Skip to main content

Atrial Anatomy Influences Onset and Termination of Atrial Fibrillation: A Computer Model Study

  • Conference paper
Book cover Functional Imaging and Modeling of the Heart (FIMH 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5528))

Abstract

Vulnerability to atrial fibrillation (AF) is increased in acutely dilated atria and is related to stretch-activated channels (SACs). To investigate the role of atrial anatomy in AF, we apply a computer model of human atrial electromechanics that includes SACs and contraction of the sarcomeres. Trabecular bundle structures are modeled by varying atrial wall thickness in a triangular mesh representing the human atria. Vulnerability to AF is investigated by application of overall stretch, while stimulating near the pulmonary veins. Due to contraction of some areas, stretch increases in other areas, leading to a variation in effective refractory period (ERP). Onset and perpetuation of AF in our model is explained by an increased dispersion in ERP, conduction slowing, and local conduction block. Atrial contraction attributes to the termination of AF through mechanoelectric feedback. We conclude that onset and termination of AF episodes under stretch are related to atrial structure and mechanoelectric feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bode, F., Katchman, A., Woosley, R.L., Franz, M.R.: Gadolinium decreases stretch-induced vulnerability to atrial fibrillation. Circulation 101, 2200–2205 (2000)

    Article  Google Scholar 

  2. Bode, F., Sachs, F., Franz, M.R.: Tarantula peptide inhibits atrial fibrillation. Nature 409, 35–36 (2001)

    Article  Google Scholar 

  3. Ravelli, F.: Mechano-electric feedback and atrial fibrillation. Progr. Biophys. Mol. Biol. 82, 137–149 (2003)

    Article  Google Scholar 

  4. Satoh, T., Zipes, D.P.: Unequal atrial stretch in dogs increases dispersion of refractoriness conducive to developing atrial fibrillation. J. Cardiovasc. Electrophysiol. 7, 833–842 (1996)

    Article  Google Scholar 

  5. Eijsbouts, S.C.M., Majidi, M., van Zandvoort, M., Allessie, M.A.: Effects of acute atrial dilation on heterogeneity in conduction in the isolated rabbit heart. J. Cardiovasc. Electrophysiol. 14, 269–278 (2003)

    Article  Google Scholar 

  6. Kohl, P., Sachs, F.: Mechanoelectric feedback in cardiac cells. Phil. Trans. R Soc. Lond. 359, 1173–1185 (2001)

    Article  Google Scholar 

  7. Henriquez, C.S.: Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21, 1–77 (1993)

    MathSciNet  Google Scholar 

  8. Kuijpers, N.H.L., Keldermann, R.H., Arts, T., Hilbers, P.A.J.: Computer simulations of successful defibrillation in decoupled and non-uniform cardiac tissue. Europace 7, S166–S177 (2005)

    Article  Google Scholar 

  9. Kuijpers, N.H.L., Keldermann, R.H., ten Eikelder, H.M.M., Arts, T., Hilbers, P.A.J.: The role of the hyperpolarization-activated inward current \(\mbox{$I_{\mbox{\rm \tiny f}}$}\) in arrhythmogenesis: a computer model study. IEEE Trans. Biomed. Eng. 53, 1499–1511 (2006)

    Article  Google Scholar 

  10. Courtemanche, M., Ramirez, R.J., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. Heart Circ. Physiol. 275, H301–H321 (1998)

    Google Scholar 

  11. van Dam, P.M., van Oosterom, A.: Atrial excitation assuming uniform propagation. J. Cardiovasc. Electrophysiol. 14 (suppl. 10), S166–S171 (2003)

    Article  Google Scholar 

  12. Virag, N., Jacquemet, V., Henriquez, C.S., Zozor, S., Blanc, O., Vesin, J.M., Pruvot, E., Kappenberger, L.: Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria. Chaos 12, 754–763 (2002)

    Article  Google Scholar 

  13. Kuijpers, N.H.L., ten Eikelder, H.M.M., Bovendeerd, P.H.M., Verheule, S., Arts, T., Hilbers, P.A.J.: Mechanoelectric feedback leads to conduction slowing and block in acutely dilated atria: a modeling study of cardiac electromechanics. Am. J. Physiol. Heart Circ. Physiol. 292, H2832–H2853 (2007)

    Google Scholar 

  14. Solovyova, O., Katsnelson, L., Guriev, S., Nikitina, L., Protsenko, Y., Routkevitch, S., Markhasin, V.: Mechanical inhomogeneity of myocardium studied in parallel and serial cardiac muscle duplexes: experiments and models. Chaos, Solitons and Fractals 13, 1685–1711 (2002)

    Article  Google Scholar 

  15. Rice, J.J., Winslow, R.L., Hunter, W.C.: Comparison of putative cooperative mechanisms in cardiac muscle: length dependence and dynamic responses. Am. J. Physiol. Heart Circ. Physiol. 276, H1734–H1754 (1999)

    Google Scholar 

  16. Kuijpers, N.H.L., ten Eikelder, H.M.M., Bovendeerd, P.H.M., Verheule, S., Arts, T., Hilbers, P.A.J.: Mechanoelectric feedback as a trigger mechanism for cardiac electrical remodeling: a model study. Ann. Biomed. Eng. 36, 1816–1835 (2008)

    Article  Google Scholar 

  17. Zabel, M., Koller, B.S., Sachs, F., Franz, M.R.: Stretch-induced voltage changes in the isolated beating heart: importance of timing of stretch and implications for stretch-activated ion channels. Cardiovasc. Res. 32, 120–130 (1996)

    Article  Google Scholar 

  18. Haïssaguerre, M., Jaïs, P., Shah, D.C., Takahashi, A., Hocini, M., Quiniou, G., Garrigue, S., Le Mouroux, A., Le Métayer, P., Clémenty, J.: Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. New Engl. J. Med. 339, 659–666 (1998)

    Article  Google Scholar 

  19. de Bakker, J.M.T., Ho, S.Y., Hocini, M.: Basic and clinical electrophysiology of pulmonary vein ectopy. Cardiovasc. Res. 54, 287–294 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuijpers, N., ten Eikelder, H., Verheule, S. (2009). Atrial Anatomy Influences Onset and Termination of Atrial Fibrillation: A Computer Model Study. In: Ayache, N., Delingette, H., Sermesant, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2009. Lecture Notes in Computer Science, vol 5528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01932-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01932-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01931-9

  • Online ISBN: 978-3-642-01932-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics