Skip to main content

Measuring the Similarity of Geometric Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5526))

Abstract

What does it mean for two geometric graphs to be similar? We propose a distance for geometric graphs that we show to be a metric, and that can be computed by solving an integer linear program. We also present experiments using a heuristic distance function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, H., Guibas, L.J.: Discrete geometric shapes: Matching, interpolation, and approximation. In: Handbook of Computational Geometry, pp. 121–153. Elsevier B.V., Amsterdam (2000)

    Chapter  Google Scholar 

  2. Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood Cliffs (1982)

    MATH  Google Scholar 

  3. Imai, H., Iri, M.: Polygonal approximations of a curve - formulations and algorithms. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 71–86. Elsevier B.V., Amsterdam (1988)

    Google Scholar 

  4. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs. SIAM Journal on Computing 11(4), 676–686 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(8), 1200–1214 (2006)

    Article  Google Scholar 

  6. Lucas, S., Vidal, E., Amiri, A., Hanlon, S., Amengual, J.C.: A comparison of syntactic and statistical techniques for off-line OCR. In: 2nd International Colloquium Grammatical Inference and Applications, pp. 168–179. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  7. Pavlidis, T.: Structural Pattern Recognition. Springer, New York (1977)

    Book  MATH  Google Scholar 

  8. Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2) (2000), http://robotics.stanford.edu/~rubner

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheong, O., Gudmundsson, J., Kim, HS., Schymura, D., Stehn, F. (2009). Measuring the Similarity of Geometric Graphs. In: Vahrenhold, J. (eds) Experimental Algorithms. SEA 2009. Lecture Notes in Computer Science, vol 5526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02011-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02011-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02010-0

  • Online ISBN: 978-3-642-02011-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics