Skip to main content

Active Model with Orthotropic Hyperelastic Material for Cardiac Image Analysis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5528))

Abstract

Meaningful physiological models are important for studying cardiac physiology. For cardiac image analysis, the models used should be detailed enough to describe the macroscopic physiological behaviors, but should not be too complicated for the inverse problems. To achieve this goal, we propose to use an orthotropic hyperelastic biomechanical model, which has only seven parameters but was reported as the best among the five tested well-known models in a comparative study. Combining with the active contraction forces provided by electromechanical models, the cyclic cardiac dynamics can be available to provide the physiological foundation for cardiac image analysis. To facilitate the complicated inverse problems, the system is implemented under the Cartesian coordinate system, and we propose the corresponding cardiac specific boundary conditions for anatomically realistic deformations. Experiments with analytical solutions were performed to verify the correctness of the implementation, and cardiac cycles were simulated to verify the physiological plausibility of the proposed model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hunter, P.J.: Modeling human physiology: The IUPS/EMBS physiome project. Proceedings of the IEEE 94(4), 678–691 (2006)

    Article  Google Scholar 

  2. Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulation. IEEE Transactions on Medical Imaging 25(5), 612–625 (2006)

    Article  Google Scholar 

  3. Sermesant, M., Moireau, P., Camara, O., Sainte-Marie, J., Andriantsimiavona, R., Cimrman, R., Hill, D.L.G., Chapelle, D., Razavi, R.: Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties. Medical Image Analysis 10, 642–656 (2006)

    Article  MATH  Google Scholar 

  4. Glass, L., Hunter, P., McCulloch, A. (eds.): Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function. Springer, Heidelberg (1991)

    Google Scholar 

  5. Humphrey, J.D.: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer, Heidelberg (2001)

    Google Scholar 

  6. LeGrice, I., Hunter, P., Young, A., Smaill, B.: The architecture of the heart: a data-based model. Philosophical Transactions of the Royal Society A 359(1783), 1217–1232 (2001)

    Article  MATH  Google Scholar 

  7. Nash, M.: Mechanics and Material Properties of the Heart using an Anatomically Accurate Mathematical Model. PhD thesis, The University of Auckland (1998)

    Google Scholar 

  8. Hu, Z., Metaxas, D., Axel, L.: In vivo strain and stress estimation of the heart left and right ventricles from MRI images. Medical Image Analysis 7(4), 435–444 (2003)

    Article  Google Scholar 

  9. Wong, K.C.L., Zhang, H., Liu, H., Shi, P.: Physiome-model-based state-space framework for cardiac deformation recovery. Academic Radiology 14(11), 1341–1349 (2007)

    Article  Google Scholar 

  10. Usyk, T.P., Mazhari, R., McCulloch, A.D.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. Journal of Elasticity 61, 143–164 (2000)

    Article  MATH  Google Scholar 

  11. Costa, K.D., Holmes, J.W., McCulloch, A.D.: Modelling cardiac mechanical properties in three dimensions. Philosophical Transactions of the Royal Society A 359(1783), 1233–1250 (2001)

    Article  MATH  Google Scholar 

  12. Schmid, H., Nash, M.P., Young, A.A., Hunter, P.J.: Myocardial material parameter estimation — a comparative study for simple shear. Journal of Biomechanical Engineering 128, 742–750 (2006)

    Article  Google Scholar 

  13. Rogers, J.M., McCulloch, A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Transactions on Biomedical Engineering 41(8), 743–757 (1994)

    Article  Google Scholar 

  14. Zhang, H., Shi, P.: A meshfree method for solving cardiac electrical propagation. In: 27th Annual International Conference of the IEEE-EMBS, pp. 349–352 (2005)

    Google Scholar 

  15. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons, Inc., Chichester (2000)

    MATH  Google Scholar 

  16. Germann, W.J., Stanfield, C.L.: Principles of Human Physiology. Pearson Benjamin Cummings, London (2005)

    Google Scholar 

  17. Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wong, K.C.L., Wang, L., Shi, P. (2009). Active Model with Orthotropic Hyperelastic Material for Cardiac Image Analysis. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics