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Abstract. Ontologies are commonly used in computer science either as a 

reference model to support semantic interoperability, or as an artifact that 

should be efficiently represented to support tractable automated reasoning. This 

duality poses a tradeoff between expressivity and computational tractability that 

should be addressed in different phases of an ontology engineering process. The 

inadequate choice of a modeling language, disregarding the goal of each 

ontology engineering phase, can lead to serious problems in the deployment of 

the resulting model. This article discusses these issues by making use of an 

industrial case study in the domain of Oil and Gas. We make explicit the 

differences between two different representations in this domain, and highlight 

a number of concepts and ideas that were implicit in an original OWL-DL 

model and that became explicit by applying the methodological directives 

underlying an ontologically well-founded modeling language. 

Keywords: Ontology, Ontology Languages, Conceptual modelling, Oil and 

Gas domain 

1   Introduction 

Since the word ontology was mentioned in a computer related discipline for the first 

time [1], ontologies have been applied in a multitude of areas in computer science. 

The first noticeable growth of interest in the subject in mid 1990’s was motivated by 

the need to create principled representations of domain knowledge in the knowledge 

sharing and reuse community in Artificial Intelligence (AI). Nonetheless, an 

explosion of works related to the subject only happened in the past eight years, highly 

motivated by the growing interest on the Semantic Web, and by the key role played 

by ontologies in that initiative.  

There are two common trends in the traditional use of the term ontology in 

computer science: (i) firstly, ontologies are typically regarded as an explicit 



representation of a shared conceptualization, i.e., a concrete artifact representing a 

model of consensus within a community and a universe of discourse. Moreover, in 

this sense of a reference model, an ontology is primarily aimed at supporting semantic 

interoperability in its various forms (e.g, model integration, service interoperability, 

knowledge harmonization, and taxonomy alignment); (ii) secondly, the discussion 

regarding representation mechanisms for the construction of domain ontologies is, 

typically, centered on computational issues, not truly ontological ones.   

An important aspect to be highlighted is the incongruence between these two 

trends. In order for an ontology to be able to adequately serve as a reference model, it 

should be constructed using an approach that explicitly takes foundational concepts 

into account; this is, however, typically neglected for the sake of computational 

complexity.  

The use of foundational concepts that take truly ontological issues seriously is 

becoming more and more accepted in the ontological engineering literature, i.e., in 

order to represent a complex domain, one should rely on engineering tools (e.g., 

design patterns), modeling languages and methodologies that are based on well-

founded ontological theories in the philosophical sense (e.g., [2]; [3]). Especially in a 

domain with complex concepts, relations and constraints, and with potentially serious 

risks which could be caused by interoperability problems, a supporting ontology 

engineering approach should be able to: (a) allow the conceptual modelers and 

domain experts to be explicit regarding their ontological commitments, which in turn 

enables them to expose subtle distinctions between models to be integrated and to 

minimize the chances of running into a False Agreement Problem [4]; (b) support the 

user in justifying their modeling choices and providing a sound design rationale for 

choosing how the elements in the universe of discourse should be modeled in terms of 

language elements.  

This marks a contrast to practically all languages used in the tradition of 

knowledge representation and conceptual information modeling, in general, and in the 

semantic web, in particular (e.g., RDF, OWL, F-Logic, UML, EER). Although these 

languages provide the modeler with mechanisms for building conceptual structures 

(e.g., taxonomies or partonomies), they offer no support neither for helping the 

modeler on choosing a particular structure to model elements of the subject domain 

nor for justifying the choice of a particular structure over another. Finally, once a 

particular structure is represented, the ontological commitments which are made 

remain, in the best case, tacit in the modelers’ mind. In the worst case, even the 

modelers and domain experts remain oblivious to these commitments. 

An example of an ontologically well-founded modeling language is the version of 

UML 2.0 proposed in [5] and, thereafter, dubbed OntoUML. This language has its 

real-world semantics defined in terms of a number of ontological theories, such as 

theory of parts, of wholes, types and instantiation, identity, dependencies, unity, etc. 

However, in order to be as explicit as possible regarding all the underlying subtleties 

of these theories (e.g., modal issues, different modes of predication, higher-order 

predication), this language strives for having its formal semantics defined in a logical 

system as expressively as possible. Now, as well understood in the field of knowledge 

representation, there is a clear tradeoff between logical expressivity and 

computational efficiency [6]. In particular, any language which attempts at 

maximizing the explicit characterization of the aforementioned ontological issues 



 

 

risks sacrificing reasoning efficiency and computational tractability. In contrast, 

common knowledge representation and deductive database languages (e.g., some 

instances of Description Logics) have been specifically designed to afford efficient 

automated reasoning and decidability.  

In summary, ontology engineering must face the following situation: on one side, 

we need ontologically well-founded languages supported by expressive logical 

theories in order to produce sound and clear representations of complex domains; on 

the other side, we need lightweight ontology languages supported by efficient 

computational algorithms. How to reconcile these two sets of contradicting 

requirements? As advocated by [7], actually two classes of languages are required to 

fulfill these two sets of requirements. Moreover, as any other engineering process, an 

ontology engineering process lifecycle should comprise phases of conceptual 

modeling, design, and implementation. In the first phase, a reference ontology is 

produced aiming at representing the subject domain with truthfulness, clarity and 

expressivity, regardless of computational requirements. The main goal of these 

reference models is to help modelers to externalize their tacit knowledge about the 

domain, to make their ontological commitments explicit in order to support meaning 

negotiation, and to afford as best as possible the tasks of domain communication, 

learning and problem solving. The same reference ontology can then give rise to 

different lightweight ontologies in different languages (e.g., F-Logic, OWL-DL, RDF, 

Alloy, and KIF) and satisfying different sets of non-functional requirements. Defining 

the most suitable language for codifying a reference ontology is then a choice to be 

made at the design phase, by taking both the end-application purpose and the tradeoff 

between expressivity and computational tractability into account. 

In this article, we illustrate the issues at stake in the aforementioned tradeoff by 

discussing an industrial case study in the domain of Oil and Gas Exploration and 

Production. However, since we were dealing with a pre-existing OWL-DL codified 

ontology, we had to reverse the direction of model development. Instead of producing 

a reference model in OntoUML which would then give rise to an OWL-DL 

codification, we had to start with the OWL-DL domain ontology and apply a reverse 

engineering process to it in an attempt to reconstruct the proper underlying reference 

model in OntoUML. By doing that, we manage to show how much of important 

domain knowledge had either been lost in the OWL-DL codification or remained tacit 

in the minds of the domain experts. 

The remainder of this article is organized as follows. Section 2 briefly 

characterizes the domain and industrial setting in which the case study reported in this 

article took place, namely, the domain of oil and gas exploration and production and 

in the context of a large Petroleum Organization. Section 3 discusses the 

reengineering of the original lightweight ontology produced in the settings described 

in section 2. This reengineering step was conducted by transforming the original 

ontology to well-founded version represented in OntoUML. Section 4 discusses some 

final considerations. 



2   Characterization of the case study domain and settings 

The oil and gas industry is a potentially rich domain for application of ontologies, 

since it comprises a large and complex set of inter-related concepts. Ontology-based 

approaches for data integration and exchange involves the use of ontologies of rich 

and extensive domains combined with industry patterns and controlled vocabularies, 

reflecting relevant concepts within this domain [8]. According to this author, the 

motivating factors for the use of ontologies in the oil and gas industry include: 
 
• The great data quantity generated each day, coming from diverse sources, 

involving different disciplines. Integrating different disciplines to take advantage 
of the real value of your information has been a complex and costly task. 

• The existence of data in different formats, including structured in databases and 
semi-structured in documents. To deal with the great quantity of information, as 
well as heterogeneous formats, a new approach is needed to handle information 
search and access. 

• The necessity of standardization and integration of information along the 
frontiers of systems, disciplines and organizations, to support the decision-
making with the collaborators, to the extent that better quality data will be 
accessible on the opportune time. 
 
The case study reported in this paper was conducted in a large Petroleum 

Corporation, by analyzing and redesigning a pre-existing ontology in the domain of 

Oil and Gas Exploration and Production, henceforth named E&P-Reservoir Ontology. 

Due to the extensiveness and complexity of this domain, only few sub domains were 

taken into consideration on the initial version of this ontology, namely, the “Reserve 

Assessment” sub domain, and the “Mechanical pump” sub domain. The knowledge 

acquisition process used to create the original E&P-Reservoir Ontology ontology was 

conducted via the representations of business process models following the approach 

proposed in [9] and extended in [10]. The original E&P-Reserve ontology was 

codified in OWL-DL comprising 178 classes, which together contained 55 data type 

properties (OWL datatypeProperties) and 96 object properties (OWL 

objectProperties). 

In a nutshell, a Reservoir is composed of Production Zones and organized in Fields 

– geographical regions managed by a Business Unit and containing a number of 

Wells. Reservoirs are filled with Reservoir Rock – a substance composed of quantities 

of Oil, Gas and Water. Production of Oil and Gas from a Reservoir can occur via 

different lifting methods (e.g., natural lifting, casing’s diameter, sand production, 

among others) involving different Wells.  One of these artificial lifting methods is the 

Mechanical Pump. The simultaneous production of oil, gas and water occurs in 

conjunction with the production impurities. To remove these impurities, facilities are 

adopted on the fields (both off-shore and on-shore), including the transfer of 

hydrocarbons via Ducts to refineries for proper processing. The notion of Reserve 

Assessment refers to the process of estimating, for each Exploration Project and 

Reservoir, the profitably recoverable quantity of hydrocarbons (Oil and Gas) for that 

given reservoir. The Mechanical Pump subdomain ontology, in contrast, defines a 



 

 

number of concepts regarding the methods of Fluid lifting, transportation, and other 

activities that take place in a reservoir during the Production process. 

For a more extensive definition of the concepts in this domain, one should refer to, 

for instance, [11] or The Energy Standard Resource Center (www.energistics.org). 

3   Reverse engineering an OntoUML version of the E&P-Reserve 

Ontology 

In this section, we discuss some of the results of producing an OntoUML version of 

the original E&P-Reserve Ontology in this domain. In particular we focus at 

illustrating a number of important concepts in this domain which were absent in the 

original OWL model and remained tacit in the domain experts’ minds, but which 

became manifest by the application of methodological directives underlying 

OntoUML. It is important to emphasize that this section does not aim at serving as an 

introduction to OntoUML neither as a complete report on the newly produced version 

of the E&P-Reserve Ontology.  

3.1   Making the Real-World Semantics of Relationships Explicit 

Figure 1 depicts a fragment of the OWL ontology and figure 2 depicts the 

correspondent fragment transformed to OntoUML. 

The OntoUML language, with its underlying methodological directives, makes an 

explicit distinction between the so-called material and formal relationships. A formal 

relationship can be reduced to relationships between intrinsic properties of its relata. 

For example, a relationship more-dense-than between two fluids can be reduced to the 

relationship between the individual densities of the involved fluids (more-dense-

than(x,y) iff the density of x is higher than of y’s). In contrast, material relationships 

cannot be reduced to  relationships between individual properties of involved relata in 

this way. In order to have a material relationship established between two concepts 

C1 and C2, another entity must exist that makes this relationship true. For example, 

we can say that the Person John works for Company A (and not for company B) if an 

employment contract exists between John and Company A which makes this 

relationship true. This entity, which is the truthmaker of material relationships, is 

termed relator in OntoUML and the language determines that (for the case of material 

relationships) these relators must be explicitly represented on the models [12].  



 

Fig. 1. Representation of Fluid transportation (OWL). 

 

Fig. 2. Alternative Representation of Fluid transportation (OntoUML), an interpretation of 

Fluid transportation with unique Duct and Fluid. 

 

Fig. 3. Interpreting Fluid transportation with multiples Ducts and Fluids. 

The Conduct_Fluid relationship of figure 1 is an example of a material relationship. 

Therefore, this relationship only takes place (i.e., the Conduct_Fluid relationship is 

only established) between a specific duct x and a specific portion of fluid y, when 

there is at least a fluid transportation event that involves the participation of x and y. 

Besides making explicit the truthmakers of these relations, one of the major 

advantages of the explicit representation of relators is to solve an inherent ambiguity 

of cardinality constraints that exists in material relationships. Take for example the 

cardinality constraints of one-to-many represented for the relationship Conduct_Fluid 

in figure 1. There are several possible interpretations for this model which are 

compatible with these cardinality constraints but which are mutually incompatible 

among themselves. Two of these interpretations are depicted in figures 2 and 3. 

On the model of figure 2, given a fluid transportation event, we have only one duct 

and only one portion of fluid involved; both fluid and duct can participate in several 

transportation events. In contrast, on the model of figure 3, given a fluid 

transportation event, we have possibly several ducts and portions of fluid involved; a 



 

 

duct can be used in several transportation events, but only one fluid can take part on a 

fluid transportation. 

When comparing these two models in OntoUML we can see that the original OWL 

model collapses these two interpretations (among others) in the same representation, 

which have substantially different real-world semantics. This semantic overload can 

be a source of many interoperability problems between applications. In particular, 

applications that use different models and that attach distinct semantics to 

relationships such as discussed above can wrongly assume that they agree on the same 

semantics (an example of the previously mentioned False Agreement Problem).  

Finally, in the OntoUML models in this section, the dotted line with a filled circle 

on one of its endings represents the derivation relationship between a relator type and 

the material relationship derived from it [5]. For example, the derivation relationship 

Fluid Transportation (relator type) and Conduct_Fluid (material relationship) 

represents that for all x, y we have that: <x,y> is an instance of Conduct_Fluid iff 

there is an instance z of Fluid Transportation that mediates x and y. As discussed in 

depth in [5,12], mediation is a specific type of existential dependence relation (e.g., a 

particular Fluid Transportation can only exist if that particular Duct and that particular 

Fluid exist). Moreover, it also demonstrated that the cardinality constraints of a 

material relationship R derived from a relator type UR can be automatically derived 

from the corresponding mediaton relationships between UR and the types related by 

R. In summary, a relator is an entity which is existentially dependent on a number of 

other individuals, and via these dependency relationships it connects (mediates) these 

individuals. Given that a number of individuals are mediated by a relator, a material 

relationship can be defined between them. As this definition makes clear, relators are 

ontologically prior to material relationships which are mere logical/linguistic 

constructions derived from them [5,12]. To put it in a different way, knowing that x 

and y are related via R tells you very little unless you know what are the conditions 

(state of affairs) that makes this relationship between this particular tuple true.    

3.2   The Ontological Status of Quantities  

Figures 4 and 5 represent fragments of the domain ontology that deal with the notion 

of Fluid. 

 

Fig. 4. The representation of Fluid and related notions in OWL. 



 

Fig. 5. The Representation of Fluid and related notions in OntoUML 

In general, quantities or amounts of matter (e.g., water, milk, sugar, sand, oil) are 

entities that are homeomerous, i.e., all of their parts are the same type as the whole. 

Alternatively, we can say that they are infinitely divisible in subparts of the same 

type. Homeomerousity and Infinite divisibility causes problems both to determine the 

referent of expressions referring to quantities and, as a consequence, also problems to 

specify finite cardinality constraints of relationships involving quantity types [5]. In 

OntoUML, these problems are avoided by defining a modelling primitive 

<<quantity>> whose semantics are defined by invoking the ontological notion of 

Quantity. In OntoUML, a type stereotyped as <<quantity>> represents a type whose 

instances represent portions of amounts of matter which are maximal under the 

relation of topological self-connectness [5].  

In figure 5, the type Fluid is represented as a quantity in this ontological sense. As 

a consequence we have that Fluid: (i) is a rigid type, i.e., all instances of this type are 

necessarily instances of this type (in a modal sense); (ii) provides an identity principle 

obeyed by all its instances; (iii) represent a collection of essential properties of all its 

instances [5,13]. Specializations of a quantity are represented with the stereotype 

subkind. In figure 5, these include the specific types of Fluid:Water, Oil and Gas. 

Subkinds of Fluid have meta-properties (i) and (iii) above by inheriting the principle 

of identity defined by the quantity kind Fluid that should be obeyed by all its 

subtypes. 

On the original ontology in OWL, the equivalence between the Oil and Petroleum 

concepts is represented by the Oil_Petroleum_synonym relationship defined between 

these concepts. This relationship is declared as being symmetric. On the original 

ontology, these concepts simply represent the general concepts of Oil or Petroleum 

and do not represent genuine types that can be instantiated. As consequence in this 

case, the Oil_Petroleum_synonym relationship represents also a relational type that 

cannot be instantiated and only exists in fact between this pair of concepts. Therefore, 

it does not make sense to characterize it as a symmetric relationship, since it functions 

as an instance and not genuinely as a type. 

In the semantics adopted on the revised model, Oil and Petroleum are quantity 

types, the instances of which are specific portions of these Fluids. Therefore, in this 



 

 

case, there is no sense in defining an Is_synonym_of relationship between Oil and 

Petroleum. After all, defined this way, since these are genuine types that can be 

instantiated, this relationship would have as instances ordered pairs formed by 

specific portions of Oil and Petroleum, which definitely does not correspond to the 

intended semantics of this relationship. In fact, the relationship Is_synonym_of is a 

relationship between the Oil and Petroleum types and not between its instances. In 

particular, this relationship has a stronger semantics than simply symmetry, being an 

equivalence relationship (reflexive, symmetric, transitive). 

The problem of the proper representation of an Is_synonym_of relationship that 

could be established between any two types of fluid is solved on the model of figure 

5. Firstly, the model makes an explicit distinction between the fluid types instances of 

which are individual portions of fluid and a type instances of which are the concepts 

of Oil, Water, Gas and Petroleum themselves. Since OntoUML is an extension of 

standard UML, this can be represented by the use of notion of powertype1. In a 

nutshell, a powertype is a type instances of which are other types. On this specific 

model, the relationship between the Fluid Type powertype and Fluid defines that the 

subtypes of the latter (Oil, Water, Gas and Petroleum) are instances of the former. 

Once this distinction is made, the formal relationship of Fluid_identity2 can be 

defined among the instances of Fluid Type. This relationship can, then, be defined as 

an equivalence relationship which semantics is characterized by the following rule: 

two fluid types are identical iff they possess necessarily (i.e., at any given 

circumstance) the same instances. In the OntoUML language, this rule is defined 

outside the visual syntax of the language and as part of the axiomatization of the 

resulting model (ontology). 

Finally, as a result of this modeling choice, particular instances of the 

Fluid_identity relationship can be defined. For example, in figure 5, the link (instance 

of a relationship) between Oil and Petroleum (instances of Fluid Type) is defined 

explicitly as an instance of Fluid_Identity. 

In the revised model of figure 5, in the same manner as Fluid and its subtypes, 

Reservoir Rock is explicitly represented as a quantity type. Once more, this type 

represents a genuine type instances of which are particular portions of Reservoir 

Rock. The Is_accumulated_in_Reservoir_Rock relationship in the original model of 

figure 4 is, hence, replaced by a special type of part-whole relationship 

(subQuantityOf) between Reservoir Rock and Fluid. The SubQuantityOf relationship 

defined as a primitive in OntoUML contains a formal characterization that implies: (i) 

a partial order (irreflexivity, asymmetry, transitivity) relation; (ii) An existential 

dependency relation, i.e., in this particular example a particular portion of Reservoir 

Rock is defined by the aggregation of the specific particular portions of its constituent 

Fluids; and (iii) Non-sharing of parts, i.e.,  each particular portion of fluid is part of at 

most one portion of Reservoir Rock. It is important to emphasize that the explicit 

representation of the semantics of this relationship eliminates an implicit ambiguity 

on the original model.  

                                                           
1 http://www.omg.org/spec/UML/2.1.2/ 
2 The preference for the term Fluid_identity instead of Is_synonym_of is motivated by the fact 

that the former refers to an identity relation among types while the latter refers merely to an 

identity relation among terms.  



3.3   The Containment relation to represent the spatial inclusion among physical 

entities: Reservoir, Reservoir Rock and Geographic Area 

The model on figure 5 also depicts the Reservoir and Geographic Area concepts and 

defines the formal relationship of containment [14] between Reservoir and Reservoir 

Rock and between Reservoir and Geographic Area. This relationship contains the 

semantic of spatial inclusion between two physical entities (with the spatial extension) 

that is also defined on the ontology’s axiomatization, e.g., outside the visual syntax of 

the model. 

On the original model of figure 4, there is only one relationship 

Is_composed_of_Water_Gas_Oil defined between the Extracted Petroleum and the 

Water, Gas and Oil concepts. On the revised ontology, this relationship is replaced by 

composition relationships (subQuantityOf). As previously discussed, the richer 

semantics of this relationship type makes important meta-properties of the 

relationship among these elements explicit in the model. As discussed in [5, 15, 16], 

the formal characteristics of this relationship, modeled as a partially order, existential 

dependency relation with non-sharing of parts, have important consequences both to 

the design and implementation of an information system as to the automated 

processes of reasoning and model evaluation. 

3.4   Making the Production Relator Explicit 

As already discussed, OntoUML makes an explicit distinction between formal and 

material relationships. The Extracts_Fluid relationship between Fluid and Well in the 

original model is an example of the latter. In this way, following the methodological 

directives of the language, the modeling process seeks to make explicit which is the 

appropriate relator that would substantiate that relationship. The conclusion would 

one come to is that the relationship Extracts_Fluid(x,y) is true iff there is a Production 

event involving the Well x from where the Fluid y is produced. The semantic 

investigation of this relationship makes explicit that the resulting fluid of this event in 

fact only exists after the occurrence of this event. In other words, the portion of the 

Extracted Petroleum only exists after it is produced from the event of production 

involving a well. Therefore, a mixture of water, gas and oil is considered Extracted 

Petroleum only when it is produced by an event of this kind. The Extract_Fluid 

relationship between Well and Fluid and the Is_extracted_from_Well relationship 

between Extracted Petroleum and Well on the original ontology are replaced by the 

material relationship Extracts_Extracted_Petroleum between Well and Extracted 

Petroleum and by the subQuantityOf relationships between the Extracted Petroleum 

portion and its sub portions of Water, Gas and Oil. This representation has the 

additional benefit of making clear that an event of Production has the goal of 

generating an Extracted Petroleum portion that is composed of particular portions of 

these Fluid types and not by directly extracting portions of these other types of fluid. 

Finally, as previously discussed, the explicit representation of the Production relator 

makes the representation of the cardinality constraints involving instances of Well and 

Extracted Petroleum precise, eliminating the ambiguity on the representation of the 

Extract_Fluid relationship on the original model. 



 

 

3.5   Representing the Historical Dependence between Extracted Petroleum and 

Reservoir Rock 

As previously discussed, the subquantityOf relation defined in OntoUML to hold 
between portions of quantities is a type of existential dependency relation from the 
whole to the part. In other words, all parts of a quantity are essential parts of it. For 
instance, in figure 6, we have the type Reservoir Rock stereotyped as <<quantity>>. 
As a consequence, once we have the case that specific portions of water, gas and oil 
are extracted from a specific portion of Reservoir Rock x (creating a portion of 
Extracted Petroleum y) that specific portion x ceases to exists. Indeed, the resulting 
portion of Extracted Petroleum y and the Reservoir Rock x from which y originates 
cannot co-exist at the same circumstances. In fact, the same event that creates the 
former is the one that destroys the latter. However, it is important to represent the 
specific connection between x and y, for instance, because some characteristics from 
an Extracted Petroleum could result from characteristics of that Reservoir Rock. Here, 
this relation between x and y is modeled by the formal relation of historical 
dependence [17]: in this case, since y is historically dependent on x it means that y 
could not exist without x having existed.     

 

 

Fig. 6. Extracted Petroleum and its historical dependence to a Reservoir Rock 

4   Final Considerations 

An ontology engineering process is composed of phases, among them are conceptual 

modeling and implementation. During the whole process, the ontology being built 

must be made explicit by a representation language. The diverse ontology 

representation languages available in the literature contain different expressivity and 

different ontological commitments, reflecting on the specific set of available 

constructs in each one of them. Therefore, different ontology representation 

languages, with different characteristics, are suitable to be used in different phases of 

the ontology engineering process so as to address the different set of requirements 



which characterize each phase. In particular, conceptual ontology modeling languages 

aim primarily at improving understanding, learning, communication and problem 

solving among people in a particular domain. Therefore, these languages have being 

designed to maximize expressivity, clarity and truthfulness to the domain being 

represented. In contrast, ontology codification languages are focused on aspects such 

as computational efficiency and tractability and can be used to produce 

computationally amenable versions of an ontologically-well founded reference 

conceptual model. The inadequate use of a representation language, disregarding the 

goal of each ontology engineering phase, can lead to serious problems to database 

design and integration, to domain and systems requirements analysis within the 

software development processes, to knowledge representation and automated 

reasoning, and so on. 

 This article presents an illustration of these issues by using an industrial case study 

in the domain of Oil and Gas Exploration and Production. The case study consists in 

the generation of a Conceptual Ontological Model for this domain from an existing 

domain ontology in the organization where the case study took place. 

The ontology representation language used to produce the redesigned model was 

OntoUML, a theoretically sound and highly expressive language based on a number 

of Formal Ontological Theories. The choice of this language highlights a number of 

explicit concepts and ideas (tacit domain knowledge) that were implicit in the original 

model coded in OWL-DL. To cite just one example, in the original representation of 

Conduct_Fluid relationship, it is possible to define that a duct can conduct several 

fluids and a fluid can be conducted by several different ducts. However, the lack of 

the Fluid Transportation concept (a relator uncovered by the methodological 

directives of OntoUML) hides important information about the domain. For instance, 

it is not explicit in this case how many different fluids can be transported at the same 

time or even if a duct can have more than a fluid transportation at a time. By making 

these concepts explicit as well as defining a precise real-world semantics for the 

notions represented, the newly E&P-Reserve ontology produced in OntoUML 

prevents a number of ambiguity and interoperability problems which would likely be 

carried out to subsequent activities (e.g., database design) based on this model. 

In [18], an extension of OntoUML (OntoUML-R) is presented. This version of the 

language allows for the visual representation of domain axioms (rules), including 

integrity and derivation axioms in OntoUML. As future work, we intend to exploit 

this new language facility to enhance the transformed E&P-Reserve Ontology with 

visual representations of domain axioms. This enhanced model can then be mapped to 

a new version of the OWL-DL codified lightweight ontology, now using a 

combination of OWL-DL and SWRL rules. This enhanced lightweight model, in turn, 

shall contemplate the domain concepts uncovered by the process described in this 

article and, due to the combination of OWL-DL and SWRL, afford a number of more 

sophisticated reasoning tasks. 
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