Skip to main content

Approximability and Fixed-Parameter Tractability for the Exemplar Genomic Distance Problems

  • Conference paper
Book cover Theory and Applications of Models of Computation (TAMC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5532))

Abstract

In this paper, we present a survey of the approximability and fixed-parameter tractability results for some Exemplar Genomic Distance problems. We mainly focus on three problems: the exemplar breakpoint distance problem and its complement (i.e., the exemplar non-breaking similarity or the exemplar adjacency number problem), and the maximal strip recovery (MSR) problem. The following results hold for the simplest case between only two genomes (genomic maps) \({\cal G}\) and \({\cal H}\), each containing only one sequence of genes (gene markers), possibly with repetitions.

  1. 1

    For the general Exemplar Breakpoint Distance problem, it was shown that deciding if the optimal solution value of some given instance is zero is NP-hard. This implies that the problem does not admit any approximation, neither any FPT algorithm, unless P=NP. In fact, this result holds even when a gene appears in \({\cal G}\) (\({\cal H}\)) at most two times.

  2. 1

    For the Exemplar Non-breaking Similarity problem, it was shown that the problem is linearly reducible from Independent Set. Hence, it does not admit any factor-O(n ε) approximation unless P=NP and it is W[1]-complete (loosely speaking, there is no way to obtain an O(n o(k)) time exact algorithm unless FPT=W[1], here k is the optimal solution value of the problem).

  3. 1

    For the MSR problem, after quite a lot of struggle, we recently showed that the problem is NP-complete. On the other hand, the problem was previously known to have a factor-4 approximation and we showed recently that it admits a simple FPT algorithm which runs in O(22.73k n + n 2) time, where k is the optimal solution value of the problem.

This research is partially supported by NSF, NSERC, Louisiana Board of Regents under contract number LEQSF(2004-07)-RD-A-35, and MSU-Bozeman’s Short-Term Professional Development Leave Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angibaud, S., Fertin, G., Rusu, I.: On the approximability of comparing genomes with duplicates. In: Nakano, S.-i., Rahman, M. S. (eds.) WALCOM 2008. LNCS, vol. 4921, pp. 34–45. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes. J. Computational Biology 15, 1093–1115 (2008)

    Article  Google Scholar 

  3. Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with duplicates: a computational complexity point of view. IEEE/ACM Trans. on Computational Biology and Bioinformatics 4, 523–534 (2007)

    Article  Google Scholar 

  4. Blin, G., Fertin, G., Sikora, F., Vialette, S.: The exemplar breakpoint distance for non-trivial genomes cannot be approximated. In: Proc. 3rd Workshop on Algorithm and Computation, WALCOM 2009 (to appear, 2009)

    Google Scholar 

  5. Bar-Yehuda, R., Halldórsson, M.M., Naor, J.(S.), Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM Journal on Computing 36, 1–15 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bafna, V., Pevzner, P.: Sorting by reversals: Genome rearrangements in plant organelles and evolutionary history of X chromosome. Mol. Bio. Evol. 12, 239–246 (1995)

    Google Scholar 

  7. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families, pp. 207–212. Kluwer Acad. Pub., Dordrecht (2000)

    Google Scholar 

  8. Blin, G., Rizzi, R.: Conserved interval distance computation between non-trivial genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Chen, Z., Fu, B., Zhu, B.: The approximability of the exemplar breakpoint distance problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 291–302. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Chen, Z., Fu, B., Fowler, R., Zhu, B.: Lower bounds on the approximation of the exemplar conserved interval distance problem of genomes. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 245–254. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Chen, Z., Fu, B., Fowler, R., Zhu, B.: On the inapproximability of the exemplar conserved interval distance problem of genomes. J. Combinatorial Optimization 15(2), 201–221 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, Z., Fu, B., Yang, B., Xu, J., Zhao, Z., Zhu, B.: Non-breaking similarity of genomes with gene repetitions. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 119–130. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 319–327. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Chen, J., Huang, X., Kanj, I., Xia, G.: Linear FPT reductions and computational lower bounds. In: Proceedings of the 36th ACM Symposium on Theory of Computing (STOC 2004), pp. 212–221 (2004)

    Google Scholar 

  16. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  17. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  19. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  20. Hästad, J.: Clique is hard to approximate within n 1 − ε. Acta Mathematica 182, 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  21. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gascuel, O. (ed.): Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford (2004)

    Google Scholar 

  23. Marron, M., Swenson, K., Moret, B.: Genomic distances under deletions and insertions. Theoretical Computer Science 325(3), 347–360 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Makaroff, C., Palmer, J.: Mitochondrial DNA rearrangements and transcriptional alternatives in the male sterile cytoplasm of Ogura radish. Mol. Cell. Biol. 8, 1474–1480 (1988)

    Google Scholar 

  25. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005)

    Article  Google Scholar 

  26. Palmer, J., Herbon, L.: Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evolut. 27, 87–97 (1988)

    Article  Google Scholar 

  27. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 16(11), 909–917 (1999)

    Article  Google Scholar 

  28. Schaefer, T.: The complexity of satisfiability problem. In: Proceedings of the 10th ACM Symposium on Theory of Computing (STOC 1978), pp. 216–226 (1978)

    Google Scholar 

  29. Sturtevant, A., Dobzhansky, T.: Inversions in the third chromosome of wild races of drosophila pseudoobscura, and their use in the study of the history of the species. Proc. Nat. Acad. Sci. USA 22, 448–450 (1936)

    Article  Google Scholar 

  30. Watterson, G., Ewens, W., Hall, T., Morgan, A.: The chromosome inversion problem. J. Theoretical Biology 99, 1–7 (1982)

    Article  Google Scholar 

  31. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. In: Chen, J., Cooper, S.B. (eds.) TAMC 2009. LNCS, vol. 5532 (2009)

    Google Scholar 

  32. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in rearrangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4, 515–522 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, B. (2009). Approximability and Fixed-Parameter Tractability for the Exemplar Genomic Distance Problems. In: Chen, J., Cooper, S.B. (eds) Theory and Applications of Models of Computation. TAMC 2009. Lecture Notes in Computer Science, vol 5532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02017-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02017-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02016-2

  • Online ISBN: 978-3-642-02017-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics