Skip to main content

Approximation Algorithms for Max 3-Section Using Complex Semidefinite Programming Relaxation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5573))

Abstract

We present an approximation algorithm for the Max 3-section problem which divides a weighted graph into 3 parts of equal size so as to maximize the weight of the edges connecting different parts. The algorithm is based on a complex semidefinite programming and can in some sense be viewed as a generalization of the approximation algorithm proposed by Ye [17] for the Max Bisection problem. Our algorithm can hit the 2/3 bound and has approximate ratio 0.6733 for Max 3-section that sightly improves the 2/3 bound obtained by Andersson [1] and Gaur [8], respectively.

This work is supported by National Natural Science Foundations of China, No. 10671152.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, G.: An Approximation Algorithm for Max p-Section. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 237–247. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Barahona, F., Grötschel, M., Reinelt, G.: An Application of Combinotiorial Optimization to Statistical Physics and Circuit Layout Design. Oper. Res. 36, 493–513 (1988)

    Article  MATH  Google Scholar 

  3. Bertsimas, D., Ye, Y.: Semidefinite Relaxations, Multivariate Normal Distributions, and Order Statistics. In: Handbook of Combinatorial Optimization, vol. 3, pp. 1–19. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  4. Feige, U., Langberg, M.: Approximation Algorithms for Maximization Problems Arising in Graph Partitioning. Journal of Algorithms 41, 174–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feige, U., Langberg, M.: The RPR2 Rounding Technique for Semidefinite Programs. Journal of Algorithms 60, 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frieze, A., Jerrum, M.: Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 1–13. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  7. Garey, M., Johnson, D., Stochmeter, L.: Some Simplified NP-Complete Graph Problems. Theoret. Comput. Sci. 1, 237–267 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gaur, D.R., Ramesh, K., Kohli, R.: The Capacitated Max k-Cut Problem. Math. Program 115, 65–72 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goemans, M.X., Williamson, D.P.: Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. Assoc. Comput. Mach. 42, 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goemans, M.X., Williamson, D.P.: Approximation Algorithms for MAX-3-CUT and other Problems via Complex Semidefinite Programming. Journal of Computer and System Sciences 68, 442–470 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Halperin, E., Zwick, U.: A Unified Framework for Obtaining Improved Approximation Algorithms for Maximum Graph Bisection Problems. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 202–217. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Han, Q., Ye, Y., Zhang, J.: An Improved Rounding Method and Semidefinite Programming Relaxation for Graph Partition. Math. Program. Ser. B 92, 509–535 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jäger, G., Srjvastav, A.: Improved Approximation Algorithms for Maximum Graph Partitioning Problems. Journal of Combinatorial Optimization 10, 133–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karp, R.M.: Reducibility among Combinatorial Problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  15. Ling, A.-F., Xu, C.-X., Xu, F.-M.: A Discrete Filled Function Algorithm Embedded with Continuous Approximation for Solving Max-Cut Problems. European Journal of Operational Research 197, 519–531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, C., Zhang, J.: Survey of Quasi-Newton Equations and Quasi-Newton Methods for Optimization. Annals of Operations Reseach 103, 213–234 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ye, Y.: A 0.699-Approximation algorithm for Max-Bisection. Math. Program. 90, 101–111 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, S., Huang, Y.: Complex Quadratic Optimization and Semidefinite Programming. SIAM J. Optm. 16, 871–890 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ling, Af. (2009). Approximation Algorithms for Max 3-Section Using Complex Semidefinite Programming Relaxation. In: Du, DZ., Hu, X., Pardalos, P.M. (eds) Combinatorial Optimization and Applications. COCOA 2009. Lecture Notes in Computer Science, vol 5573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02026-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02026-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02025-4

  • Online ISBN: 978-3-642-02026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics