
E. Proper, F. Harmsen, and J.L.G. Dietz (Eds.): PRET 2009, LNBIP 28, pp. 134–154, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Architecture-Driven Requirements Engineering

Wilco Engelsman1, Henk Jonkers1, Henry M. Franken1, and Maria-Eugenia Iacob2

1 BiZZdesign, P.O. Box 321, 7500 AH Enschede, the Netherlands
2 University of Twente, School of Management and Governance, P.O. Box 217, 7500 AE

Enschede, the Netherlands

Abstract. This paper presents an architecture driven requirements engineering
method. We will demonstrate how to integrate requirements engineering in
architecture design and we will demonstrate how to use enterprise architectures
during solution realization projects. We will demonstrate how architecture can
be used during problem investigation, solution specification and solution
validation through an example application.

Keywords: Requirements Engineering, Goal Oriented Requirements Engineering,
Enterprise Architecture.

1 Introduction

In the last few years the enterprise architecture (EA) paradigm emerged to better
adapt organizations to changing customer needs [25] [9]. EA is believed to increase
the understanding of scope for solution realization projects. Solution realization
projects in this context are the projects executed to reach the to-be architecture, for
example introducing a new business service.

Requirements Engineering (RE) as a scientific discipline has matured over the last
decade. The process itself is rather well understood and has led to numerous
techniques and models (e.g. GBRAM [1], I* [24] KAOS [19] and more traditional
techniques like interviews, workshops [3] or viewpoint oriented RE [10]). However,
we believe that enterprise architectures can have a tremendous impact on the
requirements engineering process. Not only do requirements lead to architecture,
there is also much progress to be made in constraining the requirements process with
the relevant scope, context and structure. Lastly eliciting and specifying requirements
from architectural models can give the requirements engineers a head start before
traditional techniques like workshops and scenario based elicitation come into play.
We believe that there is much progress to be made by clearly defining the
relationships between RE and EA. To explore our ideas on the proposed integration of
architecture into requirements engineering we performed an exploratory case study at
a large Dutch insurance company to extract this information. In this paper we will
demonstrate how requirements engineering leads to architecture and architecture leads
to requirements. This distinction can be made because architecture is either a design
artifact or a frame of reference. We will position requirements engineering in both
these views and propose a way of integrating these views.

 Architecture-Driven Requirements Engineering 135

The structure of this paper is as follows, in section 2 we will demonstrate our view
on requirements engineering. In sections 3 and 4 we provide the theoretical
boundaries of architectures and RE and describe the conclusions from our study. In
section 5 we provide a framework for architecture-driven requirements engineering
and in section 6 we provide an example application of our method. In chapter 7 we
provide an outlook for further research.

2 Requirements Engineering

Requirements Engineering (RE) is involved with investigating and describing the
environment in which the envisioned system is supposed to create desired effects and
designing and documenting behavior of the envisioned system [3]. In other words, RE
is about getting from problems to the possible solutions. In general, there might be
more than one valid or needed solution for a particular problem. Each solution itself
can be another problem for someone else (see figure 2). This was recognized by
Jackson as a progression of problems [7].

Fig. 1. A progression of problems

We define RE as getting from problems to the possible solutions. We do not limit
ourselves to technology based solutions. Therefore we define a solution as a system
that provides desired services. A system can be a new information service to
customers, new business processes, new work procedures, supporting software
systems and application services that support business processes.

Because RE is about bridging the gap between a problem and the possible solutions,
two different views on RE have emerged [2] [21] [22]: problem-oriented and solution-
oriented RE. Problem-oriented RE is about problem investigation: to investigate and
determine what the actual problem is. Problem-oriented RE involves finding and
documenting the problematic phenomena before thinking of how to solve that particular
problem. A key concept in this is: understanding the goals and the stakeholders who
experience these goals. Solution-oriented RE is about designing and describing system
behavior and showing which alternative best solves the problem. If we try to relate these
two views, we can argue that problem-oriented RE and solution-oriented RE come
together in architecture [21]. If we investigate a certain problem, for example, we
determined that certain stakeholders experience that the service delivery to customers is
insufficient to realize certain business goals. Then a solution to this problem could be

136 W. Engelsman et al.

new business processes, a new delivered service to the customer, alignment of existing
business processes to this new service and a new supporting software system. Together
these different solutions form the architecture of an overall solution (see figure 2). We
will elaborate this statement in chapter 4 and 5.

New Business
Service

New business
Process

New application

Application Service

Fig. 2. Overall solution architecture

2.1 Problem-Oriented RE

In this section we look more closely at Requirements Engineering (RE) as a problem
solving activity. This view on RE originated from systems engineering and is about
investigating and documenting a problem domain. Within this view the requirements
engineer describes the experienced problematic phenomena, the relations between
these phenomena, why this is seen as problematic and who experiences these
problems.

Wieringa [2] [21] provides us with information about what a Requirements
Specification (RS) should contain when RE is seen as problem analysis; a RS in this
view describes the desired business objectives and what work should be done to reach
these business objectives. A similar distinction can be found in Tropos [4]. Tropos
uses an early and late requirements phase, where the early requirements phase
describes the system objectives and the late requirements phase describes the
functional and non-functional requirements.

A very popular RE technique within problem-oriented RE is Goal Oriented RE
(GORE). GORE [1] has received a large amount of research efforts over the past
years and its popularity has increased ever since. Goals are regarded as high-level
objectives of the business, organization or system. They capture the reasons why a
system is needed and guide decisions at various levels within the enterprise. For a
general description about GORE in practice see the work of Van Lamsweerde [18].
Relevant work in the field of GORE has been done by the authors of GBRAM [1],
KAOS [19] and I* [24]. The main reason to adopt a GORE based approach is the
inadequacy of traditional system approaches (e.g. structured analysis or object
oriented analysis) to capture the actual motives for the system under development.
Traditional approaches treat requirements as consisting only of data and processes and
do not capture the rationale for the systems, making it difficult to understand high-
level concerns in the problem domain.

 Architecture-Driven Requirements Engineering 137

2.2 Solution-Oriented RE

This view on requirements engineering (RE) is the traditional software engineering
view on requirements engineering. When using the view of solution specification a
requirements specification consists of [21]:

• A specification of the context in which the system will operate.

• A list of desired system functions of the system.

• A definition of the semantics of these functions.

• A list of quality attributes of those functions.

• A Demonstration which alternative best solves the problem.

Traditional techniques in this view are structured analysis [15] and object-oriented
analysis [8]. Object-oriented analysis applies techniques for object-modeling to
analyze the functional requirements for the system under development. Structured
analysis focuses on the data that flows through the system under development.

3 Enterprise Architecture and Requirements Engineering

Enterprise Architecture (EA) is the complete, consistent and coherent set of methods,
rules, models and tools which will guide the (re)design, migration, implementation
and governance of business processes, organizational structures, information systems
and the technical infrastructure of an organization according to a vision [6]. In this
chapter we will discuss relevant Enterprise Architecture frameworks and their views
on Requirements Engineering (RE).

3.1 TOGAF

In popular methods for enterprise architecture, such as The Open Group Architecture
Framework (TOGAF, see figure 3)[17], (business) goals and requirements are central
drivers for the architecture development process. In TOGAF’s Architecture
Development Method (ADM, see [17]), requirements management is a central
process that applies to all phases of the ADM cycle. The ability to deal with changes
in the requirements is crucial to the ADM process, since architecture by its very
nature deals with uncertainty and change, bridging the divide between the aspirations
of the stakeholders and what can be delivered as a practical solution.

TOGAF provides a limited set of guidelines for the elicitation, documentation and
management of requirements, primarily by referring to external sources. TOGAF’s
content meta-model, part of the content framework, defines a number of concepts
related to requirements and business motivation; however, this part has been worked
out in little detail compared to other parts of the content meta-model, and the relation
with other domains is weak. Also, the content framework does not propose a notation
for the concepts. We do recognize the fact that requirements engineering drives
architecture design. But TOGAF lacks the distinction between architecture as a design
artifact and architecture as a frame of reference. In the former architecture is the result
from RE, the latter uses architecture as a frame of reference to guide RE.

138 W. Engelsman et al.

Fig. 3. TOGAF ADM

Fig. 4. Zachman framework

In our view problem-oriented requirements engineering drives architectures design.
This architecture design is then a solution to the experienced problems. This was
already established by Michael Jackson and his problem frame approach [7] through a
progression of problems.

3.2 Zachman Framework

The ancestor of Enterprise Architectures is the Zachman framework [26]. The
framework as it applies to enterprises is simply a logical structure for classifying and
organizing the descriptive representations of an enterprise that are significant to the

 Architecture-Driven Requirements Engineering 139

management of the enterprise as well as to the development of the Enterprise's systems.
It was derived from analogous structures that are found in the older disciplines of
Architecture/Construction and Engineering/ Manufacturing that classify and organize
the design deliverables created during the process of designing or producing complex
physical products.

Figure 4 presents and overview of the "Framework for Enterprise Architecture",
usually known as the Zachman Framework. An important aspect in this framework is
the motivation column. The motivation column explains why the architecture is needed.
Looking at the motivation column we can already distinguish a link to requirements
engineering. Explaining the motivation for either the architecture or the elements of the
different architectural layers can be realized through problem-oriented RE.

3.3 Project Start Architecture

A technique to align architectures with solution realization is Project Start
Architecture (PSA) PSA [12] describes the relevant parts of the reference architecture
at the start of a project. The PSA is a steering instrument that ensures the relevancy of
the architecture in concrete projects. Architecture should not be an academic exercise
by architects, but of concrete value in organizational change.

The PSA is a translation of general principles and guidelines relevant for the change
projects. Relevant parts of the (reference) architecture are selected and written down in
the PSA. The PSA is then handed down to the relevant project for solution realization.
The solution realization process uses the PSA as an input document and validation
document. The solution should use the boundaries set by the PSA. The PSA provides
the context of solution realization; it does not describe the solution itself. The idea of
PSA is very useful as it transfers scope and frame of reference to solution realization
projects. It clearly defines the boundaries of the problem under investigation and
solution designers can use this scope to specify detailed solution behavior.

3.4 I* for Enterprise Architecture Design

Eric Yu [14] [23] proposes to use I* as a problem investigation technique for
architecture design and business modeling. This way the motivation for architectural
elements is linked to their implementation. I* [24] is a technique that focuses on
modelling and reasoning support for early phase requirements engineering. It tries to
capture the understanding of the organizational context and rationales that lead up to
systems requirements. It consists of two main modelling components. The Strategic
Dependency (SD) model is used to describe the dependency relationships among
various actors in an organizational context. The Strategic Rationale (SR) model is
used to describe stakeholder interests and concerns, and how they might be addressed
by various configurations of systems and environments [24].

I* can be used for both early and late phases of RE. During the early requirements
phase i* is used to model the environment of the system to be, it facilitates the analysis
of the domain by allowing the modeller to diagrammatically represent the stakeholders
of the system, their objectives and their relationships. During the late phases i* models
are used to propose the new system and the new processes and evaluate them on how
well they meet the functional and non-functional needs of the users.

140 W. Engelsman et al.

4 Alignment Architecture with Requirements Engineering

When analyzing the relevant literature from chapter 3 we can conclude the following
on architecture-driven requirements engineering. Requirements play an important role
in architecture design. We argue that the requirements for architecture design are
problem oriented and the architecture provides the general design to these goals. This
way architecture is seen as a design artifact, the solution for identified problems.
Secondly we need to transfer the motivation and the architecture design into the
solution realization projects. Here architecture is the frame of reference. Transferring
the relevant parts of the architecture is the domain of Project Start Architecture (the
solution itself or the solution blueprints are not in the domain of PSA). Although the
documentation and theoretical integration into RE is weak (e.g. see [12]). To further
investigate this we performed an exploratory case study, unfortunately we are unable
to provide exact details of this case study due to confidentiality reasons. We can only
provide some context in which the case study took place. To investigate our claims
we elicited requirements from an off the shelf reference architecture and compared
these to the results from traditional requirements elicitation techniques. This was done
through eliciting requirements from the reference architecture based on the project
goals. These requirements were compared to the results from the actual project. This
way we were able to compare requirements elicited from architectural models with
requirements from traditional techniques. We were able to show that we can use
architecture to assist the elicitation and analysis of requirements, improve
requirements specification and help validate the requirements.

4.1 Requirements Elicitation and Analysis

During requirements elicitation we were able to elicit a large number of requirements by
inspecting the reference architecture. Furthermore, the traditional approach and the
architecture-driven approach led similar requirements. The architecture-driven
requirements were more general in nature. The reference architecture provided a scope
for the problems and described possible solutions for these problems. We will elaborate
this with an example. The company were the case study took place faced a problem
about the integration of a new product in their current insurance portfolio. This new
product required the use of an insurance broker. At the time of integrating this new
product into the company they only sold insurances directly to their customers. This
triggered a new problem since they had no idea how to implement and realize an
insurance broker distribution channel and how to provide IT support for an insurance
broker administration. Their architecture described this for them. For example, during a
workshop a requirement emerged that for an insurance broker his name, address, bank
account number and chamber of commerce data had to be recorded. When investigating
the reference architecture we saw reference models describing recording insurance
broker information and abstract examples of this information.

A second observation was that the architecture-driven approach facilitates the re-
use of similar solutions as source for requirements elicitation. For example, when a
new insurance product (or service) is introduced similar products could be used to

 Architecture-Driven Requirements Engineering 141

elicit change requirements. Lastly the architecture provided the relevant scope for the
new systems through analyzing relationships between architectural elements.

One point of consideration is that the company used an off the shelf reference
architecture. This architecture already described a desired to-be state, without a to-be
analysis. For example, it provided solutions for problems that were not experienced
yet. It therefore also provided ready to use solutions for problems. Secondly this way
the organization had a very mature architecture to begin with, so it was quite easy to
transfer the relevant models into solution realization projects.

4.2 Requirements Specification

During our case study we introduced a requirement specification template based on the
architecture framework used in the organization. This template consists of business,
application and technology layers (based on the meta-model used in their organization).
This template was used to specify the requirements elicited from the architecture. The
main argument to develop a template for a requirements specification around this meta-
model is that solving an organizational problem is much more than just investigation
and specifying the IT need. In section 2 we explained that our view includes a
progression of problems. Using this template we were able to show which business
problems were solved on the business layer and their relationship to the application
level. Furthermore, we were able to show how specifying the requirements for a
business service impacts and serves as input for specifying requirements for the
supporting information systems. Thus, one could emphasize the underlying dependency
relationships between the requirements positioned in the different layers of the above-
mentioned template.

4.3 Requirements Validation

During requirements validation, the role of the enterprise architect is similar to that of
any other stakeholder during the validation phase. In this setup the architect is
regarded as stakeholder in the validation activities and may judge whether the
specified requirements comply with the architecture goals, guidelines, principles,
policies and constraints and with the architecture. Secondly, since the architecture
described a desired to-be state it provided a validation mechanism in the form that a
requirements specification should comply with.

5 Architecture-Driven Requirements Engineering

We have established that Requirements Engineering (RE) both happens to design
architectures and realize the architecture. To design the architecture RE investigates
the problematic phenomena, describes the business objectives and a way of working
to realize these objectives. To realize the architecture we need to transfer the relevant
requirements for the architecture and the architecture design into the solution
realization projects. This way we heavily restrain the freedom of the solution
designers to match the already established architecture.

142 W. Engelsman et al.

5.1 Framework for Requirements Engineering

We argued that Requirements Engineering (RE) is about getting from problems to the
possible solutions. Therefore we use a logical framework for problem solving [20]
(see figure 5) as a RE framework.

Fig. 5. Framework for requirements engineering

5.1.1 Problem Investigation
During problem investigation we take the problem-oriented view on requirements
engineering. We find the stakeholders, record the relevant business objectives and
specify how to reach these business objectives. This phase uses the concepts
introduced in GORE (see KAOS [19] and i* [14] [23]). This phase in our method
leads to a goal tree that serves as input for the traditional requirements techniques.
Important concepts during this phase are the stakeholders, their concerns, assessments
of these concerns, goals (both hard and soft goals) and requirements. A precise
definition and report on the design of the requirements language is out of the scope of
this paper. But we will provide an exact syntax, to elaborate the example (see table 1).

5.1.2 Investigate Alternatives
In this step we start to look for possible solutions that are available to solve our
problem. Solution specification is an important activity during this phase. Solution
designers [5] propose system properties during this phase to reach the goals identified
earlier. Solution alternatives range from proposing new (business) systems to actual
alternative solution properties.

5.1.3 Solution Validation
In the solution validation phase the different solution alternatives are compared and
analyzed. The main goal is to determine which solution best implements the business
requirements [13]. Another important goal in this activity is to identify new problems.
For example, when we have identified the need for a new service that we wish to
provide to our customer and specified its desired behavior we are imposed with
another problem. How are we going to realize this service internally? Other needed
solutions might be adapted business processes, new information systems and a
changed infrastructure. This leads to another cycle of the RE method.

 Architecture-Driven Requirements Engineering 143

Table 1. Elements from the requirements language

Abstract element Concrete notation

Stakeholder
Stakeholder

Concern Concern

Assessment
Assessment

Hard goal Hard goal

Soft goal Soft goal

Requirement Requirement

Use case Use case

5.2 Framework for Architecture-Driven Requirements Engineering

In this framework (see figure 6) architecture is either a design artifact which requires
requirements engineering or a frame of reference which guides requirements engineering.

Fig. 6. Life cycle for architecture-driven RE

144 W. Engelsman et al.

The framework from figure 5 applies to the framework from figure 6 as well. For
example, we find the steps problem investigation, investigate alternatives and validate
solution in the individual steps of this framework as well.

5.2.1 Investigate Motivation
Investigate problem
Before architecture design we investigate the motivation for the architecture. In
requirements engineering terms, we investigate the business objectives and the way of
working to reach these objectives. In the early stages, before architecture design we
propose to use problem-oriented requirements engineering. More concretely, we have
adopted a goal oriented approach. Goals are an excellent mechanism to explain the
motivation for a solution [18]. If we compare this to existing GORE approaches, it
resembles the early requirements phase found in i* [24].

Investigate alternatives
During investigate alternatives we propose the solutions for the particular problems
depicted in the motivation plane. We also start specifying the solutions on a high
level. For example initial use-case specification models. It is not required to provide
detailed use-case specifications during this phase. When the solution designers start
working on the solution they can take these use-case specifications as a starting point.

Validate solution
During solution validation the proposed solutions are evaluated and new problems are
investigated. These relationships define the progression of problems defined by
Jackson [7]. Solution validation during this phase focuses more matching the
proposed solution to the goals and identifying new problems on an architectural level.
For example in this setup, the stakeholder concerned with validation activities may
judge whether the specified requirements comply with the enterprise architecture
goals, guidelines, principles, policies and constraints [11].

5.2.2 Solution Realization
During solution realization we transfer the solutions from design plane and their
motivation to the realization projects.

After the architecture is designed we need to transfer the motivation and the
architectural models to the solution realization projects. A solution for this is found in
Project Start Architecture (PSA) introduced by DYA [12]. The models defined here
should lead to a blueprint of requirements that the requirements engineers can use for
their solution specification.

Problem investigation
We now know what parts of the architecture are relevant and we might have solution
blueprints. The architectural model here steers the requirements elicitation process.
When we have exhausted this way of requirements elicitation, traditional techniques,
like workshops and scenario elicitation can supplement our first draft of the
requirements specification. The advantages of working this way is that the
requirements elicitation activities get a head start and are constrained by the relevant
parts of the organization, depicted in an architectural model. Architecture helps the
requirements engineer with elaborating the relevant scope of the problem under

 Architecture-Driven Requirements Engineering 145

investigation. For example, when we know that the change goal for our project is to
develop a new business service that allows customers to administer and maintain their
insurance portfolio over the internet. The architecture can then provide the relevant
models for insurance products, insurance selling processes, etc.

Investigate alternatives
During this phase we take a much more traditional approach. We investigate
alternatives constrained to the solution we have to realize.
We use solution specification techniques for detailed solution specification. In terms
of an IT system think of techniques from Object Oriented Analysis or Structured
Analysis. These techniques are found in solution oriented requirements engineering.
For business solutions, specification techniques from the business domain could be
used. For example service blueprinting for a business service.

Solution validation
During solution validation we compare the different possible solutions to the system
objectives. Validation is about to show which solution is expected to reduce the gap
between the experienced problems and the desires.

6 Example

In this section we will provide an example case for our requirements engineering
method. We will demonstrate how to use architectural models during problem
investigation, solution specification and solution validation.

PRO-FIT is an average sized financial service provider,
specialized in different insurance packages, such as
life insurances, pensions, investments, travel
insurances, damage insurances and mortgages.

In the last years PRO-FIT went through a structural
change process, the result of which is that all
business processes are consistent up the department
level However, the financial branch is one of the most
dynamic and the senior management of PRO-FIT is now
aware of new developments and threats, which require
PRO-FIT to think of new ways to deal with these new
challenges

During the identification of new developments and
threats the senior management of PRO-FIT became aware
of the new service-oriented way of thinking. A market
analysis identified a number of opportunities; one of
them is a differentiation strategy for their insurance
services using modern technology.

During the past few months the customer support at PRO-
FIT identified a number of problems as well. Customers
are complaining about the lack of insight in their
insurance portfolios, competitors offer new internet
based solutions where customers can request all kinds
of information about their insurance portfolios.

146 W. Engelsman et al.

During the remainder of this example we will use the requirements language
depicted in table 1.

Customer

Portfolio
management

Senior
management

Innovation

Service & IT
department

Customer
satisfaction

Workload

Support

Profit

Price

Lack of
insight

Leaving
customers

Introduce
SOA paradigm

Dropped
sales

Complaining
customers

Heavy
workload

Bad portfolio
management

Inconvenient
claim submission

Budget
Decrease of

personnel budget

Fig. 7. The stakeholders, concerns and assessments

Increase
sales

Decrease
workload

Education
and training

Hire consultant

Use on-line
services to

expose products

Improve
portfolio management

Enable customers
to control their

insurances on-line

Assign
personal assistants

Enable buying
insurances

Enable changing
insurances

Enable premium
payments

Enable
claim handling

Existing customer
5% discount

Helpdesk waiting time
less than 2 minutes

Increase
insight

Guarantee
privacy

Increase
customer satisfaction

Acquire knowledge
and expertise

Reduce customer
suppport staff

+

-

--
--

<<conflict>>

Fig. 8. Results from problem oriented requirements engineering

6.1 Investigate Motivation

During this step we will investigate the motivation of PRO-FIT. We will explore the
stakeholders, their concerns and assessments. These concerns and assessments lead to
goals. In this step architecture is a design artifact.

 Architecture-Driven Requirements Engineering 147

6.1.1 Investigate Problem
Because of space limitations we will restrict this example to three relevant
stakeholders, with a limited number of concerns and assessments. We assume that we
have a customer who is concerned with price and support. We also have a stakeholder
(or stakeholders) senior management. Senior management is concerned with
innovation, portfolio management and profit. Thirdly, we have identified the customer
service department as a stakeholder. They are concerned with workload, budget and
customer satisfaction. See fig. 6 for an overview of the concerns and assessments.

As we can see the identified concerns from the respective stakeholders can lead to
assessments. These assessments are ways to address these concerns, for example the
concern profit leads to an assessment of dropping sales. This is a threat to the organization
and therefore needs to be addressed. This will lead to the high level goal “increase sales”
(see figure 8). Through goal refinement we reach the goals that we want to introduce a
new portfolio management service that allows the customer to buy insurances online,
mutate his/her data online, pay their premiums and submit their claims.

6.1.2 Investigate Alternatives
During investigate solution alternatives we investigate the possible solutions which
will realize our goals from section 5.1. In our case we will introduce a new portfolio
management service. We use use-case specification to specify high level behavior.
The use case portfolio management describes the high level behavior and can be
refined into refined use-cases (see figure 9).

Portfolio Management Service

Portfolio Management

Data
Mutation Premium Payment Insurance

BuyingClaim Handling

Customer

Enables customers
to control their insurances

Online

<<include>> <<include>> <<include>> <<include>>

Fig. 9. New Portfolio Management Service

6.1.3 Validate Solution
During solution validation we both check the current specified solution and try to
identify new problems. In this case it is determining the IT support. The solution
defined in this chapter is then a problem for the IT specialist. In the next cycle of
problem investigation and solution specification PRO-FIT assumes the role of a
service consumer. During solution validation the architecture can be used to identify
new problems based on the proposed solution. For example, during this example we
introduced a new business service. This business service might introduce new
business processes and it will need IT support. One way of finding new problems is to
perform an impact analysis on the architecture [11].

148 W. Engelsman et al.

6.2 Solution Realization

We argued that before solution realization starts, the architecture should be inspected
for relevant information. This coincides with “architecture as a frame of reference”. In
a best case scenario the architecture already describes a to-be state; this to-be state
already provides a number of requirements and seriously limits the solution
alternatives. When there is no to-be state, the architecture still provides relevant
models, scope, context and structure to the RE activities. The relevant parts of the
reference architecture comprise of guidelines, principles and the relevant models
found. In this section we will provide a selection of the relevant models from the
PRO-FIT architecture. We will realize a more business oriented solution, but this way
of thinking also applies for IT based systems.

Because we know that we want to sell insurances we can select the product
architecture for product information. We can also select the processes “claim handling”
and “new insurance request”. Using the business information model we can already
select the relevant information requirements. The reference architecture also describes
PRO-FITS insurance portfolio, namely car insurances, life insurances, travel insurances
and general liability insurances.

Car insurance

Travel insurance

Life insurance

General liability
insurance

Insurances

Fig. 10. The product architecture of PRO-FIT

Customer
Information

Service

Customer
data mutation

Service

Claims
Payment
Service

Insurance
Application

Service

Claim
Registration

Service

Premium
Payment
Service

Business services

Fig. 11. The business service architecture of PRO-FIT

In figure 6 we illustrate the business services PRO-FIT delivers to its customers or
internal departments.

 Architecture-Driven Requirements Engineering 149

Processes
In the BIP phase guidelines where given that the new service should support selling
insurances, changing insurances, claim handling and premium payments. For illustration
purposes we selected the relevant process models for closing contracts and claim
handling. Closing contracts is the internal procedure for handling insurances requests.

Create Contract Check and sign contract
Formalise Request Check and

Sign Contract

Close Contract

Request
for

Insurance

Customer Contracting

Negotiation Insurer

Intermediary

Fig. 12. Close Contract business process including the relevant entities and roles

Claim Form

Customer File

Damage ClaimInsurance Policy

Customer

Insurance
Request

Legal aid
Insurance Policy

Liability
Insurance Policy

Travel
Insurance Policy

Car Insurance Policy Home
Insurance Policy

Fig. 13. Business information in PRO-FIT

Business Information
The architects also need to provide the relevant business information parts of the
architecture. They already identified the relevant products and processes. In we depict
PRO-FITS current business information model, as recorded in the reference
architecture.

Another important aspect is to transfer the motivation for the architecture. The
solution designers have to use the scope identified for the architecture. Secondly the
use-cases specified at the architecture restrain the scope for the solution designers.

6.2.1 Problem Investigation
During problem investigation the architecture can provide the requirements engineer
with the relevant models to determine the scope. After the business information

150 W. Engelsman et al.

planning phase we know the main goals and that PRO-FIT wants to realize a new
portfolio service. Through asking ourselves how and why questions we can refine the
goal tree from figure 3. First sources of information are the architectural principles
depicted in figure 4. The client satisfaction goal should be used for every solution
realization project. The business function model also provides the relevant refinement
goals (or relevant process models). An architecture driven way of working does not
mean it replaces the traditional soft techniques like workshops and interviews. It is a
supporting phase to get a head start. The results from architecture driven elicitation
should be used as an input for the traditional techniques. It is even possible to refine
the goal “support insurance selling” with “sell liability insurances”, “sell car
insurances” using the product architecture.

During the solution realization we can also elicit requirements that realize “provide
security”. Supporting “user identification” is a goal that refines “provide security”.

Portfolio Management Service

Portfolio Management

Data
Mutation Premium Payment Insurance

BuyingClaim Handling

Customer

Enables customers
to control their insurances

Online

<<include>> <<include>> <<include>> <<include>>

Fig. 14. Reuse of architecture solution specification

Enables customers
to control their insurances

Online

Suport Selling
Insurances

Support Changing
Insurances

Support Premium
Payments

Enable Claim
Handling

Guarantee
Privacy

Provide
Security

Support
User identification

Sell car
Insurances

Sell Life
Insurances

Sell libability
Insurances

Fig. 15. Extension of the motivation

As mentioned before the exact details of these requirements are made clear using
the traditional techniques. As we saw with our case study, the architecture provides
less detailed requirements. Situational details should be elicited the old fashioned
way. Another example is the relevant business information. Inspecting the
architectural model from figure 13 provides the layout of the business information.
Adding details to the objects is still required.

 Architecture-Driven Requirements Engineering 151

6.2.2 Investigate Solution Alternatives
In this step the person responsible for specifying the solution investigates the possible
alternatives. For example in figure 16 he identifies two requirements that realize the
goal “support user identification”. He has two possibilities here, using either Digi-ID
or some form of biometric identification.

Provide
Security

Support
User identification

Use Digi-ID Use biometrics

Fig. 16. Determining solution properties

In figure 17 we see the requirements “use i-deal” or “use credit cards” are possible
alternatives to realize “support premium” payments.

Support Premium
Payments

Use I-Deal Use Credit Cards

Fig. 17. Solution alternatives for support premium payments

A second step during this phase is specifying solution behavior. In figure 18 we
demonstrate how the earlier use-cases from the previous phase are refined into more
concrete solution behavior.

Premium Payments

Support Premium
Payments

Premium Payment
Service

Initiate
Payment Check Payment Close

Payment

Customer

<<include>><<include>><<include>>

Fig. 18. Solution specification for premium payment Service

152 W. Engelsman et al.

Solution specification does not end here. In figure 13 we provided the business
information model for PRO-FIT. These initial data requirements can then be
supplemented using the traditional techniques like workshops, interviews and scenario
based elicitation.

Name

Address

Bank number

Customer
Name

Car insurance

Liability All Risk

Fig. 19. Adding details to the object models from the architecture

6.3 Solution Validation

During solution validation we both check the current specified solution and try to
identify new problems. In this case it is determining the IT support. The solution
defined in this chapter is then a problem for the IT specialist. In the next cycle of
problem investigation and solution specification PRO-FIT assumes the role of a
service consumer. During solution validation the architecture can be used to identify
new problems based on the proposed solution. For example, during this example we
introduced a new business service. This business service might introduce new
business processes and it will need IT support. One way of finding new problems is to
perform an impact analysis on the architecture [11].

7 Concluding Remarks and Future Work

In this paper we have described the influence of the Enterprise Architecture (EA)
paradigm on the way in which Requirements Engineering (RE) is performed. An
extensive survey and classification of existing literature has shown that the link
between these two areas is still weak. For a large part, the results described in this
paper are based on the observations made during a practical case study carried out
within a large Dutch insurance company.

In the first part of the paper, we have shown that a company’s enterprise architecture
can be a useful source for the elicitation of a large starting set of requirements. These may
subsequently be refined using traditional requirements elicitation techniques, such as
scenarios, workshops, interviews or surveys. This approach has a number of potential
advantages: (1) time savings, among others because requirements may be reused between
different projects; (2) the architecture places the requirements in their organizational
context, which makes it easier to validate them with business stakeholders; (3) the
architecture provides a way to structure requirements, which makes it easier to check for
quality aspects such as consistency and completeness.

In the second part of the paper, we have made the combined approach to EA and RE
operational by proposing a method for architecture-driven requirements engineering. This

 Architecture-Driven Requirements Engineering 153

method includes a process (way of working) and concepts for modeling requirements and
their relationship to other concepts in the enterprise architecture. The method has been
illustrated with a practical example.

As future work, we intend to fully validate our method in the pilot project we are
currently carrying out. Although we have shown that it is possible to elicit
requirements from enterprise architectures, we still do not know exactly how much
improvement architecture-driven requirements engineering can actually offer. For
example, how much of solution specification can we realize based on results from an
architecture-driven elicitation process? How much faster is an architecture driven
approach?

Secondly we need to extend the framework described here with analysis
possibilities. For example, the stakeholder concerns are similar to the viewpoints in
viewpoint oriented RE [16]. Identifying standard viewpoints or methods for viewpoint
identification is a logical next step.

Another interesting topic for future research is the relationship between service-
oriented computing and requirements engineering. The ideas from service orientation
may further facilitate the reuse of requirements and solutions, thus speeding up the
requirements engineering phase. However, service-oriented solutions may also lead to
change in the requirements engineering process. In particular, we envisage that
separate (complementary) requirements engineering processes are needed for the
service provider and the service user.

Acknowledgements

This work wouldn’t have been possible without the input from Dick Quartel, in the
form of ARMOR, the requirements modeling language used in this paper.

References

[1] Anton, A.I.: Goal-based requirements analysis. In: Proceedings of the Second
International Conference on Requirements Engineering, pp. 136–144 (1996)

[2] Aurum, A., Wohlin, C.: Engineering And Managing Software Requirements. Springer,
Heidelberg (2005)

[3] Bray, I.K.: An Introduction to Requirements Engineering. Addison-Wesley, Reading
(2002)

[4] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent
Systems 8(3), 203–236 (2004)

[5] Cross, N.: Strategic knowledge exercised by outstanding designers. Strategic knowledge
and concept formation III, pp. 17–30 (2001)

[6] Iacob, M.E., Franken, H., Van den Berg, H.: Enterprise Architecture Handbook.
Bizzdesign academy publishers (2007)

[7] Jackson, M.: Software requirements & specifications: a lexicon of practice, principles and
prejudices (1995)

154 W. Engelsman et al.

[8] Jacobson, I.: The use-case construct in object-oriented software engineering. Scenario-
based Design: Envisioning Work and Technology in System Development, 309–338
(1995)

[9] Jonkers, H., van Burren, R., Arbab, F., de Boer, F., Bonsangue, M., Bosma, H., ter Doest,
H., Groenewegen, L., Scholten, J.G., Hoppenbrouwers, S., et al.: Towards a language for
coherent enterprise architecture descriptions. In: Proceedings of Seventh IEEE
International Enterprise Distributed Object Computing Conference, 2003, pp. 28–37
(2003)

[10] Kotonya, G., Sommerville, I.: Requirements engineering with viewpoints. Software
Engineering Journal 11(1), 5–18 (1996)

[11] Lankhorst, M.: Enterprise Architecture at Work: Modelling, Communication and
Analysis. Springer, Heidelberg (2005)

[12] Luipers, J.: White paper project start architectuur (in dutch). Sogeti internal report
[13] Mulholland, A., Macaulay, A.L.: Architecture and the integrated architecture framework.

Whitepaper, Capgemini,
http://www.capgemini.com/services/soa/ent_architecture/iaf/

[14] Samavi, R., Yu, E., Topaloglou, T.: Strategic reasoning about business models: a
conceptual modeling approach. Information Systems and E-Business Management, pp. 1–
28

[15] Schoman, K., Ross, D.T.: Structured Analysis for requirements definition. IEEE Trans.
on Software Engineering 3(1) (1977)

[16] Sommerville, I., Sawyer, P., Viller, S.: Viewpoints for requirements elicitation: a
practical approach. In: Proc. Third IEEE International Conference on Requirements
Engineering (ICRE 1998) (1998)

[17] The Standish The Open Group. TogafTM version 8.1.1 enterprise edition (2006),
https://www.opengroup.org/architecture/togaf8-doc/arch/

[18] van Lamsweerde, A.: Goal-oriented requirements engineering: a roundtrip form research
to practice. In: Proceedings of 12th IEEE International Requirements Engineering
Conference, 2004, pp. 4–7 (2004)

[19] van Lamsweerde, A., Letier, E.: From object orientation to goal orientation: A paradigm
shift for requirements engineering. In: Wirsing, M., Knapp, A., Balsamo, S. (eds.)
RISSEF 2002. LNCS, vol. 2941, pp. 325–340. Springer, Heidelberg (2004)

[20] Wieringa, R.: Requirements Engineering: Frameworks for Understanding. Wiley,
Chichester (1996)

[21] Wieringa, R.: Requirements engineering: Problem analysis and solution specification
(extended abstract). In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS,
vol. 3140, pp. 13–16. Springer, Heidelberg (2004)

[22] Wieringa, R., Heerkens, H.: Requirements engineering as problem analysis: Methodology
and guidelines. Technical report, University of Twente (2003)

[23] Yu, E., Strohmaier, M., Deng, X.: Exploring Intentional Modeling and Analysis for
Enterprise Architecture (2006)

[24] Yu, E.S.K., Mylopoulos, J.: Understanding why in software process modelling, analysis,
and design, pp. 159–168 (1994)

[25] Zachman, J.A.: Enterprise Architecture: The Issue of the Century. Database Programming
And Design 10, 44–53 (1997)

[26] Zachman, J.A.: A Framework for Information Systems Architecture. IBM Systems
Journal 38(2/3), 454–470 (1999)

	Architecture-Driven Requirements Engineering
	Introduction
	Requirements Engineering
	Problem-Oriented RE
	Solution-Oriented RE

	Enterprise Architecture and Requirements Engineering
	TOGAF
	Zachman Framework
	Project Start Architecture
	I* for Enterprise Architecture Design

	Alignment Architecture with Requirements Engineering
	Requirements Elicitation and Analysis
	Requirements Specification
	Requirements Validation

	Architecture-Driven Requirements Engineering
	Framework for Requirements Engineering
	Framework for Architecture-Driven Requirements Engineering

	Example
	Investigate Motivation
	Solution Realization
	Solution Validation

	Concluding Remarks and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

