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Abstract. The interdiction problem arises in a variety of areas inicigdnilitary
logistics, infectious disease control, and counter-té&smo. In the typical formu-
lation of networkinterdiction, the task of the interdictor is to find a set ofjesl
in a weighted network such that the removal of those edgeddwaaximally
increase the cost to an evader of traveling on a path thrdweghetwork.

Our work is motivated by cases in which the evader has incetaphformation
about the network or lacks planning time or computationalgrpe.g.when au-
thorities set up roadblocks to catch bank robbers, the ndafaido not know all
the roadblock locations or the best path to use for theirpesca

We introduce a model of network interdiction in which the rontof one or
more evaders is described by Markov processes and the sva@eassumed not
to react to interdiction decisions. The interdiction ohi)zis to find an edge set
of sizeB, that maximizes the probability of capturing the evaders.

We prove that similar to the standard least-cost formufefiio deterministic mo-
tion this interdiction problem is also NP-hard. But unliket problem our in-
terdiction problem is submodular and the optimal solutian be approximated
within 1—1/e using a greedy algorithm. Additionally, we exploit submizdity
through a priority evaluation strategy that eliminatedliiear complexity scaling
in the number of network edges and speeds up the solutiondgysoof magni-
tude. Taken together the results bring closer the goal ofifgnckalistic solutions
to the interdiction problem on global-scale netwotks.

1 Introduction

Network interdiction problems have two opposing actors‘eader” .g.smuggler)

and an “interdictor” €.g.border agent.) The evader attempts to minimize some objec-
tive function in the networke.g.the probability of capture while traveling from network
locations to locationt, while the interdictor attempts to limit the evader’s susxby
removing network nodes or edges. Most often the interditasrlimited resources and
can thus only remove a very small fraction of the nodes or &dfjee standard formu-
lation is the max-min problem where the interdictor playstfand chooses at maBt
edges to remove, while the evader finds the least-cost patiheoremaining network.
This is known as th8 most vital arcs problem [1].

1 This article is released under Los Alamos National LabaratoA-UR-09-00560
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This least-cost-path formulation is not suitable for someriesting interdiction sce-
narios. Specifically in many practical problems there is@dbuncertainty about the
underlying properties of the network such as the cost tovhder in traversing an edge
(arc, or link) in terms of either resource consumption oedébn probability. In ad-
dition there are mismatches in the cost and risk computati@tween the interdictor
and the evaders (as well as between different evaders),lbagemts have an interest
in hiding their actions. For evaders, most least-cost-pda#rdiction models make op-
timal assumptions about the evader’s knowledge of thediten’s strategy, namely,
the choice of interdiction set. In many real-world situasa@vaders likely fall far short
of the optimum. This paper, therefore, considers the ofhet tase, which for many
problems is more applicable, when the evaders do not resfmomderdictor’'s deci-
sions. This case is particularly useful for problems whiesgvader is a process on the
network rather than a rational agent.

Various formulations of the network interdiction probleravie existed for many
decades now. The problem likely originated in the study ditany supply chains and
interdiction of transportation networks [2, 3]. But in geale the network interdiction
problem applies to wide variety of areas including contfahfectious disease [4], and
disruption of terrorist networks [5]. Recent interest ie firoblem has been revived due
to the threat of smuggling of nuclear materials [6]. In thisitext interdiction of edges
might consist of the placement of special radiation-semsitetectors across transporta-
tion links. For the most-studied formulation, that of maknmterdiction described
above [1], it is known that the problem is NP-hard [7, 8] anddha approximate [9].

2 Unreactive Markovian Evader

The formulation of a stochastic model where the evader naiteld or no information
about interdiction can be motivated by the following inietidn situation. Suppose
bank robbers (evaders) want to escape from the bank at stmtheir safe haven at
nodet; or nodet,. The authorities (interdictors) are able to position rdadks at a few
of the roads on the network betwegr; andt,. The robbers might not be aware of
the interdiction efforts, or believe that they will be abdenhove faster than the author-
ities can set up roadblocks. They certainly do not have the tr the computational
resources to identify the global minimum of the least-quatt problem.

Similar examples are found in cases where the interdictdvlsto clandestinely re-
move edges or nodes.(.place hidden electronic detectors), or the evader has lealind
rationality or is constrained in strategic choices. An @ratiay even have no intelli-
gence of any kind and represent a process such as Internet patfic that the inter-
dictor wants to monitor. Therefore, our fundamental asgionps that the evader does
not respond to interdiction decisions. This transformdrkerdiction problem from the
problem of increasing the evader’s cost or distance of trasin the standard for-
mulation, into a problem of directly capturing the evadeeaplicitly defined below.
Additionally, the objective function acquires certain fusecomputational properties
discussed later.



2.1 Evaders

In examples discussed above, much of the challenge in intend stems from the
unpredictability of evader motion. Our approach is to ustoatsmstic evader model to
capture this unpredictability [6, 10]. We assume that anlewvs traveling from a source
nodesto a target nodeon a graphG(N, E) according to a guided random walk defined
by the Markovian transition matrid ; from nodei the evader travels on edgej) with
probabilityM;;. The transition probabilities can be derived, for examfan the cost
and risk of traversing an edge [10].

Uncertainty in the evader’s source locat®is captured through a probability vector
a. For the simplest case of an evader starting known locatian= 1 and the rest of the
g’s are 0. In general the probabilities can be distributedtaily to all of the nodes as
long asy iy @ = 1. Givena, the probability that the evader is at locatioaftern steps
is thei’th entry in the vector™ = aM"

When the target is reached the evader exits the network aréftre,M;j = 0
for all outgoing edges frorhand alsdVli; = 0. The matrixM is assumed to satisfy the
following condition: for every nodein the network either there is a positive probability
of reaching the target after a sufficiently large number ahsitions, or the node is
a dead end, namelyljj = 0 for all j. With these assumptions the Markov chain is
absorbing and the probability that the evader will everiyualch the targetis 1. For
equality to hold it is sufficient to have the extra conditidimat the network is connected
and that for all nodes#t, 3 ; Mjj = 1 (see [11].)

A more general formulation allows multiple evaders to traeehe network, where
each evader represents a threat scenario or a particularsadial group. Each evader
k is realized with probabilitys®™ (3, WK = 1) and is described by a possibly dis-
tinct source distributiora®, transition matrixM®), and target nodé®. This gen-
eralization makes it possible to represent any joint prdipafdistribution f(s;t) of
source-target pairs, where each evader is a sliceatfa specific value df: a¥|s =
f(st®)/5sf(s5tM) andw® = 54 f(s,tM)). In this high-level view, the evaders col-
lectively represent a stochastic process connecting paivedes on the network. This
generalization has practical applications to problems afihoring traffic between any
set of nodes when there is a limit on the number of “sensoits&. dhderlying network
could bee.g.a transportation system, the Internet, or water distrilsupipelines.

2.2 Interdictor

The interdictor, similar to the typical formulation, posses complete knowledge about
the network and evader parametarand M. Interdiction of an edge at index;j is
represented by setting = 1 andrjj = 0 if the edge is not interdicted. In general some
edges are more suitable for interdiction than others. Toesgmt this, we letlj be
the interdiction efficiency, which is the probability thatérdiction of the edge would
remove an evader who traverses it.

So far we have focused on the interdiction of edges, butdidgon of nodes can
be treated similarly as a special case of edge interdictiovhich all the edges leading
to an interdicted node are interdicted simultaneously.tFfevity, we will not discuss
node interdiction further except in the proofs of Sec. 3 whee consider both cases.



2.3 Objective function

Interdiction of an unreactive evader is the problem of mazing the probability of
stopping the evader before it reaches the target. Note baundamental matrix for
M, usingl to denote the identity matrix is

N=I+M+M24..=(1-M)"1 ()

andN gives all of the possible transition sequences betwees pamodes before the
target is reached. Therefore given the starting probghilithe expected number of
times the evader reaches each node is (using (1) and ljneaekpectation)

aN=a(l —M)1. (2)

If edge(i, j) has been interdicted;( = 1) and the evader traverses it then the evader
will not reachj with probability dij. The probability of the evader reachigrom i
becomes A

Mij = Mij — Mijrijdij . (3)

This defines an interdicted version of thiematrix, the matrixvi.
The probability that a single evader does not reach thetterémund by considering
thet’th entry in the vectoE after substitutindgl for M in Eq. (2),

J(a,M,r,d):l_(a[l-(M-M@r@d)rl)t, 4)

where the symbot> means element-wise (Hadamard) multiplication. In the adse
multiple evaders, the objectiveis a weighted sum,

J= ZW“()J(") : (5)

where, for evadek,

-1
0@ M® r dy=1— (a<k> [1- (MY -m¥ered)] ) . (6
()

Equations (4) and (5) define theterdiction probability Hence theUnreactive
Markovian Evadeinterdiction problem (UME) is

argmaxJ(a,M,r,d), @)

rekF

wherer;jj represents an interdicted edge chosen from & seF of feasible interdic-
tion strategies. The simplest formulation is the case whtndicting an edge has a unit
cost with a fixed budgdd andF are all subsets of the edge &eof size at mosB. This
problem can also be written as a mixed integer program asrshrothie Appendix.
Computation of the objective function can be achieved wit% |N|3 operations for
each evader, wherd\| is the number of nodes, because it is dominated by the cost
of Gaussian elimination solve in Eq. (4). If the matkik has special structure then it
could be reduced t®(|N|?) [10] or even faster. We will use this evader model in the



simulations, but in general the methods of Secs. 3 and 4 wwat#t for any model
that satisfies the hypothesesMnand even for non-Markovian evaders as long as it is
possible to compute the equivalent of the objective fumdiicEq. (4).

Thus far interdiction was described as the removal of theewvitom the network,
and the creation of a sub-stochastic proddssHowever, the mathematical formalism
is open to several alternative interpretations. For exarmérdiction could be viewed
as redirection of the evader into a special absorbing statgail node”. In this larger
state space the evader even remains Markovian. $inisgust a mathematical device it
is not even necessary for “interdiction” to change the ptajdraffic on the network. In
particular, in monitoring problems “interdiction” corgsnds to labeling of intercepted
traffic as “inspected” - a process that involves no removakdirection.

3 Complexity

This section proves technical results about the intetictiroblem (7) including the
equivalence in complexity of node and edge interdiction taedNP-hardness of node
interdiction (and therefore of edge interdiction). Preatialgorithms are found in the
next section.

We first state the decision problem for (7).

Definition 1. UME-Decision

Instance A graph G(N, E), interdiction efficiencie® < d; < 1 for each i€ N, budget
B > 0, and realp > 0; a set K of evaders, such that for eacle K there is a matrix
M® on G, a sources-target paja¥,t) and a weight W,

Questionls there a set of (interdicted) nodes Y of size B such that

~ -1
5w <a<k> (1-1) ) <p? 8)
kekK tk

The matrixM ¥ is constructed fronM & by replacing element m by M(jk)(l— d)
forieY and eachi, j) corresponding to edgesE leaving i. This sum is the weighted
probability of the evaders reaching their targets. a

The decision problem is stated for node interdiction butcthmplexity is the same
for edge interdiction, as proved next.

Lemma 1 Edge interdiction is polynomially equivalent to node inietion.

Proof. To reduce edge interdiction to node interdiction, take trepg G(N,E) and
constructG’ by splitting the edges. On each edgg) € E insert a node to create the
edges(i,v), (v, j) and set the node interdiction efficiendy = djj,d; = d; = 0, where
dij is the interdiction efficiency ofi, j) in E.

Conversely, to reduce node interdiction to edge interalicttonstruct froni(N, E)
a graphG’ by representing each nodewith interdiction efficiencyd, by nodesd, j,
joining them with an edgé, j), and settingl;j = dy. Next, change the transition matrix



M of each evader such that all transitions imtoow move intoi while all departures
fromv now occur fromj, andM;; = 1. In particular, ifv was an evader’s target node in
G, thenj is its target node ilG'. O

Consider now the complexity of node interdiction. One sewt hardness in the
UME problem stems from the difficulty of avoiding the case vehmultiple edges or
nodes are interdicted on the same evader path - a sourcdfafierecy. This resembles
the Set Coveproblem [12], where including an element in two sets is redum in a
similar way, and this insight motivates the proof.

First we give the definition of the set cover decision problem

Definition 2. Set Cover.For a collection C of subsets of a finite set X, and a positive
integer3, does C contain a cover of sizef for X? a

Since Set Coveris NP-complete, the idea of the proof is to construct a networ
G(N,E) where each subsete C is represented by a node &, and each element
X € X is represented by an evader. The evadés then made to traverse all nodes
{c e C|x € c}. The set cover problem is exactly problem of findBigodes that would
interdict all of the evaders (see Fig. 1.)

(a) (b)

Fig. 1. lllustration of the reduction of Set Cover to UME-Decisioi@) A set cover prob-
lem on elementsq...xg € X with subsetsK = {x1,%},R = {X1,%3},B = {X3,X4,X5},G =
{X2,%4,%s5,%X5},Y = {X2,%g} contained inX. (b) The induced interdiction problem with each sub-
set represented by a node and each element by an evaderrEaecimdicates the path of a single
evader.

Theorem 2 The UME problem is NP-hard even if € h (constant) nodes ie N.



Proof. First we note that for a given a sub&et_ N with |Y| < B, we can updat&! (k)
and compute (8) to veriffJME-Decisionas a yes-instance. The number of steps is
bounded byO(|K ||N|3). Thereforel UME-Decisionis in NP.

To show UME-Decisionis NP-complete, reduc8et Coverwith X,C to UME-
Decisionon a suitable grapts(N, E). It is sufficient to consider just the special case
where all interdiction efficiencies are equal= 1. For eaclt € C, create a node in
N. We consider three cases for elemexts X; elements that have no covering sets,
elements that have one covering set, and elements that hi@asatwo covering sets.

Consider first alk € X which have at least two covering sets. For each sumrkate
an evader as follows. L&D be any ordering of the collection of subsets coverng
Create inE a Hamiltonian path ofO| — 1 edges to join sequentially all the elements of
O, assigning the starg and end nodes in agreement with the ordering@fConstruct
an evader transition matrix of siz€| x |C| and give the evader transitions probability
Mij = 1iff i, j € Candi < j, and= 0 otherwise.

For the case of zero covering sets, that is, wikre X such thak ¢ Sforall Se C,
represenik by an evader whose source and target are identical: no edgexdded
to E and the transition matrix iM = 0. Thus,J in Eq. (4) is non-zero regardless of
interdiction strategy.

For the case whexhas just one covering set, that is, whene X such that there is
a uniguec € C with x € ¢, represent as two nodesandj connected by an edge exactly
as in the case of more than one cover above. After introdugiagdd it to the middle
of the path of each evadarif i is in the path ofx, that is, ifc € C. It is equivalent
to supposing that contains another subset exactly likeThis supposition does not
change the answer or the polynomial complexity of the givstaince oSet CoverTo
complete the reduction, sBt= 3, p = 0, X = K, wK = 1/|X| andd;, = 1, Vi € N.

Now assuméet Coveis a yes-instance with a coverC C. We set the interdicted
transition matrixl\?li(jk) =0forall(i,j) € E corresponding ta € C, and allk € K. Since

Cis a cover foiX, all the created paths are disconnecggy (@ (1 —M®)~1) o =0
andUME-Decisionis an yes-instance.

Conversely, assume thdME-Decisionis a yes-instance. L&t be the set of inter-
dicted nodes. Foy €Y, there is element of C. Since all the evaders are disconnected
from their target and each evader represents a elem¥nvir C coversX and|Y| < 3.
Hence Set Coveis a yes-instance. TherefoteME-Decisionis NP-complete. a0

This proof relies on multiple evaders and it remains an ogeblpm to show that
UME is NP-hard with just a single evader. We conjecture thatanswer is positive
because the more general problem of interdicting a singleaative evader having an
arbitrary (hon-Markovian) path is NP-hard. This could bevad by creating from a sin-
gle such evader several Markovian evaders such that theelad an equal probability
of following the path of each of the Markovian evaders in thegb above.

Thus far no consideration was given to the problem wheredbteg of interdicting
an edge(i, j) is not fixed but rather is a function of the edge. This could drened
the “budgeted” case as opposed to the “unit cost” case disduso far. However, the
budgeted case is NP-hard as could be proved through reduction the knapsack
problem to a star network with “spokes” corresponding tmie



4 An Efficient Interdiction Algorithm

The solution to the UME problem can be efficiently approxiadatsing a greedy algo-
rithm by exploiting submodularity. In this section we pravat the UME problem is

submodular, construct a greedy algorithm, and examineltfaeitom’s performance.

We then show how to improve the algorithm’s speed by furtliptating the submod-

ular structure using a “priority” evaluation scheme andtfaitialization”.

4.1 Submodularity of the interdiction problem

In general, a function is called submodular if the rate oféase decreases monotoni-
cally, which is akin to concavity.

Definition 3. A real-valued function on a space S; $— R is submodulaf13, Prop.
2.1iii] if for any subsets $C S C S and any x S\ S, it satisfies

f(SuU{x})—1(S) = T (SU{x})-(S). (9)
Lemma 3 J(r) is submodular on the set of interdicted edges.

Proof. First, note that it is sufficient to consider a single evadsrduse in Eq. (5)J(r)
is a convex combination dfevaders [13, Prop. 2.7]. For simplicity of notation, we drop
the superscrigh in the rest of the proof.

Let S= {(i, ]) € E|rij = 1} be the interdiction set and 16{S) be the probability
of interdicting the evader using and letQ(p) be the probability of the evader taking
a pathp to the target. On patlp, the probability of interdicting the evader with an
interdiction seSis

mm&—qm<r— M u—%g. (10)
(i,j)epns

Moreover,
39 =S P(pIS). (11)
P
If an edge(u,v) ¢ Sis added to the interdiction s& (assuming(u,v) € p), the
probability of interdicting the evader in pafhincreases by

P(pISU{(uv)}) ~P(pI9) = Qp)dw ] (1),
(i,j)epns
which can be viewed as the probability of taking the ppttimes the probability of
being interdicted afu,v) but not being interdicted elsewhere alopglf (u,v) € Sor
(u,v) ¢ pthen addingu,v) has, of course, no effed®(p|SU{(u,v)}) —P(p|S) = 0.
Consider now two interdiction se& and$S, such thatS, ¢ S,. In the case where
(u,v) ¢ S and(u,v) € p, we have

P(pISU{(uv)}) =P(p[S) =Q(p)dw [] (1-dij), (12)
(i,))epnsy

>Q(p)dw [ (A—dy), (13)
(i,)epnS

> P(pISU{(uv)}) —P(p|S) . (14)



In the above (13) holds because an efgge/) € (S~ S) N p would contribute a factor
of (1-dyy) < 1. The inequality (14) becomes an equality(iffv) ¢ S,. Overall (14)

holds true for any path and becomes an equality wliew) € S;. Applying the sum of
Eq. (11) gives

J(PISLU{(UV)}) = 3(pIS) = I(pISU{(uv)}) - I(PIS), (15)
and thereford(S) is submodular. O

Note that the proof relies on the fact that the evader doegeaut to interdic-
tion. If the evader did react then it would no longer be trug@meral thaP(p|S) =
Q(p) (1—i,jepns(1—dij)) above. Instead, the product may show explicit depen-
dence on paths other than or interdicted edges that are not pnAlso, when the
evaders are not Markovian the proof s still valid becauseigs of evader motion are
contained in the functio®(p).

4.2 Greedy algorithm

Submodularity has a number of important theoretical andrédlgnic consequences.
Suppose (as is likely in practice) that the edges are irdtdiincrementally such that
the interdiction se§ O §_; at every step. Moreover, suppose at each step, the inter-
diction setS is grown by adding the one edge that gives the greatest iseigd. This
defines a greedy algorithm, Alg. 1.

Algorithm 1 Greedy construction of the interdiction setvith budgetB for a graph
G(N,E).
S« o
while B> 0do
X' o
O+ —1
for all xe E~.Sdo
A(SX):=J3(SU{x})—J(9
if A(Sx) > d* then
X+ {x}
0" +— A(SX)
S+ SuUx*
B+~B-1
Output(S)

The computational time i©(B|N|3|E|) for each evader, which is strongly polyno-
mial since|B| < |E|. The linear growth in this bound as a function of the number of
evaders could sometimes be significantly reduced. Suppusésanterested in inter-
dicting flow f(s,t) that has a small number of sources but a larger number oftsarge
In the current formulation the cost grows linearly in the hugmnof targets (evaders) but
is independent of the number of sources. Therefore forftteg) it is advantageous to



reformulate UME by inverting the source-target relatidpdly deriving a Markov pro-
cess which describes how an evader moves from a given ssto@ach of the targets.
In this formulation the cost would be independent of the nemdf targets and grow
linearly in the number of sources.

4.3 Solution quality

The quality of the approximation can be bounded as a fractfdhe optimal solution
by exploiting the submodularity property [13]. In submaahdet functions such d¢S)
there is an interference between the elemen&the sense that sum of the individual
contributions is greater than the contribution when parbotet S5 be the optimal
interdiction set with a budge® and Iet% be the solution with a greedy algorithm.
Consider just the first edge found by the greedy algorithm. By the design of the
greedy algorithm the gain from is greater than the gain for all other edgemcluding
any of the edges in the optimal &t It follows that

yeSy

Thusx; provides a gain greater than the average gain for all thessdgss,

AD,x) > L:@ (17)

A similar argument for the rest of the edgeﬁgives the bound,

A= (1-3 ). a8
wheree is Euler’s constant [13, p.268]. Hence, the greedy algorifithieves at least
63% of the optimal solution.

This performance bound depends on the assumption thatshefa@n edge is a con-
stant. Fortunately, good discrete optimization algorghfor submodular functions are
known even for the case where the cost of an element (herelgm) s variable. These
algorithms are generalizations of the simple greedy algwriand provide a constant-
factor approximation to the optimum [14, 15]. Moreover, émy particular instance of
the problem one can bound the approximation ratio, and sutdrdine” bound is often
better than the “offlinea priori bound [16].

4.4 Exploiting submodularity with Priority Evaluation

In addition to its theoretical utility, submodularity cae &xploited to compute the same
solution much faster using a priority evaluation schemee Bhsic greedy algorithm
recomputes the objective function chany&5 , x) for each edge € E \ § at each step
I. Submodularity, however, implies that the gai(§, x) from adding any edgewould
be less than or equal to the galtiS,,x) computed at any earlier stép< |. Therefore,

if at stepl for some edge’, we find thatA (§,X) > A(&, X) for all xand any past step

10



k <1, thenx is the optimal edge at stépthere is no need for further computation (as
was suggested in a different context [16].) In other word® can use stale values of
A(S,x) to prove thak' is optimal at step.

As a result, it may not be necessary to complit§ ,x) for all edgesx € E \ Sat
every iteration. Rather, the computation should pricgitize edges in descending order
of A(S,X). This “lazy” evaluation algorithm is easily implementedfna priority queue
which stores the gaif (S, x) andk for each edge whertleis the step at which it was
last calculated. (The step informatikmetermines whether the value is stale.)

The priority algorithm (Alg. 2) combines lazy evaluationtlwithe following fast
initialization step. Unlike in other submodular problents UME one can compute
A(@,X) simultaneously for all edgese E because in this initial steg (&,X) is just
the probability of transition through edgemultiplied by the interdiction efficiency
dy, and the former could be found for all edges in just one opmrafFor the “non-
retreating” model of Ref. [10] the probability of transtishroughx = (i, j) is just the
expected number of transitions thougbecause in that model an evader moves through
x at most once. This expectation is given byitheelementira(l —M)~1©M (derived
from Eq. (2)). The probability is multiplied by the weight thfe evader and then u:

A(D,X) = Tk (a(k)(l — M“())*l)i ijk)w(k)dx. In addition to these increments, for dis-

connected graphs the objecti#s) also contains the constant tefpw® (3,5 &),
whereZ® ¢ N are nodes from which evadkecannot reach his targgt).

In subsequent steps this formula is no longer valid becanutsediction ofx may
reduce the probability of motion through other interdicéeldjes. Fortunately, in many
instances of the problem the initialization is the most egiee step since it involves
computing the cost for all edges in the graph. As a resultefitto speedups the number
of cost evaluations could theoretically be linear in thedrtdind the number of evaders
and independent of the size of the solution space (the nuaileeiges).

The performance gain from priority evaluation can be vegngicant. In many
computational experiments, the second best edge from éwvéopis step was the best in
the current step, and frequently only a small fraction ofatiges had to be recomputed
at each iteration. In order to systematically gauge the awgment in performance, the
algorithm was tested on 50 synthetic interdiction probleim&ach case, the underly-
ing graph was a 100-node Geographical Threshold Graph (G @9ssible model of
sensor or transportation networks [17], with approximate800 directed edges (the
threshold parameter was set@at 30). Most of the networks were connected. We set
the cost of traversing an edge to 1, the interdiction efficyady to 0.5, Vx € E, and the
budgetto 10. We used two evaders with uniformly distribigedrce nodes based on the
model of [10] with an equal mixture of = 0.1 andA = 1000. For this instance of the
problem the priority algorithm required an average of28valuations of the objective
as compared to 31885in the basic greedy algorithm - a factor of 1068peedup.

The two algorithms find the same solution, but the basic gredgorithm needs
to recompute the gain for all edges uninterdicted edges extyeteration, while the
priority algorithm can exploit fast initialization and sacomputational values. Con-
sequently, the former algorithm uses approximaBily| cost computations, while the
latter typically uses much fewer (Fig. 2a).
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Algorithm 2 Priority greedy construction of the interdiction Savith budgetB
S+ o
PQ «+ @ {Priority Queueivaluedata data) }
forall x=(i,j) e Edo
A(x) «+{The cost found using fast initializatipn
PUSH(PQ, (A(x),x,0))
s« 0
while B> 0do
S<s+1
loop
(A(x),x,n) + POP(PQ)
if n=sthen
S+ SU{x}
break
else
A(X) < J(SU{x})—JI(9)
PUSH(PQ, (A(x),X,s))
B+~B-1
Output(S)

Simulations show that for the priority algorithm the numbgedges did not seem to
affect the number of cost computations (Fig. 2b), in agregnvéh the theoretical limit.
Indeed, the only lower bound for the number of cost compantatisB and this bound
is tight (consider a graph witB evaders each of which has a distinct target separated
from each evader’s source by exactly one edge of sufficiemtlgll cost). The priority
algorithm performance gains were also observed in othenphkanetworks.

The priority algorithm surpasses a benchmark solution @tctirresponding mixed
integer program (See Appendix) using a MIP solver running R (version 10.1) in
consistency, time, and space. For example, in runs on 186-@3 G networks with
4 evaders and a budget of 10, the priority algorithm terneiman 1 to 20 seconds,
while CPLEX terminated in times ranging from under 1 secan@ 75 hours (the high
variance in CPLEX run times, even on small problems, madtesyaic comparison
difficult.) The difference in solution optimality was zemo the majority of runs. In the
hardest problem we found (in terms of its CPLEX computafitinee - 9.75 hours), the
priority algorithm found a solution at 75% of the optimum @s$ than 10 seconds.

For our implementation, memory usage in the priority altpon never exceeded
300MiB. Further improvement could be made by re-implenranthe priority algo-
rithm so that it would require only ord€)(|E|) to store both the priority queue and
the vectors of Eq. (4). In contrast, the implementation ilLER repeatedly used over
1GiB for the search tree. As was suggested from the complpxitof, in runs where

2 specifically, the simulations were a two evader problem oridalike networks consisting of
a lattice (whose dimensions were grown from 8-by-8 to 16t8ywith random edges added
at every node. The number of edges in the networks grew fra@roapnately 380 to 1530 but
there was no increasing trend in the number of cost evahstio
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Fig. 2. Comparison between the basic greedy (blue circles) andriinétp greedy algorithms (red
diamonds) for the number of cost evaluations as a functiga)dfudget, and (b) number of edges.
In (a) each point is the average of 50 network interdictiabfgms. The average coefficient of
variation (the ratio of the standard deviation to the mearQ10 for basic greedy and 16 for

the priority greedy. Notice the almost perfectly lineantts as a function of budget (shown here
on a log-log scale, the power 1.0 in both.) In (b), the budget was fixed at 10 and the number of
edges was increased by decreasing the connectivity tHcegaameter fron® = 50 to 6 = 20

to represent, e.g., increasingly dense transportatiomanks.

the number of evaders was increased from 2 to 4 the compugtione for an exact
solution grew rapidly.

5 Outlook

The submodularity property of the UME problem provides & source for algorithmic
improvement. In particular, there is room for more efficiapproximation schemes and
practical value in their invention. Simultaneously, it udie interesting to classify
the UME problem into a known approximability class. It wowtso be valuable to
investigate various trade-offs in the interdiction prabjeuch as the trade-off between
quality and quantity of interdiction devices.

As well, to our knowledge little is known about the accuratyhe assumptions of
the unreactive Markovian model or of the standard max-midehm various applica-
tions. The detailed nature of any real instance of netwasd¢dtiction would determine
which of the two formulations is more appropriate.

Acknowledgments

AG would like to thank Jon Kleinberg for inspiring lectur&avid Shmoys for a helpful

discussion and assistance with software, and Vadas Gastéoit support. Part of this
work was funded by the Department of Energy at Los Alamosadwali Laboratory

under contract DE-AC52-06NA25396 through the Laboratoine&led Research and
Development Program.

13



References

10.

11.

12.

13.

14.

15.

16.

17.

. Corley, H.W.,, Sha, D.Y.: Most vital links and nodes in wigd networks. Oper. Res. Lett.

1(4) (Sep 1982) 157 — 160

. McMasters, A.W., Mustin, T.M.: Optimal interdiction ofsaipply network. Naval Research

Logistics Quarterlyl7(3) (1970) 261-268

. Ghare, P.M., Montgomery, D.C., Turner, W.C.: Optimaéndiction policy for a flow net-

work. Naval Research Logistics Quartetl§(1) (1971) 37

. Pourbohloul, B., Meyers, L., Skowronski, D., Krajden,, Fatrick, D., Brunham, R.: Mod-

eling control strategies of respiratory pathogens. Emefgct. Dis.11(8) (2005) 1246-56

. Farley, J.D.: Breaking Al Qaeda cells: A mathematicallysis of counterterrorism opera-

tions (a guide for risk assessment and decision making)di&tun Conflict and Terrorism
26(2003) 399-411

. Pan, F., Charlton, W., Morton, D.P.: Interdicting smwgbhuclear material. In Woodruff,

D., ed.: Network Interdiction and Stochastic Integer Pangming. Kluwer Academic Pub-
lishers, Boston (2003) 1-19

. Ball, M.O., Golden, B.L., Vohra, R.V.: Finding the mostaliarcs in a network. Oper. Res.

Lett. 8(2) (1989) 73-76

. Bar-Noy, A, Khuller, S., Schieber, B.: The complexityfiofding most vital arcs and nodes.

Technical report, University of Maryland, College Park, MDSA (1995)

. Boros, E., Borys, K., Gurevich, V.: Inapproximability loads for shortest-path network

intediction problems. Technical report, Rutgers Univgrstiscataway, NJ, USA (2006)
Gutfraind, A., Hagberg, A., I1zraelevitz, D., Pan, Ftehdicting a Markovian evader. Preprint
(2009)

Grinstead, C.M., Snell, J.L.: Introduction to ProbihilSecond revised edn. American
Mathematical Society, USA (Jul 1997)

Karp, R.M.: Reducibility among combinatorial problema Miller, R.E., Thatcher, J.W.,
eds.: Complexity of Computer Computations. New York: Phar{@972) 85-103
Nemhauser, G., Wolsey, L., Fisher, M.: An analysis ofapproximations for maximizing
submodular set functions-I. Mathematical Programniidg1978) 265-294

Khuller, S., Moss, A., Naor, J.S.: The budgeted maximorerage problem. Information
Processing Letterg0(1) (1999) 39-45

Krause, A., Guestrin, C.: A note on the budgeted maxitisimaon submodular functions.
Technical report, Carnegie Mellon University (2005) CMW(MD-05-103.

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, @nBviesen, J., Glance, N.: Cost-
effective outbreak detection in networks. In: KDD '07: Peedings of the 13th ACM
SIGKDD international conference on Knowledge discoveryg data mining, New York,
NY, USA, ACM (2007) 420-429

Bradoniji¢, M., Kong, J.S.: Wireless ad hoc networkwitnable topology. In: Forty-Fifth
Annual Allerton Conference, UIUC, lllinois, USA (2007) 1071177

Appendix: Mixed integer program for UME

In the unreactive Markovian evader interdiction (UME) geoh an evadek € K is
sampled from a source distributiaf’, and moves to a sinkX with a path specified
by the matrixM K. This matrix is the Markov transition matrix with zeros iretrow
of the absorbing state (sink). The probability that the evadrives at®¥) is (a (1 —
M <k>)*l)t<k) and is 1 without any interdiction (removal of edges).
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Notation summary

G(N,E): simple graph with node and edge sktandE, respectively.

K: the set of evaders.

wk: probability that the evadédroccurs.

afk probability that node is the source node of evader

t(K): the sink of evadek.
M ®): the modified transition matrix for the evader

dlj. the conditional probability that interdiction of ed@ej) would remove an evader
who traverses it.

B: the interdiction budget.

rq(k): decision variable on conditional probability of node esddtraversing nodé

rij: interdiction decision variable, 1 if eddg j) is interdicted and O otherwise.

Definition 4. Unreactive Markovian Evadénterdiction (UME) problem

m|n H(r z wik
kek
s.t. z rij =B,
(i,))eE
rij € {07 1}7 v(la J) S Ev

where
h®(r) = min g,
st M- M —MPdjir) ¥ =al, vieN, (19)
Jl)eE
>0, vieN. (20)

The constraint (19) is nonlinear. We can replace this witbtaflinear constraints, and
the evader problem becomes

h(r) = Tle? T »

s.t. rq(k 6 a1 , VieN,
Jl)eE
GJS)ZME.” % —MOdjirg, v(i,0) €E, (21a)
o1 > M (1 d,.)rﬁ W(j,i) €E, (21b)
( >0, ¥(i,j) €
rq() >0, VieN.

If we setrj; = 0, the constraint (21a) is dominating (21b), af¢ will take value
ijk) 7q<k) at optimal because of the minimization. If we sgt= 1, the constraint (21b)

is dominating sincerj(k) < 1. Although formulation (21) has an additional variaBleat
the optimum the two formulations are equivalent becauardr have the same values.
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