is the one of recognizing actions during a sport match, in
particular some work has been done in soccer domain.

An example of these works is the one reported in (Tovinkere & Qian, 2001) where, based on
tracking data, players’actions and game events are detected using a set of heuristic rules. These
(propositional) rules are derived from a hierarchical entity-relationship model representing the
prior knowledge of soccer events.

A first-order probabilistic model that combines multiple clues to classify human activities
from video data is introduced in (Biswas, Thrun, & Fujimura,2007). The probabilistic model
is implemented as a Dynamic Markov Logic Network that groupsfifteen FOL propositions.
The system is applied to an office setting where only activities that involve an agent and an
inanimate object are considered (talking to the phone, writing with a pen, ...). Our goal is to
model FOL relations between different moving objects.

As far as we know, the nearest approach to the one proposed in this Thesis is the one intro-
duced in (Tran & Davis, 2008) where common sense domain knowledge is represented as FOL
rules and Markov logic networks are defined based on these rules.

Differently from our method, the inference task is performed off-line: they perform prob-
abilistic inference for input queries about events of interest that already happened. We seek,
instead, to perform an online probabilistic inference of both the state of the domain and the
activities and leave each module sending feedbacks to the other to improve its performance. We
claim that, once we recognize complex coordinated activities it will be easier to express the mo-
tion model. Our approach seek to take advantage from the tracking for the activity recognition
task and from the belief over complex activity to improve thetracking.

4.4.2 Online Activity Recognition for Relational Tracking

The aim of our approach is that of tracking multiple interacting agents and recognize their
coordinated activities online. For this purpose we use our RPF for tracking the objects in the
domain together with their relations. The coordinated activities are the results of the set of all
true relations in the domain.

For the sake of the explanation of our computational framework we divide each particle in
two parts: the part of the attributes and the part of the relations; as reported in Figure 4.5.

Referring to Algorithm 3, in the first step of the prediction,the part of the particle relative
to the relations plays the role of the discrete label in the mixed-states models: they encode the
values of the parameters of the relational model based on which relations are true (Figure 4.6
left). In the second step of the prediction, the values of therelations are predicted according to
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Figure 4.5: Our particles can be considered the combinationof two parts, the parts of the
attributes and the parts of the relations, these will cooperate in the prediction step.

their previous values and the hypothesis over the state of the attributes. Computing the predic-
tion of the relations between the objects means to predict the activities in which the objects are
involve in: this step can be calledactivity prediction(Figure 4.6 right).

Figure 4.6: In the first step of the prediction the part of the particle relative to relations plays
the role of the discrete label in the mixed-states models: encodes, of each object, which discrete
model is in force. In the second step of the prediction the values of the relations are predicted
according to their previous values and the hypothesis done over the state of the attributes.

In the resampling step the state is filtered: the particles are forced back to the posterior
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bel(st). With this step we filter the activities: only the most probable activities will survive the
resampling step.

Using our Relational Particle Filter (RPF) for multi targettracking purposes allows us to
recognize activities online. To be notice that all the activities we speak about (the single-person,
short-duration, the temporal based and the coordination) can be expressed as FOL relations.

4.5 Anomaly Detection

Most of the models used for activity recognition can be used also with the purpose of anomaly
detection.Anomaly detectionis the problem of detecting the occurrence of suspicious events.
Activity recognition methods can detect anomalies when these suspicious events are known or
described by a model representing interactions among multiple objects moving in a scene.

In the next chapter we will often use the terms anomaly detection and activity recognition
interchangeably because one of the applications we will deal with is the recognition of the
activity of rendezvous between boats approaching the harbor, that is, indeed, a suspicious (or
anomalous) behavior. For this reason, here we want to explain the differences between anomaly
detection and activity recognition approaches.

Anomaly detection techniques can be divided in two different kind of approaches:signature
andstatisticalanomaly detection. Signature anomaly detection has an internal “list” of anoma-
louspatterns; if an ongoing activity matches a pattern in the “list”, an alarm is raised. Activity
recognition models can be used as signature anomaly detector. In (Archetti, Manfredotti, Mat-
teuci, Messina, & Sorrenti, 2006a), we explained that signature anomaly detection present a
principal disadvantage: since the set of anomalous patterns is based on known anomalies, new
one cannot be discovered. Instead, the objective of Statistical Anomaly Detection is to establish
profiles ofnormalactivities: sequences of events that deviate from these profiles are considered
anomalous and consequently an alarm is raised. The key pointis that the statistical model is an
accurate predictor of normal behavior, so if an ongoing pattern is not accurately predicted by
the model, it is likely to be anomalous.

Our purpose is not to develop an anomaly detector system but an activity recognition frame-
work. It is possible to use our RDBN-based framework to model“normal” behaviors and to use
it as a statistical anomaly detector.

In the next chapter,relations that, in some sense, can also be considered “anomalies”. We do
that to show how using FOL relations between objects can improve the performance of both the
tracking and the activity recognition. Being, our model, able to track more accurately multiple
targets and the relations between them, we have reason to believe that it would be a good model
to implement a statistical anomaly detector as well.

A RDBN anomaly detector would be able to take the best of the two worlds: as a statistical
anomaly detector it can represent “normal” behavior probabilistically; moreover it supports the
behavior modeling of known anomalous activities (that can be represented as “relations”) as a
signature anomaly detector. An alarm is raised to capture the attention of a human operator if
either the belief associated to a known forbidden act is highor if all allowable, “normal” acts
are associated with low belief (unknown anomaly).
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4.6 Conclusions

In this chapter we presented the challenges associated withactivity recognition from a practical
perspective. An application for activity recognition is a complex system composed of many lay-
ers: motion detection, tracking and activity recognition itself. For each of these, we presented
our approach compared to the state of the art.

The experimental part of this Thesis (Chapter 5) will be based on these findings.



Chapter 5

Experiments

So come up to the lab and see what’s on the slab.

Frank in the movie “The Rocky Horror Picture Show”

In this chapter we present the experiments we performed to demonstrate the effectiveness
of our method.

We evaluate our approach on three synthetic data sets on multiple objects moving in different
domains. These agents can perform a variety of actions, someof which may require interac-
tion between them. These experimental domains are of particular interest because the targets’
behaviors are dependent on some external conditions that can be modeled with relations.

In the following we give first an outline of the experiments, we introduce the performance
indicators and discuss our experimental goals. Then we present in detail each experiment.

5.1 Introduction

In the previous chapter we presented a method that uses relations to improve complex activity
recognition, resulting from agents’ interactions. Activity detection is performed online while
tracking the state of the domain. The proposed method is based on the use of probabilistic
relational models extended to model dynamic domains. The introduction of RDBNs to model
dynamic domains allows a compact representation of the world, the use of FOL predicates
allows the representation of the interactions of the agents.

This chapter has the goal of presenting the experimental results we obtained applying our
approach to different domains. We show how modeling and tracking relations between objects
as well as their state, improves the prediction ability of the tracker and the activity recognition
task.

5.2 Overview of the experiments

We present the results obtained over three data sets and present them in an increasing difficulty
order.
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• The first data set deals with three cars moving on a one-way lane. The relation between
the targets that we consider isBeingInFront. This relation influences the behavior of
the objects in the following way: when the carx, that is in front the cary, slows down, the
cary has to slow down as well. In this case, our relational tracker, taking into account the
relationBeingInFront, predicts their positions more accurately than standard methods,
this leads to an improvement of the performance of the tracking.

• In the second data set we consider a crossroad where we want to identify the cars that are
traveling together (cars that are traveling together are more likely to have some common
characteristics and follow a common travel pattern). TheTravelingTogether relation is
therefore unknown to the system but can be inferred by looking at the movements of the
cars.

• In the last data set we consider the automatic surveillancesystem of a Canadian harbor.
A set of relations (Rendezvous, Avoidance, PickUp) model the different activities that
two boats can undertake. All these activities are composed of phases or sub-activities
(as moving towards the other boat, slowing down, loading goods, etc.) and timing is an
important dimension. As a result, these activities are morecomplex than the one seen
before; they require a more complex transition probabilitymodel that also depends on the
type of the boats.

In all three experiments we show how the inference about the relations allows us to make
better estimate. In the next section we present the performance metrics that we use.

5.3 Performance metrics

In the experiments below we show a number of statistics that evaluate the performance of our
relational tracker compared to alternative standard techniques. As we have two complementary
goals (improve positional tracking and identify relations) we have two families of metrics as
well.

5.3.1 Positional tracking error

In the first family of metrics we consider the ability of the system of identifying the right po-
sitions of the target in a period of time. A trajectory (or track) is a sequence of positions over
time. A trajectoryl is generally defined as a sequence of2D positions(xt, yt) and correspond-
ing times,t:

l = {(xt1 , yt1, t1), (xt2 , yt2, t2), · · · , (xtn , ytn, tn)}. (5.1)

In the computer vision domain, time steps can often assumed to be equal, and measured in
frames. Thus,tn may be dropped, as the subscript on the positions can be takenas time, and
Equation 5.1 becomes:
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l = {(x1, y1), (x2, y2), · · · , (xT , yT )} (5.2)

i.e., trajectoryl is a sequence of(xt, yt) positions.
Our relational tracking technique makes use of relations toreason about the positions of

the targets. At each time step,bel(st) is a probability distribution (particle distribution) of the
state. When considering the track identification problem, as we need to output a single position,
the best guess is obtained using statistical expectation ofthe state projected on the part relative
to the positions. We define the estimated position of a tracked target at a given time stept
according to a distributionbel(st) as:

(x̂t, ŷt) = (Ebel[xt|st], Ebel[yt|st]), (5.3)

wherest is the state of the world and(xt, yt) is the part of the state relative to the position of the
targets.(Ebel[xt|st], Ebel[yt|st]) are the expected values of the state restricted to its positional
values:

(Ebel[xt|st], Ebel[yt|st]) = (
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The track obtained with a RPF is the following1:

lRPF = {(x̂1, ŷ1), (x̂2, ŷ2), · · · , (x̂T , ŷT )}. (5.5)

We stress that this operation of averaging is only for the purpose of selecting a single can-
didate position (useful if we want to answer the query “whereis the target now?”) but the
algorithm continues to propagate the belief distribution to the next step.

Comparison of Trajectories

Consider two trajectorieslA andlB. Let positions on trajectorylA belAt = (xt, yt) and positions
on trajectorylB be lBt = (pt, qt), for each time stept. The distance between the positions at
time stept is given by the Euclidian distance:

d(lAt , lBt ) =
√

(pt − xt)2 + (qt − yt)2. (5.6)

Let us defined(lA, lB) to be the set of distancesd(lAt , lBt ) between the trajectorylA andlB.
A metric commonly used for tracker evaluation is themeanof these distances (Needham &
Boyle, 2001), (Harville, 2002):

µ(d(lA, lB)) =
1

T

T∑

t=1

d(lAt , lBt ) (5.7)

whereµ gives the average distance of two trajectories over a certain period of time.

1The definition is the same for the non-relational tracker; however the belief distribution will be different.
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Discrete trajectories The definitions reported so far referred to a domain in which objects
move in a 2D space. Of course, we can deal with discrete domains as well (this is the case of
the second data set we consider, thecrossroaddomain). In a discrete domain objects move on a
graph, where each node is associated with a labelid, belonging to a setID. Then, trajectories
are defined as sequences of the (discrete) labelsl = {x1, x2, · · · , xT}, where eachxi ∈ ID.

Given a particle distribution of a discrete position, instead of the expected value of the
position, we compute themode, projecting the state of the attributes on the position:

x̂t = modebel[xt|st]. (5.8)

The track obtained with a RPF is given by the sequence ofx̂t:

lRPF = {x̂1, x̂2, · · · , x̂T}. (5.9)

To compare two tracks, we have to calculate the distance between their positions at timet.
Given two discrete trajectorieslA andlB, let positions onlA be lAt = xt and positions onlB be
lBt = qt for each time step. Since IDs are purely numeric names and arenot ordered (i.e., ID4

can be nearer toID7 than toID5 in a particular ordainment) we need to consider the adjacency
graph of the IDs and compute the distance over this graph. To compute the distance we use the
shortest path algorithm(or Dijkstra algorithm (Sedgewick, 2001)) that returns the length of
the shortest path from a node to another on a given graph.

As before, we defined(lA, lB) to be the set of distancesd(lAt , lBt ) between the discrete tra-
jectory lA and the discrete trajectorylB. The mean distance of the two tracks over a certain
period of time is computed as the entire part of the average value of the distances in that period
of time:

µ(d(lA, lB)) = ⌊ 1

T

T∑

t=1

d(lAt , lBt )⌋ (5.10)

Now that we have defined the terminology and introduced the concept of track or trajectory,
we can formulate the evaluation metric that we use in the restof the chapter. The following
metrics apply equivalently to discrete or continuous tracks.

Tracker evaluation

For the evaluation of the performance of a tracker implemented by a given algorithmA, with
respect to its ability of identifying the right track, we compare the track (the ground truth) we
want to estimatel = {(x1, y1), (x2, y2), · · · , (xT , yT )} with the track generated by the tracker
lA = {(x̂1, ŷ1), (x̂2, ŷ2), · · · , (x̂T , ŷT )}. In the following we show three measures of errors.

Filtered error Thefiltered tracking erroror simply thetracking errormeasures the ability of
a tracker to follow a target. It is computed as the mean of the distances between the sequence
of the filtered positions (the output trajectory of the tracker) and the track we want to estimate.
The tracking error of an algorithm A is:

EF (A) = µ(d(lA, l)). (5.11)
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Prediction error We also want to consider how the more informative belief distribution ob-
tained reasoning with relations improves the predictions (at the prediction step). In this case,
we consider the tuple(x̃t, ỹt) made of the prediction’s estimation, instead of the filtereddistri-
bution:

(x̃t, ỹt) = (Efbel
[xt|st], Efbel

[yt|st]), for the continous case and

x̃t = modefbel
[xt|st], for the discrete case. (5.12)

The prediction errorof a given algorithm A is again defined as the mean of the distances
between the sequence of these values (l̃A = {x̃t, ỹt} or l̃A = {x̃t}) and the real trajectory,l:

EP (A) = µ(d(l̃A, l)). (5.13)

It is possible to note that, on average,EF (A) < EP (A), as the filtered distribution incorpo-
rates more evidence.

Tracking error with the most-likely relational assumption The relational state is the vector
combining thestate of the attributesand thestate of the relations. At each time step,bel(st)
gives the joint probability of the state of the attributes and the state of the relations and our set
of particles is the result of the pairing of different relation and position values.

The statistical estimation (used in the previously introduced error metrics) takes the belief
distribution and outputs the “average case”, this estimation can work well in many circum-
stances. However, in some cases a simple average might give an unsatisfactory estimate, or
even an unrealistic result. For example, in a road domain, the most likely value of the relation
might be that a cara is traveling together with a carb; however their estimated position might
actually be extremely different. To overcome this problem,we consider a metric that estimates
relational values first and then estimates the attributes only considering the particles consistent
with the relation.

This method defines the best guess for the position of a targetat a certain time step condi-
tioned on the most probable value of the relations.

The trajectory obtained by this restriction is the sequenceof the estimation of the probability
distribution represented by the subset of particles obtained in the following way: at each time
step we first compute the most probable value (the mathematicalmode) of the part of the particle
relative to the relations (we call itqr); we then extract from the set of all the particlesq[m] =
[qa,[m], qr,[m]] only that particles that have their relational part (qr,[m]) equal toqr. From this
subset of particles we compute(x̂t,∗r, ŷt,∗r) or x̂t,∗r as before:

(x̂t,∗r, ŷt,∗r) = (Ebel[xt|st, q
r], Ebel[yt|st, q

r]) and

x̂t,∗r = modebel[xt|st, q
r] . (5.14)

In this way we obtain the sequence of filtered positions:

lRPF
∗r = {(x̂t,∗r, ŷt,∗r)} or equivalently

lRPF
∗r = {x̂t,∗r} (5.15)
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and we can computeEF
∗r(RPF ) as follows:

EF
∗r(RPF ) = µ(d(lRPF

∗r , l)) (5.16)

Other metrics Other common statistics provide quantitative informationabout the distribu-
tion of this errors. In this chapter we will use the mean, the standard deviation, the minimum
and the maximum values to describe our results. The above statistics can be applied to the set
d(lA, lB):

• Meanµ(d(lA, lB)) = 1
T

∑T

t=1 d(lAt , lBt )

• Standard deviationσ(d(lA, lB)) =
√

1
T

∑T

t=1 (d(lAt , lBt ) − µ(d(lA, lB)))2

• Minimum min(d(lA, lB)) = the smallestd(lAt , lBt )

• Maximummax(d(lA, lB)) = the largestd(lAt , lBt )

5.3.2 Relational identification error

With respect to our second main objective,i.e., to identify the relations, we consider the error
relative to the classification induced by our current belief. At a particular time stept, we are
given the belief distributionbel(st) and we have to associate a value for the grounding of each
binary relation. We consider two alternative ways to do that:

1. Fixing a threshold:bel(st) assigns a probability to the true value of each relation. To
associate a unique value (true or false) to each predicate, we fix a thresholdth and assign
the valuetrue if the probability is greater thanth, elsefalse.

2. Picking the most probable value: this method chooses the most probable value for each
relation as a representative value for the relations modeled in st (this is the “most-likely”
relational assumption that we also considered in the tracking error we presented in Equa-
tion 5.14). In other worlds, we pick the values that are most represented by the particles.

We callIA the resultinginterpretation(with one of these methods) using algorithmA. The
correct interpretationI is matched against our guess and we count the mismatched cases. The
comparison of guessed and true values generates a2 × 2 contingency table that expresses the
correct and false matches between the two sets of interpretations based on:

1. true positives,Ntp: the number of guesses confirmed by the correct interpretation

2. false positives,Nfp: the number of guesses not matched in the correct interpretation

3. true negatives,Ntn: the number of guesses rejected (correctly identified as not-matched)

4. false negative,Nfn: the number of guesses erroneously accepted as a match, while they
are unmatched in the correct interpretation.



5.3. PERFORMANCE METRICS 63

Correct interpretation
Guessed positive negative
positive Ntp Nfp

negative Nfn Ntn

Table 5.1:2 × 2 contingency table

Name Index
sensitivity Ntp/(Ntp + Nfn)
specificity Ntn/(Ntn + Nfp)
accuracy (Ntn + Ntp)/N
positive predictive value Ntp/(Ntp + Nfp)
false negative rate Nfn/(Ntp + Nfn)
false positive rate Nfp/(Nfp + Ntn)
negative predictive valueNtn/(Ntn + Nfn)

Table 5.2: Scoring indexes for a method of identification of the correct relation.

In Table 5.2 we report some indexes derived from the comparison between correct and
guessed interpretations:

A graphical tool to evaluate the performance of a classification method is theReceiver Op-
erator Characteristic(ROC) curve. The ROC curve is a graphical plot of thesensitivityvs
(1−specificity)for a binary classifier system as its discrimination threshold is varied. It can also
be represented equivalently by plotting the true positive rate vs the false positive rate.

True positive rate determines a classifier performance on classifying positive instances cor-
rectly among all positive samples available during the test. False positive rate, on the other
hand, defines how many incorrect positive results occur among all negative samples available
during the test.

A ROC spaceis defined by false positive rate and true positive rate asx andy axes respec-
tively, which depicts relative trade-offs between true positive and false positive. Each prediction
result represents one point in the ROC space.

The “ideal” prediction that is always correct would yield a point in the upper left corner
of coordinate (0,1) of the ROC space, representing 100% sensitivity (no false negatives) and
100% specificity (no false positives). The (0,1) point is also called the perfect classification.
A completely random guess would give a point along the diagonal line (the so-called line of
no-discrimination) from the left bottom to the top right corners.

The diagonal line splits the ROC space in areas of good or bad classification. Points above
the diagonal line indicate good classification results, while points below the line indicate wrong
results.

Our RPF produces probability values representing the degree of belief that the objects are
in relationships. If we discretize the beliefs, setting a threshold value, we will determine a point
in the ROC space. Different values of the threshold correspond to different points in the ROC
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Figure 5.1: The ROC space.

space. Plotting the ROC point for each possible threshold value results in a curve.
At each time step, in the ROC curve we plot the performance of our method in identifying

each of the modeled relations.

5.3.3 Experimental Goals

The hypothesis that we want to verify in the experiments are the following:

• Prediction error is lower for the RPF than for a traditionalPF:EP (RPF ) < EP (PF ).

• Filtered tracking error is lower for the RPF than for a traditional PF: EF (RPF ) <
EF (PF ) and also using the most-likely relational assumption.

• The performance of our RPF in correctly identifying relations is better than that of an
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alternative rule-based classifier with respect to all the performance indicators presented
before.

5.4 Exp1: one-way road scenario

Our first domain is composed of three agents moving in a one-dimensional path, each of them
starting at the same time. We can imagine the data set as beingobtained by a camera recording
the traffic of a one-way road, and we concentrate only on a queue of three cars. The camera
records the position of the cars moving behind it. In this scenario, at a certain time step, the
object that leads the line slows down and therefore the otheragents have to slow down as well.

This experiment is the simplest among the ones we present: weare not concerned with
the understanding of what the agents are doing but we focus ontracking the positions of the
cars. The relation that influences the behavior of the targetin this settings is the relation of
BeingInFront that does not change over time. We track the objects in the scene taking into
account the relation that exists between them. Our results show that a RDBN is an appropriate
and effective way to model the behavior of an agent: using RDBNs our method predicts the
agent’s position more accurately improving the performance of standard tracking methods.

5.4.1 Experimental settings

We represent thestate of the attributesof our relational domain at timet with the position (pi
t)

and the velocity (vi
t) of each target (i) in the scene.

The three agents move forming a single line, their speed is not deterministically known but
it is correlated as the cars behind cannot overtake the car infront. This means that by observing
a variation of the speed of the first car, we can often predict asimilar variation on the other cars.

We use adynamic modelthat computes[pi
t, v

i
t] given the state at the previous time step as

the following:

pi
t = pi

t−1 + vi
t−1dt +

1

2
a dt2 and

vi
t = vi

t−1 + a dt, (5.17)

wherea is a random normally distributed variable that represents the possible acceleration of
an agent.

To correlate the prediction done over the system to the relation that exists between the
targets we let the probability distribution given by the transition model being represented by
the FOPT reported in Figure 5.2, where the dependencies between the position and velocity of
two different targets are explained by the relations that can exist between them given by their
relational structure.

For each targetj the probability of its next state is given by a Gaussian distribution with
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Figure 5.2: The FOPT for the objects moving on a one-way road.The dependencies between
the states of two different targets are expressed by the relational structure.

meanµt = Aµt−1 + a whereA is the matrix:

A =




1 0 (1 + r
1+di,j

)dt 0

0 1 0 (1 + r
1+di,j

)dt

0 0 1 0
0 0 0 1.


 (5.18)

In the matrixA, di,j is the distance between the targetj and another targeti in the scene andr
is such that:

• if ∃ i: BeingInFront(i, j) holds and its velocityvi
t has decreased (vi

t−1 < vi
t−2): r =

vi
t−vi

t−1

vi
t−1

.

• otherwiser = 0

We can definer as the ratio between the deceleration at timet of the front target and its speed
at timet − 1, we expect the target behind to decelerate as much as the target in front, with the
distance acting as discount factor. It should be noticed that the proposed transition model is
suitable for other kinds of relations like “being on the right/left” of another target.

As asensor modelwe use a model that relates the measurements (zt) with the state of the
attributes (sa

t ) using a normal distribution centered in the real position of the car:

p(zt|sa
t ) =

1√
2πσ

exp{d(zt, s
a
t )

2

2σ2
}, (5.19)

whered(zt, s
a
t ) is the Euclidian distance between the measurement and the state of the attributes.
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Results

In this experiments we compare the performance of our RPF to that of a PF algorithm that uses
a transition model that does not take into account relations. The transition model used in the
latter algorithm is a transition model based on the matrixA with r always equal to0.

In both cases, the data association algorithm associates ateach prediction the nearest mea-
sure obtained (in a certain distance range).

The RPF at each step, for each target, checks if the distance with the target before is lower
than a given threshold and if the target before slowed down atthe previous time step, in that
case it computes the prediction of the next state withr different from0 (refer to Equation 5.18).
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Figure 5.3: Tracking error for object3 for each time step, with both methods (number of par-
ticlesM = 1000 andσ = 1.5 cfr. Equation 5.19). At steps 15, 31 and 33 object2 (that is in
front object3) slows down. At steps 16, 32 and 34 the RPF correctly expects the agent to slow
down and achieves a better prediction of the trajectories inthese and the following steps.

The tracking errors of the two methods for one of the three agents in this scenario are shown
in Figure 5.3. Our approach achieves better results with respect to the real position of the agent
than a standard approach. In particular we can notice that atthe time steps in which the target
slows down because the target in front slowed down, our method achieves good results and
maintains this advantage over the PF method for the following steps as well.

We now compare the results considering their tracking erroronly for those steps in which the
relationBeingInFront is believed to be true and the speed of the car in front has decreased,
(i.e., r 6= 0 in Equation 5.18). We do that because it is in these cases thatour relational
reasoning can give an advantage; while in the other cases, both methods behave in the same
way. For each of the time steps in whichr differs from zero, we compute the distance between
the tracked state (i.e, the filtered position given the measurement) and the true state. When the
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tracks have been completely processed, we compute the average of these distances along each
track obtaining the tracking error. We iterate this process100 times for each of the two methods
(RPF and PF) and we calculate the average of the tracking errors over the100 iterations at the
end of the simulations. We compare the results for number of particles (M) equal to100 and
1000 and values of the variance of the sensor model (crf.σ in Equation 5.19) equal to0.3, 0.5,
1, 1.5, 2 and3.

Of course, the error for the first target (the car in front in the lane) is comparable between
the two methods because to track it the system would never usethe relational hypothesis. The
average errors for the other two targets are reported in Table 5.3:

Tracking Error M = 100 M = 1000
EF (RPF ) EF (PF ) EF (RPF ) EF (PF )

σ = 0.3
Obj2 11.57 19.42 8.23 12.36
Obj3 12.98 20.88 8.32 15.90

σ = 0.5
Obj2 6.34 8.50 3.68 4.95
Obj3 6.43 9.52 3.62 5.92

σ = 1.0
Obj2 5.40 6.18 3.56 4.19
Obj3 5.18 6.09 3.42 4.57

σ = 1.5
Obj2 5.70 6.13 4.25 5.14
Obj3 5.32 6.28 4.15 5.33

σ = 2.0
Obj2 6.04 6.68 5.42 6.02
Obj3 5.29 6.82 4.94 5.94

σ = 3.0
Obj2 6.14 6.91 5.96 6.74
Obj3 5.63 6.86 5.75 6.38

Table 5.3: Tracking error for the two methods, PF and RPF, fordifferent values ofσ andM .

In Table 5.3 we can see that in all the cases where the relationis true, the tracking error is
lower for our RPF than for a standard PF.

In terms of execution time, the proposed approach is not morecomputational demanding
than a standard tracker. In fact given that the two trackers has been coded in the same way,
using the same data association and the same importance sampling approach; the execution
time averaged over100 iterations of the two trackers using100 particles is for our RPF1.61 s
and the other takes0.1 seconds less.

We can finally conclude that, in this settings, our method hasshown to be more effective
in terms of precision of tracking without being more computational demanding than a standard
tracker.
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Figure 5.4: The crossroad where the simulated objects can travel together.

5.5 Exp2: identification of vehicles traveling together

The second data set contains positions of15 objects traveling on the crossroad depicted in
Figure 5.4. The crossroad is divided in59 cells. From each cell an object can move to one of
then cells in its neighborhood2.

Again, we can imagine this data as obtained by a camera installed right over the crossroad.
The camera records the position and the color of the cars (with some noise).

In this scenario, we make the hypothesis that objects can move together if they are of the
same color (to represent vans of the same company). We also make the hypothesis that if moving
together, two (or more) objects will be always in a cell from which it is possible to reach (one
of ) the other(s) or vice-versa in one time step (“reachability” assumption). Consequently, if
moving together the objects will behave similarly (i.e., if one turns right also the other(s) will
turn).

The relation that influences the behavior of the target is therelation ofTravellingTogether
that does not change over time but has to be recognized by the system.

The goal of these experiments is twofold: we want to track theobjects in the scene and
recognize online which objects are traveling together.

2n take different values in order to model different speed
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5.5.1 Experimental settings

We model thestate of the attributesof the relational domain with the position (cell ID) and the
color of each object in the scene:

sa
t = (ID, color). (5.20)

Thestate of the relationsreports, for each object, the list of the objects that are traveling with
it. Our RPF gives the probability distribution of the state of the domain at each time step.

An objecti in a cell ci at time stept can move to one of then cells connected toci. We
will call this set of cellsN(ci). When traveling together with an objectj that has moved incj,
i can move fromci only to that cells reachable fromj in one time step (for our “reachability”
assumption). Therefore,i can move only in the cellsz such thatz ∈ N(ci) ∩ N(cj).

The transition model, representing the distribution of thestate at the next time step, has
to be consistent with the reachability assumption. For easeof computation, we establish an
order to all the objects (j ≺ i) and we process the objects in that order. So ifj ≺ i for the
particlem, we first predict the position of the objectj and then we predict the (constrained if
TravelingTogether(i, j) = true) position of the objecti.

Theprobability transition modelwill give equal probability to each cell consistent with the
reachability assumption, conditioned to the value of the relation. We denote withU(X), the
uniform distribution assigning the same probability1/ | X | to all elementsx ∈ X, and 0 to all
other elements. We now can write:

p(sa
t |sa

t−1, s
r
t−1) =

{
U(N(ci) ∩ N(cj)) ∀j s.t.TravelingTogether(i, j) = true
U(N(ci)) otherwise

(5.21)

that gives the same probability at each possible cells to be reach by the object at the next time
step.

We relate the measurements (zt) with the state of the attributes (sa
t ) with the followingsensor

model:

p(zt|sa
t ) =

1√
2πσ

exp{d(zt, s
a
t )

2

2σ2
}. (5.22)

Where the noise is normally distributed and the distance between the measurement and the
state (d(zt, s

a
t )) is computed with the Dijkstra’s algorithm that gives the number of cells that the

object should cross to move from the prediction to the observed state.

Results

In our domain, there are15 moving objects (with IDs =1, 2, ...,15). The ground truth (unknown
to the tracking system) is that objects2, 4 and12 travel together as well as objects3 and7
all other objects travel alone. We compare the tracking performance of our method with the
performance of a PF that does not take into account relations. Table 5.4 reports the tracking
error of the two methods withM = 1000 particles.



5.5. EXP2: IDENTIFICATION OF VEHICLES TRAVELING TOGETHER 71

EF (PF ) EF (RPF )

Objects traveling alone
Obj1 4.7 4.6
Obj5 4.6 4.7
Obj6 4.6 2.7
Obj8 1.9 1.5
Obj9 4.6 4.6
Obj10 2.2 2.4
Obj11 3.7 1.3
Obj13 2.0 2.0
Obj14 5.9 5.8
Obj15 1.6 2.2

Objects traveling together
Obj3 5.6 5.2
Obj7 3.8 3.5

Objects traveling together
Obj2 3.6 3.5
Obj4 2.6 2.5
Obj12 2.7 2.1

Table 5.4: Tracking error for the two methods, PF and RPF, applied to the cross roads data set.
Objects2, 4 and12 and objects3 and7 are traveling together.
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Figure 5.5: ROC curve to evaluate the performance of our method. Identification of the relation
TravelingTogether at time step12. Time step12 is the time step of best performance for our
RPF.
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Figure 5.6: ROC curve to evaluate the performance of our method. Identification of the relation
TravelingTogether at time step24. Time step24 is the time step of worst performance for our
RPF.
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Figure 5.7: ROC curve to evaluate the performance of our method. Identification of the relation
TravelingTogether at time step25. Time step25 is the time step of best performance for the
standard moving window approach.

Focusing on the agents that do travel together, we can see that RPF achieves a lower tracking
error: for objects2, 4 and12 and for objects3 and7 our method gives better results3. This gain
does not come at the expense of tracking the other agents, as both RPF and PF have comparable
performance.

We compare the relation recognition performance of our RPF with amoving window method.
This approach, at each time step, computes the distance between every couple of objects (i, j)
and gives to the relationTravelingTogether(i, j) the true value if the objects have the same
color and their distance is lower than a given threshold. Finally it averages this value over a
moving window of10 time steps. At each time step the two methods return the probability
distribution of the relation to be true. We plot the ROC curvefor some of the time steps that are
more characteristic. In Figures 5.5 and 5.6 we report the ROCcurve for the steps of best and
worst performance of our RPF compared to the performance of the moving window method
at the same time steps. In Figure 5.7 we report the ROC curve for the two methods for that
time step in which the moving window reaches its best performance. The ROC curves have been
drawn for100 values of threshold in the range[0, 1] and overall it allows us to conclude that RPF
is superior to the sliding window method for the purpose of identifying theTravelingTogether
relation.

3Remember that, for these results, instead of using the Euclidian distance we compute the distance with the
Dijkstra’s algorithm.
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5.6 Exp3: automatic surveillance of a Canadian harbor

The last data set we use is the data set provided for the Canadian Intelligent System Challenge
2008-20094 about the surveillance of an harbor.

Canadian government agencies are responsible for monitoring coastal activities, and in par-
ticular for detecting any behavior that might indicate thata ship represents a security risk or a
risk to break the law. One type of such behavior is when two ships rendezvous at sea -an action
that is seldom necessary to meet legitimate commercial objectives, but that may indicate piracy
or an exchange of contraband goods for delivery to a coastal harbor.

The goal of the Challenge was that of interpret surveillancedata and identify probable inci-
dents of two ships that are either doing:

• A Rendezvous: two ships stop or travel slowly together to exchange goods,or

• A Pickup: a larger vessel drops a package into the water that is very quickly found and
picked up by a smaller vessel.

The data set contains the description of 40 events happened in the sea. Given the small
number ofPickup activities (only 3 elements) we concentrate here on the rendezvous activities.

The contest data includes tracking data for three classes ofship:

• Cargo Ship: large ships whose job is to travel from one port to another in the most efficient
possible way. These typically travel at 17 to 25 knots and seldom change heading.

• Fisher: ships and large boats of varying sizes that travel slowly (3-5 knots) when fishing
and faster (11 to 16 knots) when transiting. These boats may change direction or speed
frequently as part of their normal commercial activities.

• Yacht: the contest’s name for a variety of smaller craft that typically travel up and down
the coast for commerce or pleasure. They may travel at 20 knots or more when weather
permits, and may legitimately change heading more often than cargo ships.

The simulated ships generally follow the well-established“rules of the road” for ships5.
For the contest, the following simplifying assumptions hasbeen made:

1. Unambiguous identity: it is always possible to know whichship to associate with each
contact report

2. No weather effects: sensors and ship dynamics are not affected by changing weather

3. No other ships: each incident involves only two ships.

The purpose of our experiments is to model the relations between ships and infer what they
are doing and their path. In the following subsections we present our results on different type
of models.

4http://www.intelligent-systems-challenge.ca/home/index.html
5the “rules of the road” for ships can be found for example at

http://www.boatsafe.com/nauticalknowhow/boating/colregs.html.
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Figure 5.8: Example of Rendezvous. Of each boat the x and y coordinate and the coordinate
for the speed are reported.

5.6.1 Experimental settings: Rendezvous between a Fisher and a Yacht

In the data set, for each time interval, only an event is supposed to take place at the sea (see
third assumption in the previous paragraph). Our challengeis, instead, to detect activities in a
multi-target environment. For this reason, we present in this section experiments that deal with
couples of events occurring at the same time (i.e. recognition of 2 activities that involve 2 ships
each). In particular for the experiments reported in this section we dealt with the problem of
detecting aRendezvous between a Yacht and a Fisher ship. For this reason, we selected from
the original data set only the events that wereAvoidance in general orRendezvous between
a Yacht and a Fisher obtaining 20 events and we build a new dataset of 120 elements, each
representing tracks of four ships that can be rendezvousingor avoiding each other.

From this new data set we learnt the prior for the eventRendezvous between a Fisher and
a Yacht. The probability of a Fisher and a Yacht to be in relation is 33/80. From the data
we observed recurring patterns that characterize the activities; we model these in the transition
model so that we are able to make inference and predict the ships behavior. An example of
Rendezvous relation between a Yacht and a Fisher ship is given in Figure 5.8: the two ships
come closer and reduce their speed till they have both nearly-zero speed, differently from a
couple of ships not in relation where one maintains its speedand the other decelerates (Figure
5.9). From Figure 5.8 it is also possible to notice the three-phases which characterize the
relation: ships approach each other reducing their speed inthe first phase, they travel in the same
direction with nearly-zero speed in the second phase and finally they go apart and at least one of
them changes its speed. Our relational transition model takes into account these three different
phases allowing to detect when the event starts and when it finishes (that was one of the request



76 CHAPTER 5. EXPERIMENTS

Figure 5.9: Example of Avoidance.

Figure 5.10: The FOPT we used to representp(sa
t |sa

t−1, s
r
t−1). At each time step, for each object

it computes the future state given the object’s relation andthe phase.
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Figure 5.11: The FOPT we used to modelp(sr
t |sr

t−1, s
a
t ). At each time step, for each object it

computes the probability of the object to be in relation (or not) with another object given their
attributes and the distance between them.
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of the Challenge) but also allowing to understand (since a ship can be rendezvousing only
another ship) if two ships can be in relation (if one of them has already finished an encounter
with another ship this is not possible). Sketches of therelational transition modelused in our
experiments are given in Figure 5.10 (where the transition model for the state of the attributes
is reported) and in Figure 5.11 (where the transition model for the state of the relations is
reported).

Therelational stateof this domain is represented by the position, the speed and the type of
each boats and by the value of the relationRendezvous between each couple of boats.

Thesensor modelis distributed accordingly to a Gaussian distribution centered on the mea-
surements.

Results

We run the experiments on each of the 120 set of four tracks in the data set.
In the central columns of Table 5.5 we report the accuracy andthe positive/negative pre-

dictive value of our method for theRendezvous detection: we assign to the relation the most
probable value given the particle distribution. In the lastcolumns we show the tracking error
of our method (RPF) compared to a method that does not take into account relations (PF). We
report the results divided by number of relations present -column R- and number of couple
Yacht-Fish (potentially related) -column Y F- in the examined set of four boats

R Y-F accuracy pos. predictive value neg. predictive valueEF (PF ) km EF (RPF ) km
2 2 5/8 1 - 4.4138 3.1473
1 2 17/20 9/11 8/9 4.3771 2.9496
1 1 23/46 11/12 12/14 3.2874 3.0183
0 2 23/30 - 1 1.4131 1.4838
0 1 125/13 - 1 1.0881 1.0883

Table 5.5: Results are divided by number of rendezvous relations true in the data (column R)
and number of couple Yacht-Fisher (coloum Y-F). In columns TP, FP, TN and FN the number
of True Positive, False Positive, True Negative and False Negative are reported respectively. In
the last two columns the average tracking error for our method (RPF) and a method that does
not take into account relations (PF) is reported.

5.6.2 Experimental settings: Master-Slave relation

Observing theRendezvous events in the data set we noticed a peculiar characteristic of the two
boats involved in an encounter: one plays the role ofmaster, while the other that ofslave. In
particular, we focus on the variation of speed of the two targets: the master-boat is the one that
first decreases its speed and decides where to stop (or start going very slowly) and when the
encounter is finished; the slave-boat “imitates” the behavior of the other ship (see Figure 5.8).
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Figure 5.12: A possible FOPT forp(sa
t |sa

t−1, s
r
t−1). At each time step, for each object it com-

putes the future state distribution given the object’s relation.

Different is the case of ships that are avoiding each other (thus not in relation according to
our model), one maintains its speed and the other decelerates (see Figure 5.9).

In this section we present the experimental results obtained by applying this intuition to all
the original data set. The “role” of the boat (either master or slave) is also unknown. The RPF
considers both hypothesis -every particle makes an assumption about which is the master- and
the importance sampling propagates the particles that makethe hypothesis that better explains
the observations.

We used the data set to estimate the prior for the eventRendezvous between different
couples of boats and the prior for a boat involved in aRendezvous to be the master-boat.

In these experiments we model the rendezvous activity as a five phases activities (as it is
also possible to notice in the images):

• ships are traveling independently (we call this phase zero),

• then, the master boat decreases its speed and decides whereto stop (i.e., it decides where
theRendezvous will take place, see time step1.6 in Figure 5.8)

• in phase two, the slave boat approaches the master (at time steps from1.7 to 2)

• phase three is the period in which the boats are rendezvousing: they maintain the same
direction and no (or very low) velocity
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• finally, the master boat decides theRendezvous is finished and go apart (we call this
phase four) and both boats start traveling independently.

Our new implementation of the relational transition model takes into account these different
phases allowing to detect when the event starts and when it finishes and the role of the ships
involved.

We represent the state of the attributes with the position (p) and the velocity (v) of each
target in the scene and use a dynamic model that computes[pt, vt] as the following:

pt = pt−1 + vt−1dt +
1

2
a dt2

vt = vt−1 + a dt, (5.23)

wherea is a random variable whose distribution depends by the objects’type, the relation and, if
the relation is true, it depends also by the role played by theobject and the phase of the ongoing
activity. We learnt the distribution ofa from the data set.

Each particle represents the state of the domain: it represents the position and the velocity
of all the objects in the scene as well as their relations. In the relational state we represent
the value of the relation and, if the relation is true, the role of each boat in the scene. When
sampling the particles, we take into account theorder of the objects introduced by the master-
slave relationship to predict the future state of each object taking into account the relations.
Examples of the FOPTs we used to do that are reported in Figure5.12 and in Figure 5.13.

Figure 5.13: An example of FOPT forp(sr
t |sr

t−1, s
a
t ). At each time step, for each object it

computes the probability of the object to be in relation (or not) with another object given their
attributes and the distance between them.
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Results

We ran the experiments on each of the 37 events in the originaldata set. We apply PF techniques
with ten thousands particles. In Table 5.6 we show the true positive and true negative rate of our
method for the rendezvous detection (we consider, again, for the value of the relation the most
probable value, given the particle distribution) comparedto a method that randomly chooses
which boats are in relation.

RPF random
true positive rate 0.8947 0.4444
false positive rate 0.6111 0.4841

Table 5.6: True positive and true negative rate of our methodfor hte rendezvous detection
compared to a method that randomly chooses which boats are inrelation.

In Table 5.7, we compare some statistics of the tracking errors of our RPF and a standard
method (a PF that does not take into account relations between objects). We compare the mean

EF
∗r(RPF )[km] EF (PF )[km]

all tracks

mean 1.8533 2.1967
max 5.6811 8.1665
min 0.001 0.001

st.dev. 2.3660 2.9716

only rendezvous

mean 1.6178 2.6356
max 4.0405 10.3366
min 0.001 0.001

st.dev. 2.2077 2.7612

only correctly detected

mean 1.3167 3.1435
max 3.0108 11.2724
min 0.001 0.001

st.dev. 1.6451 2.2069

Table 5.7: Some statistics for the prediction error of the two methods: our RPF and a stan-
dard PF for their average tracking error are reported averaged over all the tracks, over only
the rendezvous tracks and over only that tracks which RPF correctly recognizes as rendezvous
activity.

of the errors over time (for our RPF we compute the error averaged over that particles that
recognize the relation as the most probable (EF

∗r)), the minimum and maximum values of the



82 CHAPTER 5. EXPERIMENTS

errors and its standard deviation (st.dev.). We report the overall results for all the tracks and the
result for only the rendezvous tracks and, finally, for only the rendezvous tracks that our activity
detection system correctly recognizes.

From these Tables 5.7 and 5.6 we can see that:

1. The accuracy of our relational activity recognition method is better than a simple standard
method.

2. Comparing the tracking error in this Section with the results reported in the Table of Sec-
tion 5.6.1, we can say that the introduction of the master-slave assumption has increased
the performance of our method, generating better tracks andbetter exploiting the agents’
behavior.

3. Moreover, the tracking error for the agents whose activity is correctly recognized is par-
ticularly low and better than a standard method.

4. The standard deviation of the tracking error of our methodis lower than the one of the PF’s
error, this means that, during time, the error does not vary alot giving the convergence of
the method.

We evaluate the performance of our algorithm on this data setwith the prediction error as
well. In Table 5.8 we report some statistics for the prediction error of our RPF and a standard
PF:

EP
∗r(RPF )[km] EP (PF )[km]

mean 2.12457 2.95225
max 6.0.1905 8.27881
min 0.001 0.001

st.dev. 1.6472 2.2087

Table 5.8: Some statistics for the prediction error of the two methods: our RPF and a standard
PF.

As we was expecting the prediction error is bigger than the tracking error. From the Table
we can see that the prediction of our method is more accurate than that of a standard method.

5.7 Execution Time

In terms ofcomputational performance, our RPF is not more computational demanding than a
standard tracker. In table 5.9 we report the execution time averaged over100 iterations of our
method (∆t(RPF )) and a standard PF (∆t(PF )) for different settings of the number of parti-
cles (M) and number of possible relations (R) between the tracked objects. The computational
time increases at the increasing of the number of particles and as the number of objects (two
opposed to four) increases but it doe not increase much usingour RPF.
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M R ∆t(RPF ) (∆t(PF ))

100 1 4.9 s 4.6 s
100 2 23.3 s 23.2 s
1000 1 53.6 s 53.1 s
1000 2 105.7 s 104.3 s
10000 1 128.9 s 127.2 s
10000 2 211.4 s 208.1 s

Table 5.9: Execution time averaged over100 iterations of our method (∆t(RPF )) and a stan-
dard PF (∆t(PF )).

5.8 Conclusion

In this chapter we presented the experiments we performed toshow the performance of our
RPF.

We evaluated our approach on three synthetic data sets: the first records the positions of
some objects moving on a one-lane way, the second records theposition and the color of a
variety of objects that can be moving together or not on a crossroad, the last data set records the
position of boats in a Canadian harbor for surveillance purposes.

These experimental domains are of particular interest because the targets’ behaviors are
dependent on some external conditions that can be modeled with relations.

We outlined the experiments and introduced the performanceindicators at the beginning of
the chapter. For each data set, we presented in detail the experiments we carried on and the
results we obtained. Results validate the following hypothesis:

• Our RDBN based approach is able to model more accurately dynamic domains where
relations between objects can be interpreted as important clues for the understanding of
the on-going activities.

• The advantage of our relational tracker is particularly pronounced when the relations are
correctly identified.

• Our activity recognition system, based on the recognized relations has an accuracy that
overcomes simple methods.

In the next chapter we draw some conclusion and outline some future works.





Chapter 6

Conclusion

The present letter is a very long one, simply because I had no leisure to make it shorter.

Blaise Pascal.

In this chapter we review the work presented in this Thesis, highlight our achievements as
well as the limitations of our work; finally, we introduce some interesting directions we would
like to pursue in the future.

6.1 Contributions and limitations of this work

This Thesis proposed a novel approach to tracking multiple targets when the targets are delib-
erative agents that act in proactive ways and interact with each other. Modeling the interactions
that the agents can undertake allows the possibility of making inference on the agents behaviors,
on the activities they are carrying out and on their role. This allows to make predictions about
the next actions given the current belief about the agent, considering the relationships between
them and their activity.

In this work we presented a methodology that model activities and interconnected behaviors
with relations, that are in turn modeled with first order logical formulas. The algorithm we
presented,relational particle filter, is able to make inference with relations, scaling up to cases
with increasing complexity.

These are our main achievements:

• We extended DBNs with first-order logic formulas definingRelational Dynamic Bayesian
Networks(RDBNs)

• We introduced a novel tracking algorithm,Relational Particle Filter(RPF) for making
inference on RDBNs. This algorithm is particularly suited to track multiple targets that
show some relations in their movements. We showed the mathematical convergence of the
algorithm: increasing the number of particles, the particle distribution becomes closer to
the actual belief (the probability of the state given the priors and all the past observations).



86 CHAPTER 6. CONCLUSION

• We discussed the problem of turning a belief distribution into an estimation of the agent’s
trajectory and confronted several alternatives: state estimation with the most likely rela-
tional assumption versus statistical expectation.

• We showed, with simulations, how RPF offers better estimate of the positions of the
targets, exploiting the knowledge about the relations between the agents.

• We showed how it is possible to represent activities with relations, transforming the activ-
ity recognition task in the problem of tracking these relations over time. We showed that
our tracking algorithm is suitable for this task because it maintains a belief distribution
over the possible relations.

• We validated our activity recognition system with experiments, we showed the perfor-
mance of our RPF in two domains: the identification of convoysin the area around a
crossroad and monitoring activities in a Canadian harbor.

The bottom line of this work is that, by making inference about the agents behaviors, the
activity that they are undertaking and their role, we can make better predictions about their
actions. This in turn, once predictions are filtered using future observations, can be used to
update our belief about the activities and the agents’ roles.

We hope that this work will generate a considerable interestin the research community and
that probabilistic relational models will be used in real life domains. As one of the main prob-
lems in this community is the lack of common benchmark data and test beds, the availability of
more data sets could be a great benefit.

While the results are compelling and our formalism is theoretically sound, we acknowl-
edge that more work is needed in order to support the adoptionof relational methods in real life
situations, for example to scale the algorithm to domains with a large number (hundreds or thou-
sands) of coexisting agents, triggering an important research direction towards fast inference in
RDBNs and approximated methods. Other domains offer different challenges, requiring to tai-
lor the relational model to particular situations. In the next section we discuss some interesting
future work that we consider relevant.

6.2 Current and further research directions

A number of research directions naturally arise. Some of these challenges (see next subsections)
are related to problems that require quantitative advancesin the inference algorithm to make it
computationally more efficient (as it would be required by the adaptation to many real life
applications), other require the design of a qualitativelymore complex model (as application of
relational inference to social networks).

Our current work is focusing on applying the presented modeland inference system to more
complex situations like the detection of unattended goods or the monitoring of a football match
(in which the relation master-slave could be important). Moreover, as we shall see, automatic
learning of the transition model is of paramount importance.
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6.2.1 Detection of unattended goods

Security has become an important issue in recent years. Due to widespread fear of acts of
terrorism, many governing bodies have implemented policies of control of public spaces. A
common problem is the detection of unattended goods. This important problem has even at-
tracted the interest of a number of conferences, such as thePerformance Evaluation of Tracking
and Surveillanceworkshop held in New York in 2006.

The problem of unattended goods detection is more difficult than one could think at first
sight. First, in complex and crowded places (and with noisy sensors) as train stations or airports
it can be difficult to identify the object in the first place. Second, legitimate baggages can often
be left on the floor for a few seconds or even minutes, while theowner is a few steps away. We
believe that a simple threshold model based on distance may not work in many cases, giving
several false positives (the person just went a few steps away to check the transit map, or left
the luggage close to a family member) or false negative.

We conjecture that relational modeling and reasoning can behelpful in this domain: we
could model the relation of “owning” a luggage between a person and an object; the proba-
bilistic transition model will account that a person owninga luggage will usually carry it in the
hands or even left in the floor close to him for some time. But with some small (non zero) prob-
ability the luggage will be away from him or even be close to somebody else (maybe a person
traveling with him). In this case, the domain needs to represent the relations between the people
in the scene (considering who might be a friend of the person owing the luggage) and a RDBNs
based system should reason about which person is more likelyto be a friend of the luggage’s
owner and detect if the good has been left unattended or not.

6.2.2 Tracking football players

Our ideas can be applied to the tracking of football players.Relations can represent common
game strategies, specific game patterns (as left-wing, advance, pass to center, head ball to goal)
and the role of the players. Relations can then represent importance clues to the understanding
of what is happening in the scene. Moreover, the relationmaster-slaveintroduced in the previ-
ous chapter can be an important insight of the model used to track agents in this domain. We
conjecture that this relationship would show to be useful insport domains as well. For example,
you can often understand who has the ball only detecting which player has been followed by
the others.

The application of our system to this domain can be importantfor the development of an
automatic running commentary of a football match and also for the labeling of a set of videos
to classify actions of players based on what has happened.

6.2.3 Relational reasoning to support Decision-making

In the future we would like to extend our work todecision support systems. We would like to
incorporate in our inference environment decisions that can be influencedby the observations
and can induce orcausea change in the domain. In this setting, an approach based on the
reasoning about relations will be able to make a decision based on the correlations between the
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objects in the scene and not the conjunction of the singular activities of the objects. Taking into
account relations, we allow the system to see the domain as anoverall world and not as a set of
agents, the whole community of agents can make more smart andreasoned decisions.

6.2.4 Tracking robots

The two ideas presented before, tracking players and support decision-making, could be inte-
grated to develop a system for the coordination of asmall league RoboCupteam.

The small size robot socceris one of theRoboCupleague divisions that focuses on the
problem of intelligent multi-agent cooperation and control in a highly dynamic environment
with a hybrid centralized/distributed system. During the match an overhead camera transmits
video to an off-field PC that identifies and tracks the robots as they move around the field.
Typically the off-field PC also performs the processing required for coordination and control of
the robots.

Our idea is that of using our relational reasoning approach to track the adversaries, detecting
what they are doing and their probable future actions; in this way the system can plan better
strategies for the team. We think that the application of ourtechniques to small size robot
soccer for adversarial modeling can be a very interesting and challenging application that can
lead to promising results.

6.2.5 Parameter Learning

Our framework is based on the assumption that a transition model (the probability distribution
of the next state given the current state and the relations) is readily available. This, however, in
many practical circumstances is not the case.

A research direction of paramount importance for the practical adoption of relational meth-
ods in the real world is the study and development of algorithms suited to automatically learn
the transition model from data. A number of techniques from machine learning and statistical
learning could be used for this purpose.

Model uncertainty could be explicitly represented by making an hypothesis and revising
it when new observed data does conflict with the current hypothesis. This idea is behind a
technique calledauxiliary particle filter that have been proposed in the literature (McKenna
& Nait-Charif, 2007). In the last months, in our lab, we applied the auxiliary particle filter to
financial problem, with interesting results. We hope to extend this idea to relational models,
implementing an “Auxiliary Relational Particle Filter” able to learn the dependency distribution
of the predicates while tracking the objects.

6.2.6 Friends matching and mobile assistants

We consider how to use relations in social networks to connect friends, and notify them about
what the user is doing. The idea is to couple the versatility of social networks (used as messag-
ing services, micro-blogging, and coordinating evening and outings) with the power of ubiq-
uitous computing. Ubiquitous computing allows people to bealways connected and is gaining
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momentum with the widespread adoption of smart phones and personal assistants as PDAs.
At the moment, we are considering the integration of our system into a tool for PDA called

friend-finder. We assume that every user has a GPS integrated on his PDA or smart phone. The
application knows who are your friends and, thanks to the GPSeach device is able to locate
himself and can communicate its position to an application that post it on the web (to this end,
the system needs to track the users positions). At this pointfriend-findercan locate your friends
and give you a road-map to reach them, accounting for their moves and continuously tracking
the position of each user. Moreover, it is possible that, while you move to reach a friend another
friend moves as well in a position nearer to you; in this case the system would be able to suggest
you to reach the second friend and together reach the first one. Or, at the contrary, if one of your
friends is localized with someone else and the system recognizes that he would prefer to be
alone (by observing their behavior or simply because they donot interact with other people) it
could suggest you not to reach him.

This system, could also have more serious application otherthan entertainment. It could be
useful in the future to track people in crowded environment,find lost children in big places and
also help elderly persons that lost the way home.

6.3 Conclusions

A central aspect of human intelligence is the ability to makeinference using abstract knowledge
in structured environments that contain diverse sets of agents related to each other in a variety of
ways. Current Artificial Intelligence techniques are far from matching the human capabilities of
understanding complex scenes. In fact, when the environment is particularly complex, includ-
ing several distinct entities whose actions might be correlated, automated reasoning becomes
particularly challenging.

In this work we tackle the inference problem in complex domains by combining mathe-
matical logic with probabilistic models. First-order logic can deal with the modelization of
structured environments but it cannot treat uncertainty. On the other hand, probabilistic models
can deal well with uncertainty in many real-world domains, but they operate on a propositional
level, and cannot scale to cases where several instances arepresent.

Recently a lot of interest has arisen towards approaches that integrate these two types of
models (relational Bayesian networks are an example); but not much work has been done to
incorporate logical reasoning into dynamic domains; moreover inference in such domains has
been carried on only in propositional terms.

In this Thesis we presented relational dynamic Bayesian networks, that are an extension of
relational Bayesian networks, able to model correlated actions of different entities in dynamic
domains.

Under noisy observations, an automated reasoner needs to assess the most probable situation
both in terms of individual attributes and relations occurring in the scene. At this purpose, in this
Thesis we developed a new algorithm for both inference and tracking,able to take into account
the structure of the environment and the relations between the objects modeled by a RDBN.

In several applications, as for example surveillance systems, it is important to provideonline
reasoning, so that the appropriate cause of action can be taken when necessary (e.g.,raise an
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alarm). Our inference algorithm, tracking the relations between objects, is a suitable tool for
the online detection of those activities in which there is interaction between objects.



Appendix A

Basic Concepts in Probability

This Appendix provides basic probabilistic notions usefulto understand this thesis.

Random Variables

In an uncertain domain, quantities such as sensor measurements, attributes’ or relations’ values
are modeled asrandom variables. Random variables can assume multiple values accordingly
to specificprobabilistic laws.

Let X denote a random variable. We denote withx a specific value thatX might assume.
If the space of all values thatX can take on isdiscrete, we write p(X = x) to denote the
probability that the random variableX has valuex. For example in a fair coin flip, the random
variableX can take on the (discrete) values heads or tails with probability p(X = head) =
p(X = tail) = 1

2

Discrete probabilities sum to one:
∑

x p(X = x) = 1. Probabilities are always non-negative:
p(X = x) ≥ 0.

Continuous spaces are characterized by random variables that can assume continuous values
accordingly to aprobability density function(PDF).

Joint Distribution

Thejoint distributionof two random variablesX andY is given byp(x, y) = p(X = x, Y = y),
that describes the probability of the event that the random variableX takes on the valuex and
that Y take the valuey. If X andY are independent, we havep(x, y) = p(x)p(y). Often,
random variables carry information about other random variables. If we already know thatY ’s
value isy, and we want to know the probability thatX ’s value isx conditioned on that fact, we
have to computep(x|y) = p(X = x|Y = y). This probability is calledconditional probability
and is defined as

p(x|y) =
p(x, y)

p(y)
. (A.1)
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If X andY are independent, we have

p(x|y) =
p(x)p(y)

p(y)
= p(x). (A.2)

If X andY are independent,Y tells us nothing about the value ofX.
The unconditional orprior probability associated with a random variableX (p(X)) is the

probability accorded to it in the absence of any other information.

Bayes’ Rule

TheBayes’ rulerelates a conditional probability of the typep(x|y) to the conditional probability
that inverts the random variablex andy, p(y|x). The Bayes’ rule states that:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∑
x′ p(y|x′)p(x′)

in the discrete case, (A.3)

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)∫
p(y|x′)p(x′)dx′

in the continuous case. (A.4)

If x is a quantity that we would like to infer fromy, y is called thedata (e.g.,a sensor mea-
surement). The distributionp(x) summarizes the knowledge we have regardingX prior to in-
corporate the datay. The probabilityp(x|y) is called theposterior probability distributionover
X. Bayes’ rule provides a convenient way to compute a posterior p(x|y) using the “inverse”
conditional probabilityp(y|x) along with the prior probabilityp(x).

The denominator of Bayes’ rulep(y) does not depend onx. Thus, the factorp(y)−1 will be
the same for any valuex in the posteriorp(x|y). For this reason,p(y)−1 is often written as a
normalizer in Bayes’ rule variable, we will denote it with the letterα: p(x|y) = αp(y|x)p(x).

Marginalization

When we need to extract the distribution over some subset of variables or a single variable, we
need tomarginalizeor sum out the variables other than the variables of interest. The marginal-
ization rule for any sets of variablesX andY is given by:

p(X) =
∑

y

p(X, y). (A.5)

The distribution overX can be obtained by summing out all the other variables from any joint
distribution containingX.

A variant of this rule is calledconditioningand it involves conditional probabilities instead
of joint probabilities, using the product rules:

p(X) =
∑

y

p(X|y)p(y). (A.6)
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That is thetheorem of total probability, that says thatp(x) =
∑

y p(x|y)p(y), in the discrete
case andp(x) =

∫
p(x|y)p(y)dy, in the continuous case.

We can be interested in computingconditionalprobabilities of some variables given evi-
dence (or observation) about others. LetX be thequery variable(i.e., the variables we are
interested in computing the conditional probability of); let e be the evidence we are given and
Y the remaining unobserved variables:

p(X|e) = α
∑

y

p(X, e, y), (A.7)

where the summation is over all possible combinations of valuesy of the unobserved variableY
and together the variablesX, E, andY constitute the complete set of variables for the domain.

Conditional Independence

Any of the rules discussed so far can be conditioned on arbitrary random variables, such as the
variableZ. For example, conditioning Bayes’ rule onZ = z gives us:

p(x|y, z) =
p(y|x, z)p(x|z)

p(y|z)
. (A.8)

Similarly, we can condition the rule for combining probabilities of independent random vari-
ables on other variablesz: p(x, y|z) = p(x|z)p(y|z). Such a relation is known asconditional
independence.

It is worth to note that conditional independence is equivalent to:p(x|z) = p(x|z, y) and to
p(y|z) = p(y|z, zy).

Conditional independence does not imply independence, that is,

p(x, y|z) = p(x|z)p(y|z) ; p(x, y) = p(x)p(y); (A.9)

and absolute independence does not imply conditional independence:

p(x, y) = p(x)p(y) ; p(x, y|z) = p(x|z)p(y|z). (A.10)

Chain Rule

Another very useful rule in probability theory is called thechain rule. The chain rule computes
joint probabilities from conditional probabilities: consider three random variables,X, Y , Z, the
chain rule claims:

p(x, y, z) = p(x|y, z)p(y|z)p(z). (A.11)

If we expand out the conditional probabilities with their definitions, we get

p(x, y, z) =
p(x, y, z)

p(y, z)

p(y, z)

p(z)
p(z), (A.12)

when written this way, we see that each terms numerator cancels the previous terms denomina-
tor, leaving us with a simple expression thatp(x, y, z) equals itself. The chain rule is important
when one have to estimate the probability distributions of sequences of data.
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Normal Distribution

An example of density function is that of the one-dimensional normal distributionwith meanµ
and varianceσ2. The PDF of a normal distribution is given by the followingGaussianfunction:

p(x) = (2πσ2)−
1

2 exp{−1

2

(x − µ)2

σ2
} (A.13)

that assumesx to be a scalar value. Often,x will be a multi-dimensional vector. Normal distri-
butions over vectors are calledmultivariate. Multivariate normal distributions are characterized
by density functions of the following form:

p(x) = det(2πσ)−
1

2 exp{−1

2
(x − µ)T Ξ−1(x − µ)}, (A.14)

where:

• µ is the mean vector and

• Ξ a positive semi-definite and symmetric matrix called the covariance matrix.

Equation A.14 and Equation A.13 are equivalent whenx is a scalar value andΞ = σ2.
Equations A.13 and A.14 are examples of PDFs. As discrete probability distributions always

sum up to 1, PDFs integrate to 1: ∫
p(x)dx = 1. (A.15)

Unlike a discrete probability, the value of a PDF is not upperbounded by 1.

Expectation and Covariance

Theexpectationof a random variableX is given by:E[X] =
∑

x xp(x) for discrete cases and
E[X] =

∫
xp(x)dx for continuous cases. The expectation is a linear function of a random

variable:E[aX + b] = aE[X] + b.
The covarianceof X is obtained asCov[X] = E[X − E[X]2 = E[X2] − E[X]2. The

covariance measures the squared expected deviation form the mean.
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RBNs subsume PRMs

As discussed in Chapter 2, PRMs (Koller, 1999) can also be used to model uncertainty in a
relational domain. However they are based on frame-based systems, and inherit the limitations
of the latter.

After presenting in more detail PRMs, in this Appendix we show that RBNs subsume PRMs.

B.1 Probabilistic Relational Models

Probabilistic Relational Models (Koller, 1999)(from now one, K-PRMs1) are the extension to
relational domain of Probabilistic Models (PM), they specify a joint distribution over a relational
domain.

A schemafor a K-PRM describes a set of classes, for each class its attributes and the set of
relations between them. A K-PRM defines a probability distribution over the possible instances
of a given schema. It can be thought as a PM which defines the dependency model at the class
level, allowing it to be used for any object in the class and that explicitly uses the relational
structure of the model. In particular, it allows the PM of an attribute to depend also on attributes
of related objects.

The sequence of relationships that permits to an attribute to depend by another one of a
different class is calledslot chain. A slot chainC.τ represents the sequence of objects that are
τ -relatives of an attribute (C.A) of the classC.

In (Getoor, Friedman, Koller, & Pfeffer, 2001) the concept of relational schemaandrela-
tional skeletonare introduced. A relational skeleton for a relational schema is a partial spec-
ification (instantiation) of the schema: it specifies the objects involved in the schema and the
relations between them. In (Getoor et al., 2001) Getooret al.,define a K-PRM as the RBN that
specifies the probability distribution over particular instantiations of a given skeleton: for each
schema there are more skeletons, for each skeleton there aremore completions (i.e., complete
instantiations). A K-PRM induces a distribution over instances that complete the skeleton.

The structure of a K-PRM is defined by associating to each attribute a set of formal parents
that will be instantiated in different ways for different attributes. There are two types of formal

1We will call K-PRM the PRMs presented in (Friedman et al., 1999) to differentiate them from the more
general PRMs of which RBNs are a sub-class.
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parents:

• Parents of an attribute that are attributes of the same object; in this case the same condi-
tional probabilistic model is applied to every connection child-parent.

• Parents of an attribute that are attributes of different class related through a slot chain.

For the objects part of the slot chainC.τ we must specify the probabilistic dependence of
C.A on the multi set{K.B : K ∈ C.τ}. This dependence poses a representation problem: we
need to specify the distribution ofC.A given a multi set of values of unknown size. This issue
is addressed introducing the notion ofaggregation

B.1.1 Aggregation

To represent the conditional probabilistic model of a connection child-parents in which child
and parents are attributes of two different classes in K-PRMs anaggregationof the values of the
parents is used. The dependence ofC.A on C.τ.B is interpreted as a probabilistic dependence
of C.A on some (deterministically computed) “aggregate property” of the multi set of these
parents.

For each node, the set of parents is divided with respect to the class and the mean of the
values of each object in that class computed treating each ofthe obtained values as an “artificial”
value of a “super-parent” of the considered node. The set of parameters associated with the
qualitative structure is represented by a CPTs for each attribute of each class; this parameters
are shared by each objects in the class.

B.2 RBNs subsume K-PRMs

Theorem 1 For each K-PRM representing a probability distribution over a relational domain
there is an RBN representing the same distribution.

Proof 1 We will first convert the attribute and the reference slots ina K-PRM to predicates of a
RBN, then add the corresponding edges to indicate the parents of a node, and finally prove that
this does not lead to a cycle and the CPT can be converted to a FOPT.

Each attributeC.A in a K-PRM can be seen as a FOL predicate, whereC is the object
class name andA is the predicate name. IfC.A has a parent of the formC.B in the relational
schema, thenC.A hasC.B as parent. IfC.A has a parent of the formγ(C.τ.B) whereτ is a
slot chain andγ an aggregation function, then all the predicates corresponding to the attributes
in the slot chain are parents ofC.A.

We now show that if the initial K-PRM is legal (i.e.,without cycles) then the RBN obtained
above is also legal.

To prove this, we first consider the set of all certain slots inthe K-PRM (i.e., slots whose
values are already known). In the RBN, the predicates corresponding to these are certain and
these predicates can be given higher priority than any of theother predicates. The relative
ordering of the predicates themselves does not matter. For the rest of the predicates we define a
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relative ordering as follows: if any predicate appears as a parent of some other predicate, the
parent predicate is given a higher priority.

We have to prove that the relative ordering defined above is consistent,i.e., if we consider
the RBN graph there is no cycle among the predicates. We do this by contradiction.

Assume that there is a cycle corresponding to predicatesR1, · · · , Rk, i.e.,Ri is a parent of
Ri−1 andR1 is a parent ofRk. Any predicate which has known values cannot appear in the
cycle. If the cycle consists of only predicates which correspond to simple attributes, we can see
that there will be a cycle among the attributes in the K-PRM. Therefore, the cycle must involve
predicates which correspond to reference slots (that are unknown). We will assume that all
the predicates in the cycle correspond to reference slots and prove that the K-PRM is illegal,
leading to a contradiction. The case where some of the predicates in the cycle might correspond
to simple attributes can be ruled out similarly. LetCi.ρi be the reference slot corresponding to
the predicateRi. SinceRi is a parent ofRi−1 eitherCi.ρi is a parent ofCi−1.ρi−1 in the K-PRM
or Ci.ρi appears in the slot chainτ such thatCi−1.τ.B is a parent ofCi−1.ρi−1. In both these
cases there is an edge in the K-PRM fromCi.ρi to Ci−1.ρi−1. Hence, we can see that a cycle
among the predicates corresponds to a cycle among the reference slots in the K-PRM. This
implies that the K-PRM is illegal, leading to a contradiction.

Finally, we have to prove that the CPT in a PRM can be convertedto a FOPT in an RBN. It
is easy to think that any row of a CPT in the K-PRM is equivalentto a FOL expression that can
be expressed in terms of FOPT.

There are several advantages in using RBNs instead of K-PRMs:

• RBNs generalize K-PRMs by providing a more powerful language because based on FOL
instead of frame-based systems.

• In K-PRMs, parents of a predicate are obtained by traversing chains of reference slots
(i.e., conjunctive expressions) in RBNs, instead, parents can be obtained via any FOL
constraint. However, for the same reason, learning K-PRMs is easier.

• Modelingn-ary relationships using K-PRMs requires to break them intobinary relation-
ships, while with RBNs it is possible to model them directly choosing a proper conditional
probability model (since the definition of RBNs is not constrained to the use of FOPTs).

• In K-PRMs the set of parents and the conditional models are specified using a big CPT. In
RBNs, the parents and the conditional model are specified using FOPTs which can take
advantage of context-specific independencies to reduce space requirements and possible
speed up inference.
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perseguire i miei sogni anche se questo ha voluto dire per loro ”stringere la cinghia” o vedermi
andare dall’altra parte del mondo. Meno male che c’e’ semprestato il mio fratellino a tener loro
compagnia, grazie Davide (non solo per questo).

Sono certa che la mia nonna conservera’ copia di questa tesi nel salotto di casa sua. Grazie
nonnina, per i peperoni, i broccoletti ma anche per l’orgoglio con il quale sempre mi guardi.

Visto che abbiamo fatto trenta facciamo trentuno, e lasciatemi ringraziare tutti gli amici di
Milano che mi hanno sempre accolta a braccia aperte ogni volta che sono tornata in Italia e per
tutti loro Vera, una cara amica, che probabilmente dovra’ stampare questa tesi, grazie!

Ho dedicato a lui la prima riga che ho scritto di questa tesi, voglio dedicargli anche l’ultima.
Ho trovato in te un amico e un confidente prima che un marito. Sai benissimo che senza di te
nulla in questi tre anni sarebbe stato possibile e ti ringrazio, per tutte le opportunita’, gli sproni,
gli aiuti e tutto l’amore che ci hai messo. E, non ultimo, per isogni che ora perseguiamo insieme
... Cavolo! ora sto piangendo anche io ....


