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Abstract. — In this paper, the performances of the quasi-Newton BF@&-al
rithm, the NEWUOA derivative free optimizer, the Covariandatrix Adapta-
tion Evolution Strategy (CMA-ES), the Differential Evoioih (DE) algorithm
and Particle Swarm Optimizers (PSO) are compared expetatheon bench-
mark functions reflecting important challenges encoudtanereal-world op-
timization problems. Dependence of the performances inctmelitioning of
the problem and rotational invariance of the algorithmsimgarticular investi-
gated.

1 Introduction

Continuous Optimization Problems (COPs) aim at finding tloba optimum
(or optima) of a real-valued function (alabjectivefunction) defined over a
(subset of) a real vector space. COPs commonly appear igdayes life of
many scientists, engineers and researchers from varisciplines, from physics
to mechanical, electrical and chemical engineering talginl Problems such as
model calibration, process control, design of paramegdrizarts are routinely
modeled as COPs. Furthermore, in many cases, very littladgvk about the
objective function. In the worst case, it is only possiblerétrieve objective
function values for given inputs, and in particular the usas no information
about derivatives, or even about some weaker charaatsrigfithe objective
function (e.g. monotonicity, roughness, ...). This is theg; for instance, when
the objective function is the output of huge computer progansuing from
several years of development, or when experimental presas=ed to be run in
order to compute objective function values. Such problemeumt to what is
calledBlack-Box OptimizatiofBBO).
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Because BBO is a frequent situation, many optimization oaglakasearch
algorithmg have been proposed to tackle BBO problems, that can belgross
classified in two classes: (i) deterministic methods inelathssical derivative-
based algorithms, in which the derivative is numericalljnpaited by finite dif-
ferences, and more recent Derivative Free OptimizationQp&lgorithms [[1],
like pattern search [2] and trust region methads [3]; (iDckiastic methods rely
on random variables sampling to better explore the searabesfand include
recently introduced bio-inspired algorithms (see Sed¢8pn

However, the practitioner facing a BBO problem has to ch@wseng those
methods, and there exists no theoretical solid ground wieman stand to per-
form this choice, first because he does not know much abowatiéstive func-
tion, but also because all theoretical results either mapldying hypotheses
that are not valid for real-world problems, or give resultattdo not yield any
practical outcome. Moreover, most of BBO methods requiresparameter
tuning, and here again very little help is available for thectitioner, who is left
with a blind and time-consuming test-and-trial approach.

In such context, this paper proposes an experimental peirgpen BBO
algorithms comparisons. Rigorous procedures to comparectults of differ-
ent BBO algorithms have been proposed [4], taking into agtthe stochastic
nature of many of them, and giving fair chances to each oné&erht How-
ever, a critical issue in such experiments is that of the tverack suite. And
because no set of real-world problems can be guaranteed/¢o alh possible
cases of difficult COPs, the approach that has been choseiisterbuild artifi-
cial test functions with some precise characteristics dnatknown to be possi-
ble sources of difficulty for optimization (e.g. ill-contihing, non-separability,
non-convexity, ruggedness, ...). Such experimental tesoluld then be cau-
tiously generalized, leaving only a few good-performingcaithms in each spe-
cific context.

Of course, in real-life BBO situations, it is assumed thabimg is known
about the objective function. However, the user sometinasssome partial in-
formation (e.g. because his problem is known to be similatiter better-known
problems) that might lead him to decide for a BBO method thd&é&xperimen-
tally) known to perform well, 'in vitro’, in his precise siation. But on the other
hand, assuming absolutely nothing is known in advance atimubbjective
function, running the champion algorithms as identified énf@ctly controlled
environment might give him some information about his figrc(e.g. if numer-
ical gradient-based algorithms perform 100 times bettan #il other methods,
his problem is probably very similar to a quadratic problefihis paper is a
first step in aiming such 'in vitro’ results.



Next, in Sectiorl 2, some characteristics of the objectivection are sur-
veyed that are known to make the corresponding BBO problexh Bctior B
introduces the algorithms that will be compared here. 8eelithen introduces
the test bench that illustrates the different difficultieghighted in Sectiom 12,
as well as the experimental conditions of the comparisohs.résults are pre-
sented and discussed in Secf{idn 5, and the paper ends wighcmrolusions in
Sectior 6.

2 What makes a search problem difficult?

In this section, we discuss problem characteristics tretapecially challeng-
ing for search algorithms.

2.1 lll-conditioning

The conditioning of a problem can be defined as the range @vevel set)
of the maximum improvement of objective function value inall lof small
radius centered on a given level set. In the case of convedrgtia functions
(f(x) = :—2LXTHX whereH is a symmetric definite matrix), the conditioning can
be exactly defined as the condition number of the Hessianixmidiri.e., the
ratio between the largest and smallest eigenvalue. Simekdets associated to
a convex quadratic function are ellipsoids, the conditiamber corresponds to
the squared ratio between the largest and shortest axithteafjithe ellipsoid.

Problems are typically considered as ill-conditioned & ttonditioning is
larger than 1B. In practice we have seen problems with conditioning aslasy
109, In this paper we will quantitatively assess the perforneasiependency on
the conditioning of the objective function.

2.2 Non-separability

An objective functionf(xy,...,%,) is separable if the optimal value for any
variablex; can be obtained by optimizin§(Xy,...,X-1,%,X+1,...,%) for any
fixed choice of the variables,...,%X_1,%.1,...,%X:. Consequently optimizing
an n-dimensional separable objective function reduces tonupiing n one-
dimensional functions.

Functions that are additively decomposable, i.e., thabeamritten asf (x) =
St fi(x) are separable. One way to render a separable test functibsapa-
rable is to rotate first the vectar which can be achieved by multiplyingoy an
orthogonal matrixB: if x — f(x) is separable, the function— f(Bx) might be
non-separable for all non-identity orthogonal matriBesn this paper we will
investigate separable and non-separable problems.



2.3 Non-convexity

Some BBO methods implicitly assume or exploit convexity loé bbjective
function. Composing a convex functione R to the left with a monotonous
transformationg : R — R can result in a non-convex function, for instance the
one-dimensional convex functiof(x) = x> composed with the monotonous
functiong(.) = |.|/4 becomes the non-convex functigg].. In this paper we
will assess performance dependency on convexity.

3 Algorithms tested

This section introduces the different algorithms that Wil compared in this
paper. They have been chosen because they are consideredhe thampi-
ons in their category, both in the deterministic optimiaativorld (BFGS and
NEWUOA) and in the stochastic bio-inspired world (CMA-ESEand PSO).
They will also be a priori discussed here with respect to iffeedlties of con-
tinuous optimization problems highlighted in previous tRed2.

3.1 The algorithms

BFGS is a well-known quasi-Newton (i.e. gradient-based) metHamm the
current point, it computes a 'descent direction’ using aprapimation of the
inverse of the Hessian matrix of the objective function agupto its gradient,
and performs a line-search (1D optimization) along thigation. It then up-
dates the approximate inverse Hessian. BFGS method is lant@thod: it has
a proven convergence to a stationary point. . . providedttrérgy point is close
enough from the solution, and the objective function is tagurhe Matla
version of BFGS (Matlab functiofm nunc) will be used here, because it is
blindly used by many scientists facing optimization protée Default parame-
ters were used except for stopping criteria: the algoritstops if the function
value improvement in one iteration is less tharm%0

In BBO context, the gradients have to be computed numeyi¢aii option
in Matlab BFGS), which might be a source of possible numépoablems.

NEWUOA (NEW Unconstrained Optimization Algorithm) has been pisgub
by Powell [3]: it is a DFO algorithm using the trust region adigm. The
trust region is a ball, centered on the current best poinkMNIDA computes a
quadratic interpolation of the objective function withhretcurrent trust region,
based on known values of the objective, and then performmadted conjugate
gradient minimization of the interpolated model in the tmegion. It then up-

dates either the current best point or the radius of the tegsbn, based on the a



posteriori interpolation error, and some thresholds orirtlrst region size. Here,
the implementation by Matthieu Guibert postetitatp: // www. i nrial pes. fr/bi pop/ peopl e/ guil bert/n
has been used.

An important parameter of NEWUOA is the quadratic model te ios the
interpolation, or, equivalently, the number of points the¢ necessary to com-
pute the interpolation. As recommended by Powell [B]+2L points have been
used herer(is the dimension of the search space). Other critical paernare
the initial and final radii of the trust region: the initialdiais governs the granu-
larity of the objective function that the algorithm will seand the final radius
tunes the amount of local search that will performed. Heedritial and final
values 100 and 10® were used, after some preliminary experiments.

CMA-ES is an Evolution Strategy (ES)|[5,6] algorithm: from a setdirents’
(potential solutions), 'offspring’ are created by samgl®aussian distributions,
and the best of the offspring (according to the objectivefiom values) become
the next parents. The art of Evolution Strategies lies intbag the parameters
of the Gaussian distributions are updated: the CovariareteidMAdaptation|[[7]
uses the path that has been followed by evolution so far tad@pt the step-
size, a scaling parameter that tunes the granularity of ¢laech, comparing
the actual path length to that of a random walk; and (ii) mpttile covariance
matrix of the multivariate Gaussian distribution by modity its eigenvectors
in order to increase the likelihood of recent beneficial nsoyesingle Gaussian
distribution is maintained, its mean being a linear comiiamaof the parents.
Besides the population size, CMA-ES is parameter-free. dpmulation size
has been set to its default valuer43log(n) |, but it needs to be increased in
order to tackle highly rugged search landscapes. Thelisikg-size has been
set to a third of the parameters’ range. The version usedismptiper (Scilab
0.92) implements weighted recombination and ranksdate [[8] (version 0.99
is available abttp: //ww. [ r1.fr/~hansen/ crmaes | nmatlab. htmi).

PSO (Particle Swarm Optimization)) [9] is a bio-inspired algbm that recently
raised a lot of interest, thanks to several published gosultse and the simplic-
ity of its implementation. The biological paradigm is thdaswarm of particles
that 'fly’ over the objective landscape, exchanging infotiora about the best
locations (i.e. potential solutions) they have seen. Moegipely, each particle
updates its velocity, stochastically twisting it toware ttirection of the best
positions so far visited by (i) itself and (ii) the whole swarit then updates its
position according to its velocity and computes the newevafithe objective
function.
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A Scilab transcription of the Standard PSO 2006, that it at#ilable on
the main page dPSO Centrahttp: /7 ww. parti cl eswarm 1 nf o/, was used
here, with default settings.

Differential Evolution (DE [10]) borrows from Evolutionary Algorithms (EAS)
a population of potential solutions that evolves subjecbltgective-function
based selection. However, the main operator used to germeratsolutions, that
somehow replaces mutation, is specific to DE (and the soordesfname): the
difference between two points in the population is addedttord one. Uniform
crossover is used with some probability. The implememntapiasted by the orig-
inal authors ettt t p: / / www. 1 cS1 . ber Kel ey. edu/ ~st or n/ code. ht m |was used
here. However, the authors themselves confess, in thalagae to DE param-
eter tuning, that the results might be very dependent on &nanpeters. They
propose in the code 6 possible settings, and extensiveimagrds (3x 288 tri-
als) on a moderately ill-conditioned problem lead us to @ersthe ‘DE/local-
to-best/1/bif strategy, where a single difference vector, computed betwa
random point and the best point in the population, is usectemte the new
points. In those preliminary experiments, the use of cnomseeemed to have
little beneficial impact on the results, so no crossover wasluthus making
DE rotationally invariant (see below). Those preliminarperiments also re-
sulted in values of the other parameters of DE: the popuiaipe was set to the
recommended value of h0a weighting factor té- = 0.8.

3.2 Invariances

Some a priori comparisons can be made about those algoritietated to the
notion ofinvariance Indeed, invariances add to the robustness of an algorithm:
functions belonging to the same equivalence class witherddp some invari-
ance property will look exactly the same for an algorithnt teanvariant under
the transformation defining this equivalence class.

Two sets of invariance properties are distinguished, wdrethey regard
transformations of the objective function value or transfations of the search
space. First, all comparison-based algorithms are invatiader monotonous
transformations of the objective function, as comparisares unaltered if the
objective functionf is replaced with somgo f for some monotonous function
g. All bio-inspired algorithms used in this paper are comgamibased, while
the BFGS and NEWUAO are not (see Secfiod 2.3).

Regarding transformations of the search space, all atgositare trivially
invariant under translation of the coordinate system. Buuk consider some
orthogonal rotations: BFGS is coordinate-dependent dtiest@omputation of
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numerical gradients. NEWUOA is invariant under rotationemtconsidering
the complete quadratic model, i.e. built wilin+ 1)(n+ 2) points. This vari-
ant is however often more costly compared to the-2 one — but the latter is
not invariant under rotation. The rotational invarianceCflA-ES is built-in,
while that of DE depends whether or not crossover is used faEs@ver re-
lies on the coordinate system. This was one reason for ouittiossover here.
Finally, PSO is (usually) not invariant under rotationsadlscomputations are
done coordinate by coordinate [11],12].

4 Test functions and experimental setup

4.1 Testfunctions

The benchmark functions tested are given in Table 1. Thetibmg are tested

Table 1. Test functions with coordinate-wise initialization intats and target
function value, wherg := Bx implements an angle-preserving, linear transfor-
mation,i.e. Bis orthogonal.

Function a Initialization fiarget
fni(x) = 31y a1y? [1,10'9 [-20,80" 10°°
fRoser{X):Z?;ll(a(yiz_lYL+l)2+(Yi—1)2) [1,10°] [-20,80" 10°°
fe:}l{i‘l(x):(Zin:laﬁyiz)/ [1,1019 [—20,80" 10°°

in their original axis-parallel version (i.8 is the identity andy = x), and in
rotated versions, wheng= Bx. The orthogonal matriB is chosen such that
each column is uniformly distributed on the unit hypersphaurfacel[7], fixed
for each run.

The ellipsoid functionfg; is a convex-quadratic function where the parame-
tera is the condition number of the Hessian matrix that is varieghveen 1 and
1019 in our experiments. Ié = 1 the ellipsoid is the isotropic separable sphere

function. The functiorTfelu/i4 has the same contour lines (level setsfas how-
1

ever it is neither quadratic nor convex. Fog 1, the functionsfe; and fe”/i4 are
separable if and only B=1.

The Rosenbrock functioffirgsenis non-separable, has its global minimum
atx=[1,1,...,1] and, for large enougb andn, has one local minimum close
tox=[-1,1,...,1], see alsol[13]. The contour lines of the Rosenbrock func-
tion show a bent ridge that guides to the global optimum (theeRbrock is
sometimes called banana function) and the parantetantrols the width of



the ridge. In the classical Rosenbrock functanequals 100. For smaller the
ridge becomes wider and the function becomes less diffioudbtve. We vary
a between one and §0

4.2 Experimental Setup

For each algorithm tested we conduct 21 independent triais to 10’ function
evaluations. If, for BFGS, no success was encountered uimer of trials was
extended to 1001.

We quantify the performance of the algorithms using the ssEqerfor-
manceSPL used in([14], analyzed in [15], and also denoted as Q-medaur
[16]. The SPL equals the average number of function evaluations foressec
ful runs divided by the ratio of successful experiments, igtan experiment is
successful if thefiargetis reached before TGunction evaluations are exceeded.
TheSPL is an estimator of the expected number of function evainatto reach
frarget if the algorithm is restarted until a success (supposingibeftime hori-
zon) and assuming that the expected number of function atiahs for unsuc-
cessful runs equals the expected number of evaluationsiéoessful runs.

5 Results

Results are shown for dimension 20. Results for 10 and 40€atesimilar ten-
dencies and are displayed in Appendix A.

Ellipsoid functions: dependencieBigure[1 showsSPL (search costs, expected
running time in number of function evaluations) versus ¢ooa number on all
ellipsoidal functions. A remarkable dependency on the itimmdnumber can be
observed in most cases. The two exceptions are PSO on thalepnctions
and DE. In the other cases the performance declines by atddastor of ten
for very ill-conditioned problems as for CMA-ES. The ovésdtongest perfor-
mance decline is shown by PSO on the rotated functions. NEWEI®@ws in
general a comparatively strong decline, while BFGS is onfgdsible for high
condition numbers in the rotated case, reporting some ricat@roblems. The
decline of CMA-ES is moderate.

For CMA-ES and DE the results are (virtually) independerthefgiven el-
lipsoidal functions, where CMA-ES is consistently betwéea and forty times
faster than DE. For PSO the results are identical on Ellipsoid Ellipsoid/#,
while the performance decline under rotation (left verdghtrfigures) is very
pronounced. PSO performs well only on separable or very-gogititioned
functions. A similar strong decline under rotation can bsesteed for NEWUOA
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Fig. 1. All ellipsoidal functions in 20D. Shown i§PL (the expected running
time or number of function evaluations to reach the targettion value) versus
condition number.

on the Ellipsoid function for moderate condition numbers@&S, on the other
hand, shows a strong rotational dependency on both fursctioty for large
condition numbers> 10°.

Switching from Ellipsoid (above) to Ellipsotd* (below) only effects BEGS
and NEWUOA. BFGS becomes roughly five to ten times slower.ngilar ef-
fect can be seen for NEWUOA on the rotated function. On theusdpe EI-
lipsoid function the effect is more pronounced, because NEA performs
exceptionally well on the separable Ellipsoid function.

Ellipsoid functions: comparisonOn the separable Ellipsoid function up to a
condition number of ®DNEWUOA clearly outperforms all other algorithms.
Also BFGS performs still better than PSO and CMA-ES while DEfgrms
worst. On the separable Ellipséid function BFGS, CMA-ES and PSO perform
similar. NEWUOA is faster for low condition numbers and stwfor large
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Fig. 2. Rosenbrock function. Shown &P1 (the expected running time or num-
ber of function evaluations to reach the target functiomegkersus condition-
ing parameteq.

ones. For condition number larger thanr® 10lEWUOA becomes even worse
than DE.

On the rotated functions, the performance of PSO declirstsvigh increas-

ing condition number. For numbers larger thad, SO is remarkably outper-
formed by all other algorithms. On the rotated Ellipsoiddtion for moderate
condition numbers BFGS and NEWUOA perform best and outperfoMA-
ES by a factor of five, somewhat more for low condition numbparsl less for
larger condition numbers, while PSO and DE are much worselaFge condi-
tion numbers CMA-ES becomes superior and DE is within a feaftten of the
best performance.

On the rotated Ellipsofd* BFGS and CMA-ES perform similar up to con-
dition of 16°. NEWUOA performs somewhat better for lower condition num-
bers up to 16. For larger condition numbers BFGS and NEWUOA decline and
CMA-ES performs best.

Rosenbrock functiorOn the Rosenbrock function NEWUOA is the best algo-
rithm (Figure[2). NEWUOA outperforms CMA-ES roughly by a flacof five,
vanishing for very large values for the conditioning partena. For smalla,
BFGS is in-between, and for > 10* BFGS fails. DE is again roughly ten times
slower than CMA-ES. Only PSO shows a strong dependency ormtagon of
the function and it reveals the strongest performance meglith increasingn,
while it never competes with the best three algorithms.

Scaling behaviorsThe scaling of the performance with search space dimension
is similar for all functions (see Appendix A for the data). BNES, NEWUOA
and PSO show the best scaling behavior. They slow down bytarfaetween



five and ten in 40D compared to 10D. For BFGS the factor is #lighbove
ten, while for DE the factor is thirty or larger, presumabichuse the default
population size increase linearly with the dimension.

6 Summary

In this paper we have conducted a comparison of BFGS, NEWUWiD4 three
stochastic bio-inspired optimization methods in a blaok-bptimization sce-
nario. The empirical study was conducted on smooth funstigith varying
condition number. Aside from gradients being not provided,consider these
functions as the favorite playgrounds of BFGS and NEWUOA. filvd that
NEWUOA performs exceptional on separable quadratic foneti it performs
in all cases very well with moderate condition numbers, bgins a compara-
tively steep performance decline with increasing ill-ctinding. BFGS per-
forms well overall, but shows a strong decline on very ilikditioned non-
separable functions. For DE, the parameters are difficuline and yet it per-
forms overall poorly with the single best parameter settngour small func-
tion set. With the chosen parameters, DE shows the strongfagstness to ill-
conditioning though. PSO performs similar to CMA-ES on teparable prob-
lems, with an even weaker dependency on the conditioningn@rseparable
problems PSO exhibits a strong performance decline witleasing condition-
ing and performs very poorly even on moderately ill-comdi#d functions.
Finally, CMA-ES generally outperforms DE and PSO, while opatmoder-
ate function conditioning BFGS and NEWUOA are significariélgter in most
cases. Due to their invariance properties, the performaemdts of CMA-ES
and DE are the most stable ones and most likely to generaliziaér functions.
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Fig. 3. Ellipsoid function. Shown iSPL (the expected running time or num-
ber of function evaluations to reach the target functiougplersus condition
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Fig. 5. Rosenbrock function. Shown &P1 (the expected running time or num-
ber of function evaluations to reach the target functiomegakersus condition-

ing parameteq.
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